
CSE211: Compiler Design
Oct. 9, 2023

• Topic: Parser Generator Example (PLY)

• Questions:
• What is a parser generator?

• Do you have any experience with a parser
generator?

from: https://en.wikipedia.org/wiki/Yak

Announcements

• Homework 1 is planned for release on Today by midnight
• Please partner up if you haven’t. If you don’t have a partner you can make a

private post on Piazza. Please do that in the next few days.
• Failing to find a partner by the end of the week will be a 20% deduction and

you will have to do the homework assignment by yourself.
• I will make a shared spreadsheet that we can use to record partners
• Please self organize (use Piazza)
• You will have 2 weeks to do the homework

Announcements

• Think about paper review
• You will need to approve a paper with me by Oct. 23
• First review is due Oct. 30
• You should probably not wait until these due dates because the midterm is

also on Oct. 30.
• I give this time for you to organize, not as a guidance!
• You can discuss papers on piazza or ask me for suggestions

Announcements

• I will have office hours this week: Thursday from 3 – 5 PM

• Rithik will update the webpage and hold office hours as well

Review and a few thoughts from last time

Parser architecture

First level of
abstraction.

Transforms a string of
characters into a string

of tokens

Second level:
transforms a string

of tokens in a tree of
tokens.

Language:
Regular Expressions

(REs)

Language:
Context-Free Grammars

(CFGs)

Parser

Parser
Scanner
(Lexer)

(Tokenizer)

Scanner

(5 + 4) * 8

[[(LPAR, “(”) (NUM, “5”) (PLUS, “+”) (NUM, “4”) (RPAR, “)”)
 (TIMES, “*”) (NUM, “8”)]

Scanner

Splits an input sentence it into lexemes

Parsing

Operator Name Productions

+,- expr : expr PLUS term
| expr MINUS term
| term

*,/ term : term TIMES pow
| term DIV pow
| pow

^ pow : factor CARROT pow
| factor

() factor : LPAR expr RPAR
| NUM

input: 2-3-4

expr

expr <MINUS>

<MINUS>expr

<NUM, 2>

term

<NUM, 3>

term

factor

factor <NUM, 4>

term

factor

Let’s make a richer grammar

Operator Name Productions

Let’s add minus, division and power to our grammar

Tokens:
NUM = [0-9]+
PLUS = ‘\+’
TIMES = ’*’
LP = ‘\(’
RP = \)’
MINUS = ‘-’
DIV = ‘/’
CARROT = ‘\^’

Let’s make a richer grammar

Operator Name Productions

+,- expr : expr PLUS term
| expr MINUS term
| term

*,/ term : term TIMES pow
| term DIV pow
| pow

^ pow : factor CARROT pow
| factor

() factor : LPAR expr RPAR
| NUM

Let’s add minus, division and power to our grammar

Tokens:
NUM = [0-9]+
PLUS = ‘\+’
TIMES = ’*’
LP = ‘\(’
RP = \)’
MINUS = ‘-’
DIV = ‘/’
CARROT =’ \^’

Let’s make a richer grammar

Operator Name Productions

+,- expr : expr PLUS term
| expr MINUS term
| term

*,/ term : term TIMES pow
| term DIV pow
| pow

^ pow : factor CARROT pow
| factor

() factor : LPAR expr RPAR
| NUM

input: 2-3-4

expr

expr <MINUS>

<MINUS>expr

<NUM, 2>

term

<NUM, 3>

term

factor

factor <NUM, 4>

term

factor

What do these look like in real-world
languages?
• C++ :

https://en.cppreference.com/w/cpp/language/operator_precedence

• Python:
https://docs.python.org/3/reference/expressions.html#operator-
precedence

Godbolt examples

New material

Production rules in a compiler

• Great to check if a string is grammatically correct

• But can the production rules actually help us with compilation??

Production actions

• Each production option is associated with a code block
• It can use values from its children
• it returns a value to its parent
• Executed in a post-order traversal (natural order traversal)

Production actions
Example: executing a mathematical expression during parsing

Children values are passed in as an array C, indexed from left to right expr

expr <PLUS>

<NUM, 1>

<TIMES>termterm

factor

input: 1+5*6

term

<NUM, 5>

factor <NUM, 6>

factor

Operator Name Productions Actions

+,- expr : expr PLUS term
| expr MINUS term
| term

{}
{}
{}

*,/ term : term TIMES factor
: term DIV factor
| factor

{}
{}
{}

() factor : LPAR expr RPAR
| NUM

{}
{}

Production actions

Operator Name Productions Actions

+,- expr : expr PLUS term
| expr MINUS term
| term

{ret C[0] + C[2]}
{ret C[0] - C[2]}
{ret C[0]}

*,/ term : term TIMES factor
: term DIV factor
| factor

{ret C[0] * C[2]}
{ret C[0] / C[2]}
{ret C[0]}

() factor : LPAR expr RPAR
| NUM

{ret C[1]}
{ret int(C[0])}

Example: executing a mathematical expression during parsing

Children values are passed in as an array C, indexed from left to right expr

expr <PLUS>

<NUM, 1>

<TIMES>termterm

factor

input: 1+5*6

term

<NUM, 5>

factor <NUM, 6>

factor

We have just implemented a simple arithmetic interpreter!
Could this be in a compiler?

Parser generators

• Specify:
• Tokens
• Production Rules
• Production Actions

• Parser generator gives you a function in which you can pass strings
• Executes production actions
• Error reporting

Historically

• Lex
• lexer (scanner)
• released in 1975
• co-developed by Eric Schmidt
• ”Flex” is a common open-source implementation
• historically outputs a .c file

• Yacc (Yet Another Compiler Compiler)
• parser
• released in 1975
• originally written in B, but soon rewritten in C
• interface is widely supported, but newer implementations are more used now
• historically outputs a .c file

Historically

• Bison
• Parser only, often coupled with flex
• Released in 1985: actively maintained
• better error tracking and debugging
• compatible with yacc rules
• outputs C/++, Java

More modern

• Antlr
• Lexer and Parser
• Released 1992, actively maintained
• BSD License
• From Wikipedia, used in:

• Outputs: Python, Javascript, C#, Swift

• Others: https://en.wikipedia.org/wiki/Comparison_of_parser_generators

PLY

• An implementation of Lex and Yacc in Python

• links:
• source: https://github.com/dabeaz/ply
• docs: https://ply.readthedocs.io/en/latest/

• Your homework augments this example in several ways:
• Variables, Scope, Precedence, Associativity

Demo

• Lots of thanks to the excellent PLY documentation! Some functions are
copied from there

• Setup:
• clone the ply repo
• make a new directory
• copy the ply/ directory into the directory

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Lexer Demo

• Library import
import ply.lex as lex

• Token list

tokens = ["ADJECTIVE", "NOUN", "VERB", "ARTICLE"]

• Token specification

t_ADJECTIVE = "old|purple|spotted"
t_NOUN = "dog|computer|car"
t_ARTICLE = "the|my|a|your"
t_VERB = "ran|crashed|accelerated"

Lexer Demo

• Build the lexer
lexer = lex.lex()

• Need an error function

Error handling rule
def t_error(t):
 print("Illegal character '%s'" % t.value[0])
 exit(1)

Lexer Demo

• Now give the lexer some input

lexer.input("dog")
print(lexer.token())

Lexer Demo

• output:

LexToken(NOUN, 'dog’, 1, 0)

line number (1 indexed)

number of characters streamed
(0 indexed)

• try a longer string:

lexer.input("dog computer")

What happens?

Lexer Demo

• The lexer streams the input, we need to stream the tokens:

Tokenize
while True:
 tok = lexer.token()
 if not tok:
 break # No more input
 print(tok)

Lexer Demo

• Need to add a token for whitespace!

tokens = ["ADJECTIVE", "NOUN", "VERB", "ARTICLE", "WHITESPACE"]

t_WHITESPACE = '\ '

...

• Now we can lex:

LexToken(NOUN,'dog',1,0)
LexToken(WHITESPACE,' ',1,3)
LexToken(NOUN,'computer',1,4)

Lexer Demo

• Now we can do a sentence

lexer.input("my spotted dog ran")

LexToken(ARTICLE,'my',1,0)
LexToken(WHITESPACE,' ',1,2)
LexToken(ADJECTIVE,'spotted',1,3)
LexToken(WHITESPACE,' ',1,10)
LexToken(NOUN,'dog',1,11)
LexToken(WHITESPACE,' ',1,14)
LexToken(VERB,'ran',1,15)

Can we clean this up?

Lexer Demo

• We can ignore whitespace

#t_WHITESPACE = '\
t_ignore = ' '

LexToken(ARTICLE,'my',1,0)
LexToken(ADJECTIVE,'spotted',1,3)
LexToken(NOUN,'dog',1,11)
LexToken(VERB,'ran',1,15)

LexToken(ARTICLE,'my',1,0)
LexToken(WHITESPACE,' ',1,2)
LexToken(ADJECTIVE,'spotted',1,3)
LexToken(WHITESPACE,' ',1,10)
LexToken(NOUN,'dog',1,11)
LexToken(WHITESPACE,' ',1,14)
LexToken(VERB,'ran',1,15)

gets simplified to:

No need for the \ because ignore is just characters, not a regex

Lexer Demo

• What about newlines?

lexer.input("""
my spotted dog ran
the old computer crashed
""")

• Need to add a newline token!

Lexer Demo

• What about newlines?

lexer.input("""
my spotted dog ran
the old computer crashed
""")

• Need to add a newline token!

tokens = ["ADJECTIVE", "NOUN", "VERB", "ARTICLE", "NEWLINE"]

t_NEWLINE = "\\n"

Lexer Demo
LexToken(NEWLINE,'\n',1,0)
LexToken(ARTICLE,'my',1,1)
LexToken(ADJECTIVE,'spotted',1,4)
LexToken(NOUN,'dog',1,12)
LexToken(VERB,'ran',1,16)
LexToken(NEWLINE,'\n',1,19)
LexToken(ARTICLE,'the',1,20)

Line numbers are not updating

Lexer Demo

• Token actions

def t_NEWLINE(t):
 "\\n"
 t.lexer.lineno += 1
 return t

t_NEWLINE = "\\n"

Changes into:

docstring is the regex, lexer object which has a linenumber
attribute.

If we don’t return anything, then it is ignored.

Lexer Demo

• Example: changing a sentence into gender neutral

tokens = ["ADJECTIVE", "NOUN", "VERB", "ARTICLE", "NEWLINE", "PRONOUN"]
t_PRONOUN = "her|his|their"

lexer.input("""
his spotted dog ran
her old computer crashed
""")

Lexer Demo

• Add a token action:

def t_PRONOUN(t):
 "her|his|their"
 if t.value in ["his", "her"]:
 t.value = "their"
 return t

Now output will have a gender neutral sentence!

How to handle keywords and ids
tokens = ["IF", "ELSE", "ID"]

t_ID = "[a-zA-Z]+"
t_IF = "if"
t_ELSE = "else"
t_ignore = ' '

def t_error(t):
 print("Illegal character '%s'" % t.value[0])
 print("line number: %d" % t.lexer.lineno)
 exit(1)

lexer = lex.lex()

lexer.input("if")

parses ”if” as an ID!

How to handle keywords and ids
reserved = {

 'if' : 'IF',
 'else' : 'ELSE’

}

tokens = ["ID"] + list(reserved.values())

def t_ID(t):
 "[a-zA-Z]+"
 t.type = reserved.get(t.value, 'ID')
 return t

This will work!

Multiline calculator example

• For this, we will use lexer and parser

• input:
• 1 or more mathematical expressions separated by a ;
• mathematical expressions can have non-negative integers as operands
• mathematical operators are +,-,*,/ and ()

• output:
• the solution to each expression

Production rules vs production actions

• Great to check if a string is grammatically correct

• But can the production rules actually help us with compilation??

Production actions

• Each production option is associated with a code block
• It can use values from its children
• it returns a value to its parent
• Executed in a post-order traversal (natural order traversal)

Production actions

Operator Name Productions Actions

+,- expr : expr PLUS term
| expr MINUS term
| term

{ret C[0] + C[2]}
{ret C[0] - C[2]}
{ret C[0]}

*,/ term : term TIMES factor
: term DIV factor
| factor

{ret C[0] * C[2]}
{ret C[0] / C[2]}
{ret C[0]}

() factor : LPAR expr RPAR
| NUM

{ret C[1]}
{ret int(C[0])}

Example: executing a mathematical expression during parsing

Children values are passed in as an array C, indexed from left to right expr

expr <PLUS>

<NUM, 1>

<TIMES>termterm

factor

input: 1+5*6

term

<NUM, 5>

factor <NUM, 6>

factor

We have just implemented a simple arithmetic interpreter!

Multiline calculator example
import ply.lex as lex

tokens = ["NUM", "MULT", "PLUS", "MINUS", "DIV", "LPAR", "RPAR", "SEMI", "NEWLINE"]

t_NUM = '[0-9]+'
t_MULT = '*'
t_PLUS = '\+'
t_MINUS = '-'
t_DIV = '/'
t_LPAR = '\('
t_RPAR = ‘\)'
t_SEMI = ";"

t_ignore = ' '

def t_NEWLINE(t):
 "\\n"
 t.lexer.lineno += 1

Error handling rule
def t_error(t):
 print("Illegal character '%s'" % t.value[0])
 exit(1)

lexer = lex.lex()

Set up the lexer

Multiline calculator example
• Import the library

import ply.yacc as yacc

• Simple rule

def p_expr_num(p):
 "expr : NUM"
 p[0] = int(p[1])

functions are given prefixed by p_

production rules are the doc string

return values are stored in p[0]
children values are in p[1], p[2], etc.

Multiline calculator example
• Try it out

parser = yacc.yacc(debug=True)

result = parser.parse("5")
print(result)

Multiline calculator example
• Next rule

def p_expr_plus(p):
 "expr : expr PLUS expr"
 p[0] = p[1] + p[3]

• Try it again

result = parser.parse("5 + 4")
print(result)

What errors are we getting? Can we look into them?

Multiline calculator example
• Set an error function

• Set associativity (and precedence)

def p_error(p):
 print("Syntax error in input!")

precedence = (
 ('left', 'PLUS'),

)

Multiline calculator example
• Next rules

def p_expr_minus(p):
 "expr : expr MINUS expr"
 p[0] = p[1] - p[3]

def p_expr_mult(p):
 "expr : expr MULT expr"
 p[0] = p[1] * p[3]

def p_expr_div(p):
 "expr : expr DIV expr"
 p[0] = p[1] / p[3]

precedence = [
 ('left', 'PLUS', 'MINUS'),
 ('left', 'MULT', 'DIV'),

]

Multiline calculator example
• Last rule for expressions

def p_expr_par(p):
 "expr : LPAR expr RPAR"
 p[0] = p[2]

Multiline calculator example
• An extra we can easily implement

def p_expr_div(p):
 "expr : expr DIV expr"
 if p[3] == 0:
 print("divide by 0 error:")
 print("cannot divide: " + str(p[1]) + " by 0")
 exit(1)
 p[0] = p[1] / p[3]

Multiline calculator example
• Combining rules:

def p_expr_plus(p):
 "expr : expr PLUS expr"
 p[0] = p[1] + p[3]

def p_expr_minus(p):
 "expr : expr MINUS expr"
 p[0] = p[1] - p[3]

def p_expr_mult(p):
 "expr : expr MULT expr"
 p[0] = p[1] * p[3]

def p_expr_bin(p):
 """
 expr : expr PLUS expr
 | expr MINUS expr
 | expr MULT expr

 """
 if p[2] == '+':
 p[0] = p[1] + p[3]
 elif p[2] == '-':
 p[0] = p[1] - p[3]
 elif p[2] == '*':
 p[0] = p[1] * p[3]
 else:
 assert(False)

Multiline calculator demo using lambdas

• demo

One consideration: Scope

• What is scope?

• Can it be determined at compile time? Can it be determined at
runtime?

• C vs. Python

• Anyone have any interesting scoping rules they know of?

One consideration: Scope

• Lexical scope example

int x = 0;
int y = 0;
{
 int y = 0;
 x+=1;
 y+=1;
}
x+=1;
y+=1; What are the final values in x and y?

How to track scope?

• Symbol table
• Global object, accessible (and mutable) by all production actions

• two methods:
• lookup(id) : lookup an id in the symbol table.
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id (or overwrite an
existing id) into the symbol table along with a set
of information about the id.

What information might we store about an id?

a very simple programming language

VARIABLE_NAME = “[a-z]+”
INCREMENT = “\+\+”
TYPE = “int”
LB = “{“
RB = “}”
SEMI = “;”

statements are either a declaration or an increment

int x;
x++;
int y;
y++;

a very simple programming language

VARIABLE_NAME = “[a-z]+”
INCREMENT = “\+\+”
TYPE = “int”
LB = “{“
RB = “}”
SEMI = “;”

statements are either a declaration or an increment

int x;
{
 int y;
 x++;
 y++;
}
y++;

a very simple programming language

VARIABLE_NAME = “[a-z]+”
INCREMENT = “\+\+”
TYPE = “int”
LB = “{“
RB = “}”
SEMI = “;”

statements are either a declaration or an increment

int x;
{
 int y;
x++;

 y++;
}
y++;

How to track scope?

• SymbolTable ST;

declare_variable: TYPE VARIABLE_NAME SEMI
{}

Say we are matched string:
int x;

lookup(id) : lookup an id in the symbol table. Returns None if the
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.

How to track scope?

• SymbolTable ST;

declare_variable: TYPE VARIABLE_NAME SEMI
{ST.insert(C[1],C[0])}

Say we are matched string:
int x;

In this example we are storing a type

How to track scope?

• SymbolTable ST;

variable_inc: VARIABLE_NAME INCREMENT SEMI
{}

Say we are matched string:
x++;

lookup(id) : lookup an id in the symbol table. Returns None if the
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.

How to track scope?

• SymbolTable ST;

variable_inc: VARIABLE_NAME INCREMENT SEMI
{if not ST.lookup(x):
 raise SymbolTableException;

 else:

 ... // continue}

Say we are matched string:
x++;

How to track scope?

• SymbolTable ST;

statement : variable_inc
 | declare_variable

statement_list : statement_list statement
 | statement

How to track scope?

• SymbolTable ST;

statement : variable_inc
 | declare_variable

statement_list : statement_list statement
 | statement

adding in scope

How to track scope?

• SymbolTable ST;

statement : variable_inc
 | declare_variable
 | LBAR statement_list RBAR

statement_list : statement_list statement
 | statement

How to track scope?

• SymbolTable ST;

statement : LBAR statement_list RBAR

start a new scope S remove the scope S

How to track scope?

• Symbol table
• four methods:
• lookup(id) : lookup an id in the symbol table.
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id into the symbol
table along with a set of information about the id.

• push_scope() : push a new scope to the symbol table

• pop_scope() : pop a scope from the symbol table

How to track scope?

• SymbolTable ST;

statement : LBAR statement_list RBAR

start a new scope S remove the scope S

Think about how to solve with production rules

How to implement a symbol table?

• Thoughts? What data structures are good at mapping strings?

• Symbol table
• four methods:
• lookup(id) : lookup an id in the symbol table.
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id into the symbol
table along with a set of information about the id.

• push_scope() : push a new scope to the symbol table

• pop_scope() : pop a scope from the symbol table

How to implement a symbol table?

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

HT 0base scope

How to implement a symbol table?

HT 0push_scope()

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

push_scope()

adds a new
Hash Table
to the top of the stack

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

insert(id,data)

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

insert(id,data)

insert (id -> data) at
top hash table

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

lookup(id)

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

lookup(id)

check here
first

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

lookup(id) then check
here

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

pop_scope()

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

• Example

HT 0

int x = 0;
int y = 0;
{
 int y = 0;
 x++;
 y++;
}
x++;
y++;

Stack of hash tables

