
Gematria/GRANITE
Learned performance models
Ondrej Sykora
Compiler Research+Operations Research, Google

Scoring/Rewards

How do we tell code A is better than code B?

● Should be easy: it runs faster, uses less memory, ...

But how do we actually tell? Benchmarks?

● Useful and important for deployment.
● Must be written and maintained along with the code.
● Sadly, impractical for compilation.

A more practical alternative?

● Static performance models!

Code performance models from 30k feet

Performance model = an approximation of a benchmark

● Instead of running the code, analyze it statically

They have some disadvantages:

● Less precise than a benchmark

But also a lot of advantages:

● Deterministic! Always available! Safe!
● And also, faster than an actual benchmark.

A closer look

Typically, oriented at basic blocks

● Basic block = sequence of instructions with no control
flow

● Simulate/analyze the flow of instructions through the CPU
pipeline, measure simulated (inverse) throughput.

Simplifying assumptions:

● Code running in a tight loop
● Ideal memory access patterns: no cache misses
● Ideal execution patterns: no branch mispredictions

Practical challenges

CPUs are very complex beasts

● Pipelined execution with many stages
● Out of order execution with many instructions in flight
● Many parts moving at the same time

...that could be documented much better

● Sparsely documented, many details are missing from docs
● Documentation is prose, very few machine-readable docs

Typology of performance models

Analytical models

● A simulator of the target machine.
● Very crude to very precise. May provide explanations.
● Very, very laborious to develop.

Learned performance models

● Machine learning to the rescue.
● Good precision/effort trade-off, limited explanations.
● "Easy" to scale model development, open for automation.

A few existing performance models

● Intel IACA: analytical, Intel-only, discontinued in 2019
● LLVM-MCA: analytical, open-source, part of the LLVM
● uops.info + uiCA: analytical, open-source, very precise
● Ithemal: learned, based on LSTM networks (2018)
● GRANITE: learned, based on Graph networks (2022)

GRANITE model

Graph representation of code

● Natural representation of code
○ A lot of semantic information is embedded in the representation
○ Fewer symmetries than text

● Long tradition in compilers and general computer science
○ Abstract syntax trees
○ Control flow graphs
○ Data flow graphs
○ ...

Graph neural networks

Machine learning models for graphs

● Input: Graph structure + node,
edge, and graph feature vectors

● Output: Updated node, edge, and
graph feature vectors

● Computation: Fixed number of
message passing iterations
along the edges of the graph.

● Excellent model for relational
data!

Graph neural networks

Machine learning models for graphs

● Input: Graph structure + node,
edge, and graph feature vectors

● Output: Updated node, edge, and
graph feature vectors

● Computation: Fixed number of
message passing iterations
along the edges of the graph.

● Excellent model for relational
data!

Message passing algorithm

● Initial feature vectors are
supplied by the user.

● In each step, node, edge,and
graph feature vectors are
updated based on values from
their "neighbors".

● The update function is a
(learned) neural network.

Graph neural networks

Machine learning models for graphs

● Input: Graph structure + node,
edge, and graph feature vectors

● Output: Updated node, edge, and
graph feature vectors

● Computation: Fixed number of
message passing iterations
along the edges of the graph.

● Excellent model for relational
data!

Message passing algorithm

● Initial feature vectors are
supplied by the user.

● In each step, node, edge,and
graph feature vectors are
updated based on values from
their "neighbors".

● The update function is a
(learned) neural network.

Battaglia, Peter W., et al. "Relational inductive biases, deep learning, and graph
networks.", 2018.

High level GRANITE design

Graph
encoding

Graph
neural net

Multi-task
decodersMachine code Throughput

predictions

TensorFlow + TF Lite implementation

Basic block oriented

Multi-task training

Graph representation of code in GRANITE

MOV RAX, 12345 ADD DWORD PTR [RAX+16], EBX

MOV ADDimm

RAX

imm

EBX

EFLAGSaddr

mem

mem

GRANITE model structure

code
graph

Embedding
lookup

Graph
network
module

N-times

Dense
network

Dense ReLU as
update function

+
Layer norm

Output
prediction

Shared +
per-task

Multi-task decoders

Get more results with less effort
(with multi-task learning)

● Task = target microarchitecture
● Multiple microarchitectures per

model and data sample
● Graph network computes

instruction embedding
● Decoder(s) transform embeddings

into per-instruction throughput
● Block prediction = sum of

instruction throughputs

Evaluation methodology

Baseline: Ithemal (Mendis et al, 2019):

● A machine-learning based model for throughput prediction
● Two-level Long-short term memory (LSTM) neural networks
● Single task, simple decoder network

Metrics:

● Mean absolute percentage error:
● Training time (per batch)
● Inference time (per batch)

Ithemal+ - extended baseline model

Complex decoder network and multi-task training are
independent on graph representation!

We introduce Ithemal+ to evaluate their contributions to
model precision

● A two-level LSTM model, similar to original Ithemal,
but...

● ... has a complex decoder network
● ... is trained using multi-task training

Prediction precision

Effects of multi-task training

Computational efficiency

Closing words

What we learned and achieved

Graph representation and graph neural networks

● An expressive representation that helps the model precision
● Efficient training and inference on GPUs (~3x speedup over LSTM)

A more complex decoder network

● Significant effect on prediction precision; model agnostic

Multi-task training

● Further improve prediction precision/help avoid overfitting
● Additional significant speed-up: A multi-task model is almost as

fast to train as one single-task model

What are we doing now?

Open-source development

● Our code is on GitHub, contributions welcome!
● https://github.com/google/gematria
● LLVM ML community on slack (ask Mircea to add you)

Ongoing projects (open-source)

● Public training data set, Function-level performance models: llvm-cm,
● Performance models with additional context

More project ideas (waiting for you! :))

● Transfer learning for performance models
● Support for more architectures & microarchitectures

https://github.com/google/gematria
https://arxiv.org/abs/2309.15432
https://discourse.llvm.org/t/rfc-llvm-cm-cost-model-evaluation-for-object-files-machine-code/71502

Thank you for listening!

● Questions? Comments?

