CSE211: Compiler Design

Oct. 9, 2023

* Topic: Parser Generator Example (PLY)

 Questions:
 What is a parser generator?

* Do you have any experience with a parser
generator?

from: https://en.wikipedia.org/wiki/Yak



Announcements

* Homework 1 is planned for release on Today by midnight

* Please partner up if you haven’t. If you don’t have a partner you can make a
private post on Piazza. Please do that in the next few days.

* Failing to find a partner by the end of the week will be a 20% deduction and
you will have to do the homework assignment by yourself.

* | will make a shared spreadsheet that we can use to record partners
* Please self organize (use Piazza)
* You will have 2 weeks to do the homework



Announcements

* Think about paper review
* You will need to approve a paper with me by Oct. 23
* First review is due Oct. 30

* You should probably not wait until these due dates because the midterm is
also on Oct. 30.

* | give this time for you to organize, not as a guidance!
* You can discuss papers on piazza or ask me for suggestions



Announcements

* | will have office hours this week: Thursday from 3 -5 PM

e Rithik will update the webpage and hold office hours as well



Review and a few thoughts from last time



Parser architecture

Parser

Scanner

(Lexer)
(Tokenizer)

Parser

First level of
abstraction.
Transforms a string of
characters into a string
of tokens

Language:
Regular Expressions
(REs)

Second level:
transforms a string
of tokens in a tree of
tokens.

Language:
Context-Free Grammars
(CFGs)



Scanner

(5+4)*8
Scanner

|:|:( , \\(//) ( , \\5//) (PLUS’ \\_I_//)
( , \\*//) ( , \\8//)]

Splits an input sentence it into lexemes

(NUM,

\\4//)

(

\\) //)



Parsing

m

+,- expr : expr PLUS term
| expr MINUS term
| term

*/ term : term TIMES pow
| term DIV pow

| pow

: factor CARROT pow
| factor

() factor : LPAR expr RPAR
| NUM

A pow

input: 2-3-4

expr
expr <MINUS>  term
expr <MINUS> teTm factor
term fac’tor <NUM, 4>
factor <NUM, 3>

<NUM, 2>



Let’s make a richer grammar

Let’s add minus, division and power to our grammar

m

Tokens:
NUM = [0-9]+
PLUS = \+’
TIMES ="\*’
LP = “\(’
RP=\)
MINUS = ‘-
DIV="/
CARROT = \W



Let’s make a richer grammar

Let’s add minus, division and power to our grammar

m

+,- expr : expr PLUS term

| expr MINUS term Tokens:

| term NUM = [0-9]+
* / term : term TIMES pow PLUS = \+'

| term DIV pow TIME{S N AN

| pOW LP = \(
A RP=\)

pow : factor CARROT pow MINUS = -’

| factor DIV =/

() factor : LPAR expr RPAR CARROT ="\

| NUM



Let’s make a richer grammar

m

+,- expr : expr PLUS term
| expr MINUS term
| term

*/ term : term TIMES pow
| term DIV pow

| pow

: factor CARROT pow
| factor

: LPAR expr RPAR
| NUM

A pow

() factor

input: 2-3-4

expr
expr <MINUS> term
expr <MINUS> teTm factor
term fac’tor <NUM, 4>
factor <NUM, 3>

<NUM, 2>



What do these look like in real-world
languages?

* C++:
https://en.cppreference.com/w/cpp/language/operator_precedence

* Python:
https://docs.python.org/3/reference/expressions.html#foperator-
precedence



Godbolt examples



New material



Production rules in a compiler

* Great to check if a string is grammatically correct

* But can the production rules actually help us with compilation??



Production actions

* Each production option is associated with a code block
* |t can use values from its children
* it returns a value to its parent
* Executed in a post-order traversal (natural order traversal)



Production actions input: 145%6

Example: executing a mathematical expression during parsing

Children values are passed in as an array C, indexed from left to right expr

W“ Pl
expr <PLUS> term

expr :expr PLUS term /|\
| expr MINUS term { }
| term U term term  <TIMES>  factor
*/ term :term TIMES factor {} ‘ ’
: term DIV factor th factor <NUM, 6>
| factor ) factor ’
() factor :LPAR expr RPAR {} <NUM, 5>

| NUM {} <NUM, 1>



Children values are passed in as an array C, indexed from left to right

m“

()

expr :expr PLUS term
| expr MINUS term
| term

term :term TIMES factor
: term DIV factor
| factor

factor :LPAR expr RPAR
| NUM

We have just implemented a simple arithmetic interpreter!

Could this be in a compiler?

{ret C
{ret
{ret

{ret
{ret
{ret

{ret
{ret

Production actions

Example: executing a mathematical expression during parsing

Clz2]}
C[O] C[ 1}
C[0]}
C[0] * C[2]}
C[0] / C[2]}
C[O0]}
C[1]}
int (C[0]) }

input:

1+5*6

expr

//////T\\\\

expr

term

factor

<NUM, 1>

<PLUS> term

el

term <TIMES> factor

| |

factor <NUM, 6>

|

<NUM, 5>



Parser generators

* Specify:
* Tokens
* Production Rules
* Production Actions

* Parser generator gives you a function in which you can pass strings
e Executes production actions
* Error reporting



Historically

* Lex
* lexer (scanner)
* released in 1975
e co-developed by Eric Schmidt
* "Flex” is a common open-source implementation
* historically outputs a .c file

* Yacc (Yet Another Compiler Compiler)
* parser
released in 1975
originally written in B, but soon rewritten in C
interface is widely supported, but newer implementations are more used now
historically outputs a .c file



Historically

* Bison
* Parser only, often coupled with flex
* Released in 1985: actively maintained
* better error tracking and debugging
compatible with yacc rules
outputs C/++, Java



More modern

e Antlr
* Lexer and Parser
Released 1992, actively maintained
BSD License
From Wikipedia, used in:

o The expression evaluator in Numbers, Apple's spreadsheet.[¢/tafion needed]
« Twitter's search query language.l/tation needed]

Outputs: Python, Javascript, C#, Swift

e Others: https://en.wikipedia.org/wiki/Comparison of parser generators




PLY

* An implementation of Lex and Yacc in Python

e links:
e source: https://github.com/dabeaz/ply
* docs: https://ply.readthedocs.io/en/latest/

* Your homework augments this example in several ways:
* Variables, Scope, Precedence, Associativity



Demo

* Lots of thanks to the excellent PLY documentation! Some functions are
copied from there

* Setup:
* clone the ply repo
* make a new directory
* copy the ply/ directory into the directory



A Simple Language

 ARTICLE = {The, A, My, Your}

* NOUN = {Dog, Car, Computer}

* VERB = {Ran, Crashed, Accelerated}
* ADJECTIVE = {Purple, Spotted, Old}



Lexer Demo

e Library import

import ply.lex as lex

e Token list

tokens = ["ADJECTIVE", "NOUN", "VERB", "ARTICLE"]

» Token specification

t_ADJECTIVE = "old|purple|spotted"
t_NOUN = "dog|computer|car"
t_ARTICLE = "the|my|a|your"
t_VERB = "ran|crashed|accelerated"



Lexer Demo

e Build the lexer

lexer = lex. lex()

* Need an error function

# Error handling rule

def t_error(t):
print("Illegal character '%s'" % t.valuelQ])
exit(1)



Lexer Demo

* Now give the lexer some input

lexer.input("dog")
lexer.token())



Lexer Demo

° OUtpUt.‘ line number (1 indexed)

/

LexToken (NOUN, 'dog’, 1, 0)

number of characters streamed
(0 indexed)

 try a longer string:

lexer.input("dog computer")

What happens?



Lexer Demo

* The lexer streams the input, we need to stream the tokens:

# Tokenize
while True:
tok = lexer.token()
if not tok:
break # No more input
print(tok)



Lexer Demo

* Need to add a token for whitespace!
= ["ADJECTIVE", "NOUN", "VERB", "ARTICLE", "WHITESPACE"]
= "\ !
* Now we can lex:

LexToken(NOUN, 'dog',1,0)
LexToken(WHITESPACE,' ',1,3)
LexToken (NOUN, 'computer',1,4)



Lexer Demo

* Now we can do a sentence
lexer.input("my spotted dog ran")

LexToken(ARTICLE, 'my',1,0)
LexToken(WHITESPACE,"' ',1,2)
LexToken(ADJECTIVE, 'spotted’',1,3)
LexToken(WHITESPACE,"' ',1,10)
LexToken (NOUN, 'dog',1,11)
LexToken(WHITESPACE,"' ',1,14)
LexToken(VERB, 'ran',1,15)

Can we clean this up?



Lexer Demo

* We can ignore whitespace

#t_WHITESPACE = "\

No need for the \ because ignore is just characters, not a regex

gets simplified to:

LexToken(ARTICLE, 'my',1,0)
LexToken (WHITESPACE,"' ',1,2)
LexToken(ADJECTIVE, 'spotted',1,3)

(

E LexToken (ARTICLE, 'my',1,0)
LexToken(WHITESPACE,' ',1,10)

(

(

(

LexToken(ADJECTIVE, 'spotted’,1,3)
LexToken (NOUN, 'dog',1,11)

LexToken(NOUN, 'dog',1,11) LexToken(VERB, 'ran',1,15)

LexToken (WHITESPACE,' ',1,14)
LexToken(VERB, 'ran',1,15)



Lexer Demo

 What about newlines?

lexer.input(
my spotted dog ran
the old computer crashed

)

e Need to add a newline token!



Lexer Demo

 What about newlines?

lexer.input ("""

my spotted dog ran
the old computer crashed

IIIIII)

e Need to add a newline token!

tokens = ["ADJECTIVE", "NOUN", "VERB", "ARTICLE", "NEWLINE"]

t_NEWLINE = "\\n"



Lexer Demo

LexToken(NEWLINE, '\n"',1,0)
LexToken(ARTICLE, 'my',1,1)
LexToken(ADJECTIVE, 'spotted’,1,4)
LexToken (NOUN, 'dog',1,12)
LexToken(VERB, 'ran',1,16)
LexToken(NEWLINE, '\n"',1,19)
LexToken(ARTICLE, 'the',1,20)

Line numbers are not updating



Lexer Demo

 Token actions

— II\\nII

Changes into:

def t_ NEWLINE(t): o _ . .
"\\n" docstring is the regex, lexer object which has a linenumber

=1 attribute.

return t _ o
If we don’t return anything, then it is ignored.



Lexer Demo

 Example: changing a sentence into gender neutral

tokens = ["ADJECTIVE", "NOUN", "VERB", "ARTICLE", "NEWLINE", "PRONOUN"]
t_PRONOUN = "her|his|their"

lexer.input ("""
his spotted dog ran
her old computer crashed

IIIIII)



Lexer Demo

 Add a token action:

def t_PRONOUN(t):
"her|his|their"
if t.value in ["his", "her"]:
t.value = "their"
return t

Now output will have a gender neutral sentence!



How to handle keywords and ids

tokens = ["IF", "ELSE", "ID"]

t ID = "[a-zA-Z]+"
t IF = "if"

t ELSE = "else"
t_ignore b

def t_error(t):
print("Illegal character '%s'" % t.valuelQ])
print("line number: %d" % t.lexer.lineno)
exit(1)

lexer = lex. lex()

lexer.input("if")

parses ”if” as an ID!



How to handle keywords and ids

reserved = {
'if! : 'IF',
'else’ » '"ELSE’
}

tokens = ["ID"] + list(reserved.values())

def t_ID(t):
"[a-zA-Z]+"
t.type = reserved.get(t.value, 'ID')
return t

This will work!



Multiline calculator example

* For this, we will use lexer and parser

* input:
* 1 or more mathematical expressions separated by a ;
* mathematical expressions can have non-negative integers as operands
* mathematical operators are +,-,*,/ and ()

* output:
* the solution to each expression



Production rules vs production actions

* Great to check if a string is grammatically correct

* But can the production rules actually help us with compilation??



Production actions

* Each production option is associated with a code block
* |t can use values from its children
* it returns a value to its parent
* Executed in a post-order traversal (natural order traversal)



Production actions input: 145%6

Example: executing a mathematical expression during parsing

Children values are passed in as an array C, indexed from left to right expr

W“ N
expr <PLUS> term

expr :expr PLUS term {ret C C[2]}

| expr MINUS term {ret C [01 C[ ]} /|\

| (BT tret S0l term term <TIMES>  factor
*,/ term :term TIMES factor {ret C[0] * C[2]} ‘ ’

: term DIV factor {ret C[0] / C[2]}

| factor {ret C[O]} factor fac’tor <NUM, 6>
() factor :LPAR expr RPAR {ret C[1]}

| NUM {ret int(C[O0])} <NUM, 1> <NUM, 5>

We have just implemented a simple arithmetic interpreter!



Multiline calculator example

import ply.lex as lex
tokens = ["NUM", "MULT", "PLUS", "MINUS", "DIV", "LPAR", "RPAR", "SEMI", "NEWLINE"]

t_NUM = '[0-9]+'

t_MULT = "\x'

t_PLUS = '\+'

t_MINUS = '-!

t DIV = '/

t_LPAR = '\('

t RPAR = “\)" Set up the lexer
t_SEMI = ";"

t_ignore = ' '

def t_NEWLINE(t):

II\\nII
t. lexer. lineno += 1

# Error handling rule

def t_error(t):
print("Illegal character '%s'" % t.valuel@])
exit(1)

lexer = lex.lex()



Multiline calculator example

* Import the library

ply.yacc yacc

e Simple rule

p_expr_num(p):

"expr : NUM" functions are given prefixed by p
[0] = int(p[1]) N

production rules are the doc string

return values are stored in p[0]
children values are in p[1], p[2], etc.



Multiline calculator example

* Try it out

= yacc.yacc(debug=True)

= parser.parse('"5")
(result)



Multiline calculator example

e Next rule

def p_expr_plus(p):
"expr : expr PLUS expr"
[0] = p[1] + pl3]

* Try it again

= parser.parse("5 + 4")
print(result)

What errors are we getting? Can we look into them?



Multiline calculator example

» Set an error function

def p_error(p):
print("Syntax error in input!")

* Set associativity (and precedence)

= (
('left’, '"PLUS'"),



Multiline calculator example

 Next rules

def p_expr_minus(p):
"expr : expr MINUS expr"

pl@] = pl[1] - pI3] precedence = [

('left', 'PLUS', 'MINUS'),
('left', 'MULT', 'DIV'),
def p_expr_mult(p): ]

"expr : expr MULT expr"
pl@] = pl1l] % p[3]

def p_expr_div(p):
"expr : expr DIV expr"
plo] = pl1] / pl3]



Multiline calculator example

* Last rule for expressions

def p_expr_par(p):
"expr : LPAR expr RPAR"
[0] = pl2]



Multiline calculator example

* An extra we can easily implement

def p_expr_div(p):
"expr : expr DIV expr"
if pl[3] == 0:
print("divide by @ error:")
print("cannot divide: " + str(p[1]) + " by 0")
exit(1)
ple] = pl1l] / pl3]



Multiline calculator example

* Combining rules:

def p_expr_plus(p):
"expr : expr PLUS expr"
ple] = pl[1l] + pl3]

def p_expr_minus(p):
"expr : expr MINUS expr"
plo] = pl1] - pl3]

def p_expr_mult(p):
"expr : expr MULT expr"
pl@] = pl1l] % p[3]

def p_expr_bin(p):

expr : expr PLUS expr
| expr MINUS expr
| expr MULT expr

if pl[2] == "+":

nl@] = pl1] + pl3]
elif pl[2] == "'-":

pl@] = pl1] - pl3]
elif pl[2] == "x':

n[0] = pl[1] * pl[3]
else:
assert(False)



Multiline calculator demo using lambdas

e demo



One consideration: Scope
* What is scope?

e Can it be determined at compile time? Can it be determined at
runtime?

* Cvs. Python

* Anyone have any interesting scoping rules they know of?



One consideration: Scope

* Lexical scope example

|_l.
3
(_'-
N
[
O

What are the final values in x and y?



How to track scope?

* Symbol table
* Global object, accessible (and mutable) by all production actions

 two methods:

* lookup(id) : lookup an id in the symbol table.
Returns None 1f the 1d 1s not 1n the symbol table.

* insert(id,info) : insert a new 1d (or overwrite an

exlsting 1d) 1nto the symbol table along with a set
of i1nformation about the 1id.

What information might we store about an id?



a very simple programming language

VARIABLE_NAME = “[a-z]+"
INCREMENT = “\+\+”

TYPE = “int”

LB = “{“

RB = “}”

SEMI = “;”

statements are either a declaration or an increment



a very simple programming language

VARIABLE_NAME = “[a-z]+” int x;
INCREMENT = “\+\+” L
int y;

TYPE - ”int” X++;
LB — u{u y-|—-|—;

{av }
RB = “} "y
SEMI = “;”

statements are either a declaration or an increment



a very simple programming language

VARIABLE_NAME = “[a-z]+” int x;
INCREMENT = “\+\+” L

int y;
TYPE - ”int” X++;
LB — u{u y-|--|-;
RB — ((}II }
SEMI = “;”

statements are either a declaration or an increment



How to track scope?

e SymbolTable ST;

declare variable: TYPE VARIABLE_ NAME SEMI Say we are matched string:

0 int x;

lookup(id) : lookup an id in the symbol table. Returns None 1f the
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.



How to track scope?

e SymbolTable ST;

declare variable: TYPE VARIABLE_ NAME SEMI
{ST.1nsert (C[1],C[O0]) }

In this example we are storing a type

Say we are matched string:
int x;




How to track scope?

Say we are matched string:
e SymbolTable ST; X+ :

variable_inc: VARIABLE_NAME INCREMENT SEMI
{}

lookup(id) : lookup an id in the symbol table. Returns None 1f the
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.



How to track scope?

Say we are matched string:
e SymbolTable ST; X+ :

variable_inc: VARIABLE_ NAME INCREMENT SEMI
{1f not ST.lookup(x):
ralse SymbolTableException;
else:

// continue}



How to track scope?
e SymbolTable ST;

statement : variable_inc
| declare_variable

statement_list : statement_list statement
| statement



How to track scope?
e SymbolTable ST;

statement : variable_inc
| declare_variable

statement_list : statement_list statement
| statement

adding in scope



How to track scope?
e SymbolTable ST;
statement : variable_inc

| declare_variable

| LBAR statement_list RBAR

statement_list : statement_list statement
| statement



How to track scope?

e SymbolTable ST;

statement : LBAR statement_list RBAR

start a new scope S remove the scope S



How to track scope?

* Symbol table

 four methods:
* lookup(id) : lookup an id in the symbol table.
Returns None 1f the 1d 1s not 1n the symbol table.

* insert(id,info) : insert a new 1d into the symbol
table along with a set of information about the id.

* push scope() : push a new scope to the symbol table

* pop_scope() : pop a scope from the symbol table



How to track scope?

e SymbolTable ST;

statement : LBAR statement_list RBAR

start a new scope S remove the scope S

Think about how to solve with production rules



How to implement a symbol table?

* Thoughts? What data structures are good at mapping strings?

* Symbol table

 four methods:
* lookup(id) : lookup an id in the symbol table.
Returns None 1f the 1d 1s not 1n the symbol table.

* insert(id,info) : insert a new 1d into the symbol
table along with a set of information about the id.

* push scope() : push a new scope to the symbol table

* pop_scope() : pop a scope from the symbol table



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

base scope HT O

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

push scope () HT O

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

adds a new
Hash Table HT 1
to the top of the stack

push scope () HT O

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

HT 1

insert (id,data)

HTO

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables: | |
insert (1d -> data) at

top hash table

HT 1

insert (id,data)

HTO

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

HT 1

lookup (id) HT O

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

check here

first HT1

lookup (id) HT O

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

HT 1

lookup (id) thegecrzeCk HT O

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

HT 1

pop_scope () HT O

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

HTO

Stack of hash tables



How to implement a symbol table?

int x

* Example int vy

{
int y = 0;
X++;
y++;

}

X++;

ytt;

0;
0;

HTO

Stack of hash tables



