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● you can use ML in clang/llvm (as of 2020)
● open source, in “trunk”
● support for: embedding ML models, extracting training 

corpus, etc.

At Google:

● Size (ML makes per-callsite inlining decisions):
○ Chrome on Android (since mid-2022)
○ Fuchsia (an OS, runs on Google Assistant devices, ~2020)
○ internal cloud infra (fixed size boot partition. 2022)

● Performance:
○ a register allocation policy for e.g. Search, Big Table, etc. (2022)
○ ML makes Live Range conflict resolution choices



This talk…

● Scope (C/C++ at Google)
● Why ML
● How (high-level)

● Biggest challenges (research opportunities)



Google + LLVM



Clang/LLVM

● github.com/llvm/llvm-project
● LLVM: a library

○ IR
○ extensible pass (“phase”) model
○ state of the art optimizations
○ lowering to Machine IR (MIR) (x86, arm, etc)

● clang - a frontend, lowers C/C++ to IR
● other frontends: - rust, swift…
● also: lld (linker), lldb (debugger)...



C/C++ at Google

● compiler (performance) engineering matters quite directly 
to the “bottom line”
○ even small performance improvements (0.5% - 1%) matter a lot

■ less hardware
■ lower power utilization
■ better user experience
■ ...

○ continuous improvement
■ 1% today, another 1% tomorrow…

● we use C/C++ for all the large scale, 
performance-critical services

● at Google, “C/C++” == Clang / LLVM



When we talk about performance, we assume…

● performance profiles (FDO aka PGO)
○ frequency of function calls
○ CFG edge probability
○ loop average trip count

● ThinLTO
○ Link Time Optimization (LTO): reason about the whole program
○ …but because or binaries are statically linked and large -> ThinLTO



What do our binaries usually do

● serve RPC requests
● a request passes through lots of code

○ reusable libraries (both 1st and 3rd party)

● reusable code tries to be generic wrt context of use
● performance is about being as specific as possible to the 

usage context



…our binaries continued…

● data won’t fit in the cache
● …nor would the hot/warm instruction set for any 

particular RPC

● interprocedural optimizations (IPO: e.g. inlining) 
generally have big impact (for us)
○ this produces large functions



Why ML

● IPO (inlining), regalloc… reasoning about large data 
(graphs)
○ local decisions have far-reaching effects
○ complex (i.e. hard to reason about by humans)

○ without ML: heuristics:
■ no known perfect optimization algo
■ so we use rules of thumb… tendency for local optima
■ empirically do OK, sometimes they don’t, that’s OK

● Reinforcement Learning (and similar techniques) scale 
well with large data and problems like these



Why not ML

● compilers (at least systems-oriented ones) must be:
○ deterministic (same compiler | same flags | same input => 

bit-identical output)
○ timely
○ correct

● these are antithetic to ML



What’s the hope / promise?

● break through complexity limitations

● focus on feature extraction rather than manually 
fine-tuning knobs

● automated periodic re-tuning rather than “run benchmark 
suite, see what breaks”



What’s the full engineering problem?

● keep the compiler deterministic, correct, and timely

● have a systematic approach to training

● scalable to compiler community



RL + LLVM



What’s a ML policy?

● It’s a neural network
● …which is a function

○ takes inputs (“tensors”: buffers of scalars)
○ executes
○ produces a result 
○ (up to user to interpret result)

● ‘executes’:
○ can be compiled to native code (“AOT”)
○ …or interpreted



Guidelines

● ask ML to decide among correctness-preserving 
alternatives
○ if a call site is legally inlinable… should it?
○ if some Live Ranges conflict, and a subset of them can be split… 

which should that be?

● train offline… rarely
● “use” treats ML as an implementation detail

○ so the compiler looks and feels “as usual”
○ …just that some decisions are made differently… but that’s 

implementation detail



Training: Very High Level

0 start with a policy

1 observe it in action

2 compare with baseline => reward

3 use reward (and observations) to produce another policy

4 goto 1

github.com/google/ml-compiler-opt (non-prescriptive; what we use)



“Observe it in action”

● compiler:
○ extract features
○ execute policy
○ get result
○ act on it

● for training, we may additionally want to get a trace of 
feature values (“observations”) and decisions



LLVM support: MLModelRunner
#include "llvm/Analysis/MLModelRunner.h"

// switch to index-based parameter lookup               index 0                                  index 1    ...
MLModelRunner *Runner = factory_method({{“foo”, int64_t, (1, 10)},  {“bar”, float,...}})

// direct access to parameters’ backing buffers to avoid imposing memcpy-ing
Runner->getTensor<int64_t>(foo_index/*==0*/)[0] = Callee.getBasicBlockList().size();
Runner->getTensor<float>(bar_index/*==1*/)[0] = Module.getFunctionList().size();

// execute the model and interpret the result
bool ShouldInline = Runner->evaluate<bool>();

examples:
● lib/Analysis/MLInlineAdvisor.cpp
● lib/CodeGen/MLRegAllocEvictAdvisor.cpp



“Reward”

● improvement / regression from a baseline
● for size, it’s easy: # of bytes (ls -l)

● what about performance?



Reward for performance

● benchmarks
○ easy for toy problems, hard to scale
○ representativeness (feature value distribution should match 

deployment)
○ isolated hardware
○ time consuming build and execution

● but we have profile information!
○ can we pre-compute a value at compile time?

This is the main challenge



The main challenges

● profile information is not precise enough
○ absolutely better than nothing
○ but lossy during certain optimizations (like inlining)
○ current direction: contextual profiles

● latency prediction
○ pipeline effects
○ cache effects
○ but: we don’t care about accurate absolute prediction. Just accurate 

trend



Getting involved (with LLVM, or MLGO)

https://discourse.llvm.org/ (tag: #mlgo)

Google Summer of Code, LLVM project

Internships @ Google

Student Researcher Program

https://discourse.llvm.org/
https://summerofcode.withgoogle.com/


Appendix



“vanilla” (non-ThinLTO)



ThinLTO



How to talk to ML 
models



ML Models

● essentially, a function written in a DSL
○ Tensorflow: “Saved Model”

● The DSL needs an interpreter / compiler
○ abstraction: llvm/Analysis/MLModelRunner.h (llvm::MLModelRunner)

● Arguments & return: “Tensors”
○ llvm/Analysis/TensorSpec.h (llvm::TensorSpec)

■ name: name-based binding
■ type: scalar type (int32, float..)
■ shape: e.g. {3, 2, 5} (but we really care it’s 

3*2*5*sizeof(int32) = 120 bytes).



MLModelRunner high-level
#include "llvm/Analysis/MLModelRunner.h"

// switch to index-based parameter lookup               index 0                                  index 1    ...
MLModelRunner *Runner = factory_method({{“foo”, int64_t, (1, 10)},  {“bar”, float,...}})

// direct access to parameters’ backing buffers to avoid imposing memcpy-ing
Runner->getTensor<int64_t>(foo_index/*==0*/)[0] = Callee.getBasicBlockList().size();
Runner->getTensor<float>(bar_index/*==1*/)[0] = Module.getFunctionList().size();

// execute the model and interpret the result
bool ShouldInline = Runner->evaluate<bool>();

examples:
● lib/Analysis/MLInlineAdvisor.cpp
● lib/CodeGen/MLRegAllocEvictAdvisor.cpp

use ML only for 
performance, not correctness, decisions 



Contract with implementers

{“name1”, float, {1, 3}},  →  InputBuffers[0]
{“name2”, uint32_t, {10}}, →  InputBuffers[1]
...

getTensor(size_t I) { return InputBuffers[I]; }

● tensor buffer lifetime == MLModelRunner’s lifetime
● row-major order flattening

● “→” is the implementer’s ctor responsibility
○ because it may have preferences / internal optimizations

● if implementer doesn’t know a tensor, we’ll allocate a buffer for it (for 
versioning / evolution)



llvm::ReleaseModeModelRunner - embed compiled model

● llvm/Analysis/ReleaseModeModelRunner.h
● see llvm/cmake/modules/TensorFlowCompile.cmake: tf_find_and_compile
● must:

$ pip install tensorflow
$ cmake <..> -DTENSORFLOW_AOT_PATH=<...>/site-packages/tensorflow 

(+ flags to specific models)

using CompiledModelType = RegAllocEvictModel; // <- generated

Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>(
MF.getFunction().getContext(),             // just for Ctx.emit
InputFeatures,   // std::vector<TensorSpec>
DecisionName);   // just the tensor name of the output

● examples in lib/{Analysis|CodeGen}/CMakeLists.txt
● test model generators lib/Analysis/models/gen- {regalloc-eviction |inline-oz }-test-model.py
● tensorflow pip dependency: the way the AOT compiler & C++ wrapper sources are packaged (so… install a python 

package just to get to C++ / native “stuff”? yup!)



llvm::InteractiveModelRunner - ask an external agent

● available “off the shelf”
● implements a “dm_env”, or “gym”, interface

○ meant for training / research. 
○ NOT intended for production

● “evaluate”: 
○ write all features to a file desc
○ wait for external agent to give answer

● use standard LLVM IO file descriptors (sys::fs APIs) - can be named pipes

std::make_unique<InteractiveModelRunner>(
        M.getContext(), Features, OutputSpec,
        InteractiveChannelBaseName + ".out",
        InteractiveChannelBaseName + ".in")

● complete examples:
llvm/test/CodeGen/MLRegAlloc/interactive-mode.ll
llvm/test/Transforms/Inline/ML/interactive-mode.ll



yes, yes, yet another serialization format…

serializer:   llvm/Analysis/TrainingLogger.h
deserializer: lib/Analysis/models/log_reader.py

regalloc example:

1. {“features”:[{“name”:”mask”,”type”:”int64_t”....],]..}
2. {“context”:”aFunctionName”}
3. {“observation”:0}

4. <binary data dump of tensor values>\n
5. {“observation”:1}

...



llvm::ModelUnderTrainingRunner - load and interpret
● works with build systems, but slower than AOT - it’s an interpreter!
● initially used for training, also valuable for the added flexibility
● must embed the TFLite runtime:

$ mkdir /tmp/tflite
$ cd /tmp/tflite
$ curl -s https://raw.githubusercontent.com/google/ml-compiler-opt/main/buildbot/build_tflite.sh | bash

$ cd $LLVM && mkdir build && cd build
$ cmake <...> -C /tmp/tflite/tflite.cmake

std::unique<MLModelRunner> Runner = 
ModelUnderTrainingRunner::createAndEnsureValid(

Ctx, 
ModelPath,       // <- you can pass a model from command line
DecisionName, 
InputSpecs)

● ModelPath points to a dir containing a model.tflite file and an output_spec.json
○ canonical saved model -> tflite converter: lib/Analysis/models/saved-model-to-tflite.py
○ canonical json: lib/Analysis/models/gen-{inline-oz|regalloc-eviction}-test-model.py

https://raw.githubusercontent.com/google/ml-compiler-opt/main/buildbot/build_tflite.sh


Corpus Collection



Corpus collection

● independently (re)compile individual modules, in production configuration
● leverage .llvmbc and .llvmcmd (existing feature)

Steps:

1) build your project with your build system...

...but pass additional flags

2) find? the native .o files and scrape the 2 sections

llvm-objcopy -dump-section= .llvmbc=<output.bc> native.o /dev/null

?compile_commands.json | linker .params |...     see 
https://github.com/google/ml-compiler-opt/blob/main/compiler_opt/tools/extract_ir.py

https://github.com/google/ml-compiler-opt/blob/main/compiler_opt/tools/extract_ir.py


Details
● Frontend (pre-(Thin)LTO) clang:

clang <...> -Xclang=-fembed-bitcode=all

● ThinLTO “distributed”:

clang <...> -mllvm 
-thinlto-embed-bitcode=post-merge-pre-opt

● ThinLTO “local”:

ld.lld <...> -WL,--save-temps=import \ 
-Wl,--thinlto-emit-index-files

● this dumps files named xyz.3.import.bc and xyz.thinlto.bc 
in our output dir

● not using .llvmbc / .llvmcmd



A corpus is…

● a directory of files
● a corpus element is:

○ a .bc (IR)
○ a .cmd file
○ (thinlto) a .thinlto.bc index file (still needed for 

WholeProgramDevirt)

● to re-run compilation:
○ run clang with the .cmd options (note: they are ‘\0’ separated…)
○ adjust input/output paths (and thinlto index)
○ pass -mllvm -thinlto-assume-merged  if ThinLTO

● a corpus element is compilable independently from the 
build system


