
CSE211: Compiler Design
Oct. 6, 2023 ..

.. ..

....

int main() {
 printf(““);
 return 0;
}

• Topic: Parsing overview 3

• Questions:
• How are regular expressions used in a compiler?
• What are limitations of regular expressions?

Announcements

• Piazza is up! Please enroll. It should be considered required!

• My office hours will be on Thursday 3 – 5 PM
• Starting next week
• I’ll send out a message around noon on Thursday with a signup sheet

• Rithik will be having his office hours too, just getting room
reservations sorted out.

Announcements

• Homework 1 is planned for release on Monday by Midnight
• Please start thinking about partners
• Please self organize (use Piazza)
• You will have 2 weeks to do the homework

• Any remaining undergrads should get a permission code ASAP

• If anyone isn’t on Canvas, please let me know

Announcements

• Think about paper review
• You will need to approve a paper with me by Oct. 23
• First review is due Oct. 30
• You should probably not wait until these due dates because the midterm is

also on Oct. 30.
• I give this time for you to organize, not as a guidance!
• You can discuss papers on piazza or ask me for suggestions

Review

Parser architecture

First level of
abstraction.

Transforms a string of
characters into a string

of tokens

Second level:
transforms a string

of tokens in a tree of
tokens.

Language:
Regular Expressions

(REs)

Language:
Context-Free Grammars

(CFGs)

Parser

Parser
Scanner
(Lexer)

(Tokenizer)

Scanner

(5 + 4) * 8

[[(LPAR, “(”) (NUM, “5”) (PLUS, “+”) (NUM, “4”) (RPAR, “)”)
 (TIMES, “*”) (NUM, “8”)]

Scanner

Splits an input sentence it into lexemes

Dealing with a stream of input

x++;

Tokens:
ID = “[a-z]”
OP = “+|++”

How does this input get tokenized?

Dealing with a stream of input

x++;

Tokens:
ID = “[a-z]”
OP = “+|++”

How to fix it?

Dealing with streams

• Scanners will always return the token with the longest match
• If you are implementing a scanner, you need to ensure this!
• If you are using a scanner, you can depend on this!

• Streaming RE matchers (e.g. re.match) are not guaranteed to
return the longest match when using a union

Context Free Grammars

• Backus–Naur form (BNF)
• A syntax for representing context free

grammars

• Naturally creates tree-like structures

• More powerful than regular
expressions

Image Credit:
By Jochgem - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=5036988

BNF Production Rules

• <production name> : <token list>
• Example:

sentence: ARTICLE NOUN VERB

• <production name> : <token list> | <token list>
• Example:
sentence: ARTICLE ADJECTIVE NOUN VERB
 | ARTICLE NOUN VERB

Convention: Tokens in all caps,
production rules in lower case

BNF Production Rules

• Production rules can reference other production rules

sentence: non_adjective_sentence
 | adjective_sentence

non_adjective_sentence: ARTICLE NOUN VERB

adjective_sentence: ARTICLE ADJECTIVE NOUN VERB

BNF Production Rules

sentence: ARTICLE ADJECTIVE* NOUN VERB

BNF Production Rules

sentence: ARTICLE ADJECTIVE* NOUN VERB
We cannot do the star in production rules

BNF Production Rules

• Production rules can be recursive
• Imagine a list of adjectives:

“The small brown energetic dog barked”

sentence: ARTICLE adjective_list NOUN VERB

adjective_list: ADJECTIVE adjective_list
 | <empty>

New material

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:
• NUM =
• PLUS =
• TIMES =

How can we make BNF production rules for this?

Let’s limit ourselves to non-negative numbers and
+,*.

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

expression : NUM
 | expression PLUS expression
 | expression TIMES expression

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

expression : NUM
 | expression PLUS expression
 | expression TIMES expression

Let’s add () to the language!

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’
• LPAREN = ‘\(‘
• RPAREN = ‘\)’

expression : NUM
 | expression PLUS expression
 | expression TIMES expression
 | LPAREN expression RPAREN

How to determine if a string matches a CFG?

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: 5

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

input: 5

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

input: 5

root of the tree is
the entry production

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

<NUM, 5>

input: 5

leafs are lexemes

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: 5*6

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

input: 5*6

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

expr <TIMES>

input: 5*6

expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

<NUM, 5>

expr

<NUM, 6>

<TIMES>

input: 5*6

expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

input: 5**6

What happens
in an error?

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

expr <TIMES>

input: 5**6

expr

What happens
in an error?

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

<TIMES>

expr

<NUM, 6>

<TIMES>

input: 5**6

expr

<NUM, 5>

Not possible!

What happens
in an error?

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6>

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

<NUM, 5><NUM, 1>

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• Reverse question: given a parse tree: how do you create a string?

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

<NUM, 5><NUM, 1>

input: ?

Ambiguous grammars

“I saw a person on a hill with a telescope.”

What does it mean??

https://www.quora.com/What-are-some-examples-of-
ambiguous-sentences

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• Try making a parse tree from: 1 + 5 * 6

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• Try making a parse tree from: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

Parse trees

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

Parse trees

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr

expr <PLUS> expr

<NUM, 1> <TIMES>expr expr

<NUM, 6><NUM, 5>

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

Ambiguous grammars

• What’s the issue?

ParserInput

A string Language
Recognizer for

language L

Reject

Accept

Ambiguous grammars

• What’s the issue?

ParserInput

A string Language
Recognizer for

language L

Reject

Accept
structured data

(e.g. AST)

continue to the rest
of compilation

Meaning into structure

• Structural meaning defined to be a post-order traversal

Meaning into structure

• Structural meaning defined to be a post-order traversal
• Children return values to their parent
• Nodes are only evaluated once all their children have been evaluated
• Evaluated from left to right
• Also called “Natural Order”

Meaning into structure

• Structural meaning defined to be a post-order traversal
• Children return values to their parent
• Nodes are only evaluated once all their children have been evaluated
• Evaluated from left to right

• Can also encode the order of operation

Ambiguous grammars

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr

expr <PLUS> expr

<NUM, 1> <TIMES>expr expr

<NUM, 6><NUM, 5>

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

Avoiding Ambiguity

• How to avoid ambiguity related to precedence?

• Define precedence: ambiguity comes from conflicts. Explicitly define
how to deal with conflicts, e.g. write* has higher precedence than +

• Some parser generators support this, e.g. Yacc

Avoiding Ambiguity

• How to avoid ambiguity related to
precedence?

• Second way: new production rules
• One rule for each level of precedence
• lowest precedence at the top
• highest precedence at the bottom

• Lets try with expressions and the
following:
• + * ()

Avoiding Ambiguity

• How to avoid ambiguity related to
precedence?

• Second way: new production rules
• One rule for each level of precedence
• lowest precedence at the top
• highest precedence at the bottom

• Lets try with expressions and the
following:
• + * ()

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Precedence
increases going down

Now lets create a parse tree
input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

term

factor

input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

term

factor

input: 1+5*6

term

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

<TIMES>term term

term

factor

input: 1+5*6

term

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

<TIMES>term term

term

factor

input: 1+5*6

term

<NUM, 5>

factor

<NUM, 6>

factor

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

What other sources of ambiguity?

Let’s make some more parse trees

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LP expr RP
| NUM

input: 2+3+4

Let’s make some more parse trees
input: 2+3+4

expr

expr <PLUS> expr

<NUM, 2>

<PLUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LP expr RP
| NUM

This is ambiguous, is it an issue?

input: 2+3+4
expr

expr <PLUS> expr

<NUM, 2>

<PLUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <PLUS> expr

<PLUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor

What about for a different operator?
input: 2-3-4

What about for a different operator?
input: 2-3-4

expr

expr <MINUS> expr

<NUM, 2>

<MINUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <MINUS> expr

<MINUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor

Which one is right?

Associativity

The order in which we evaluate the same operator

Sometimes it doesn’t matter:
• Integer arithmetic
• Integer multiplication
• What else?

Good test:
• ((a OP b) OP c) == (a OP (b OP c))

What about floating point arithmetic?

Associativity

The order in which we evaluate the same operator

• left to right (left-associative)
• 2-3-4 is evaluated as ((2-3) - 4)
• What other operators are left-associative

• right-to-left (right-associative)
• Any operators you can think of?

Associativity

The order in which we evaluate the same operator

• left to right (left-associative)
• 2-3-4 is evaluated as ((2-3) - 4)
• What other operators are left-associative

• right-to-left (right-associative)
• Any operators you can think of?
• Assignment, power operator

How to encode associativity?

• Like precedence, some tools (e.g. YACC) allow associativity
specification through keywords:
• “+”: left, “^”: right

• Like precedence, we can also encode it into the production rules

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS> expr

<NUM, 2> <MINUS>expr expr

<NUM, 3> <NUM, 4>

Operator Name Productions

- expr : expr MINUS NUM
| NUM

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS> expr

<NUM, 2> <MINUS>expr expr

<NUM, 3> <NUM, 4>

Operator Name Productions

- expr : expr MINUS NUM
| NUM

No longer allowed

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS>
Operator Name Productions

- expr : expr MINUS NUM
| NUM

<NUM,4>

Lets start over

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS>
Operator Name Productions

- expr : expr MINUS NUM
| NUM

<NUM,4>

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS>
Operator Name Productions

- expr : expr MINUS NUM
| NUM

<NUM,4>

<MINUS>expr <NUM,3>

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS>
Operator Name Productions

- expr : expr MINUS NUM
| NUM

<NUM,4>

<MINUS>expr

<NUM, 2>

<NUM, 3>

Should you have associativity when its not
required?

input: 2+3+4
expr

expr <PLUS>
Operator Name Productions

+ expr : expr PLUS NUM
| NUM

<NUM,4>

<PLUS>expr

<NUM, 2>

<NUM, 3>

Benefits?
Drawbacks?

Should you have associativity when its not
required?

input: 2+3+4
expr

expr <PLUS>
Operator Name Productions

+ expr : expr PLUS NUM
| NUM

<NUM,4>

<PLUS>expr

<NUM, 2>

<NUM, 3>

Benefits?
Drawbacks?

Good design principle to avoid ambiguous grammars,
even when strictly not required too.

Helps with debugging, etc. etc.

Many tools will warn if it detects ambiguity

Let’s make a richer grammar

Operator Name Productions

Let’s add minus, division and power to our grammar

Tokens:
NUM = [0-9]+
PLUS = ‘\+’
TIMES = ’*’
LP = ‘\(’
RP = \)’
MINUS = ‘-’
DIV = ‘/’
CARROT = ‘\^’

Let’s make a richer grammar

Operator Name Productions

+,- expr : expr PLUS term
| expr MINUS term
| term

*,/ term : term TIMES pow
| term DIV pow
| pow

^ pow : factor CARROT pow
| factor

() factor : LPAR expr RPAR
| NUM

Let’s add minus, division and power to our grammar

Tokens:
NUM = [0-9]+
PLUS = ‘\+’
TIMES = ’*’
LP = ‘\(’
RP = \)’
MINUS = ‘-’
DIV = ‘/’
CARROT =’ \^’

Let’s make a richer grammar

Operator Name Productions

+,- expr : expr PLUS term
| expr MINUS term
| term

*,/ term : term TIMES pow
| term DIV pow
| pow

^ pow : factor CARROT pow
| factor

() factor : LPAR expr RPAR
| NUM

input: 2-3-4

expr

expr <MINUS>

<MINUS>expr

<NUM, 2>

term

<NUM, 3>

term

factor

factor <NUM, 4>

term

factor

What do these look like in real-world
languages?
• C++ :

https://en.cppreference.com/w/cpp/language/operator_precedence

• Python:
https://docs.python.org/3/reference/expressions.html#operator-
precedence

Production rules in a compiler

• Great to check if a string is grammatically correct

• But can the production rules actually help us with compilation??

Production actions

• Each production option is associated with a code block
• It can use values from its children
• it returns a value to its parent
• Executed in a post-order traversal (natural order traversal)

Production actions
Example: executing a mathematical expression during parsing

Children values are passed in as an array C, indexed from left to right expr

expr <PLUS>

<NUM, 1>

<TIMES>termterm

factor

input: 1+5*6

term

<NUM, 5>

factor <NUM, 6>

factor

Operator Name Productions Actions

+,- expr : expr PLUS term
| expr MINUS term
| term

{}
{}
{}

*,/ term : term TIMES factor
: term DIV factor
| factor

{}
{}
{}

() factor : LPAR expr RPAR
| NUM

{}
{}

Production actions

Operator Name Productions Actions

+,- expr : expr PLUS term
| expr MINUS term
| term

{ret C[0] + C[2]}
{ret C[0] - C[2]}
{ret C[0]}

*,/ term : term TIMES factor
: term DIV factor
| factor

{ret C[0] * C[2]}
{ret C[0] / C[2]}
{ret C[0]}

() factor : LPAR expr RPAR
| NUM

{ret C[1]}
{ret int(C[0])}

Example: executing a mathematical expression during parsing

Children values are passed in as an array C, indexed from left to right expr

expr <PLUS>

<NUM, 1>

<TIMES>termterm

factor

input: 1+5*6

term

<NUM, 5>

factor <NUM, 6>

factor

We have just implemented a simple arithmetic interpreter!
Could this be in a compiler?

Next week

• We will look at LEX and YACC

• Homework will be released on Monday

• Enjoy your weekend!

If time

Parsing REs

Let’s try it for regular expressions, {| . * ()} (where . is concat)

Operator Name Productions

Parsing REs

Let’s try it for regular expressions, {| . * ()} (where . is concat)

Operator Name Productions

|

.

*

()

Parsing REs

Operator Name Productions

| union

. concat

* starred

() unit

Let’s try it for regular expressions, {| . * ()} (where . is concat)

Parsing REs

Operator Name Productions

| union : union PIPE concat
| concat

. concat : concat DOT starred
| starred

* starred : starred STAR
| unit

() unit : LPAREN union RPAREN
| CHAR

Let’s try it for regular expressions, {| . * ()} (where . is concat)

Parsing REs

Let’s try it for regular expressions, {| . * ()}
input: a.b | c*

Operator Name Productions

| union : union PIPE concat
| concat

. concat : concat DOT starred
| starred

* starred : starred STAR
| unit

() unit : LPAREN union RPAREN
| CHAR

Parsing REs

Let’s try it for regular expressions, {| . * ()}
input: a.b | c*

union

union <|>

starred
concat

concat

concat

<CHAR, c>

unit <*>
starred

unit

<CHAR, a>

starred

unit

<CHAR ,b>

<.>

Operator Name Productions

| union : union PIPE concat
| concat

. concat : concat DOT starred
| starred

* starred : starred STAR
| unit

() unit : LPAREN union RPAREN
| CHAR

