
CSE211: Compiler Design
Oct. 4, 2023 ..

.. ..

....

int main() {
 printf(““);
 return 0;
}

• Topic: Parsing overview 2

• Questions:
• What is a scanner?

• What are regular expressions? What are some use-cases for them?

Announcements

• Piazza is up! Please enroll. It should be considered required!

• My office hours will be on Thursday 3 – 5 PM
• No hours this week though

• Occasional technical issues with recordings
• Will not be re-recording classes

Announcements

• Homework 1 is planned for release on Monday by Midnight
• Please start thinking about partners
• Please self organize (use Piazza)
• You will have 2 weeks to do it

• Any remaining undergrads should get a permission code ASAP

• If anyone isn’t on Canvas, please let me know

Announcements

• Think about paper review
• You will need to approve a paper with me by Oct. 23
• First review is due Oct. 30
• You should probably not wait until these due dates because the midterm is

also on Oct. 30.
• I give this time for you to organize, not as a guidance!
• You can discuss papers on piazza or ask me for suggestions

Review

Scanner

• splits an input into tokens (e.g. parts of speech)

The dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

Scanner

My Old Computer Crashed

[(ARTICLE, “my”) (ADJECTIVE, “old”) (NOUN, “Computer”) (VERB, “Crashed”)]

Scanner

Splits an input sentence it into lexemes

Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3

ideas?

Scanner

(5 + 4) * 3

[[(LPAR, “(”) (NUM, “5”) (PLUS, “+”) (NUM, “4”) (RPAR, “)”)
 (TIMES, “*”) (NUM, “3”)]

Scanner

Splits an input sentence it into lexemes

Defining tokens

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = {“Cat”, “Dog”, “Car”}

• Numbers
• NUM = {“0”, “1” …}

Defining tokens

• Regular expressions!• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = {“Cat”, “Dog”, “Car”}

• Numbers
• NUM = {“0”, “1” …}

Regular Expressions

• Lots of literature!
• Simplest grammar in the

Chomsky language
hierarchy

• abstract machine definition
(finite automata)

• Many implementations (e.g.
Python standard library)

image source: wikipedia

Regular Expressions

We will define RE’s recursively:

Input:
• Regular Expression R
• String S

Output:
• Does the Regular Expression R match the string S

Regular Expressions

We will define RE’s recursively:

The base case: a character literal
• The RE for a character ‘x’ is given by ‘x’. It matches only the

character ‘x’

Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under concatenation:

• The concatenation of two REs x and y is given by xy and matches
the strings of RE x concatenated with the strings of RE y

Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under union:

• The union of two REs x and y is given by x|y and matches
the strings of RE x OR the strings of RE y

Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under Kleene star:

• The Kleene star of an RE x is given by x* and matches the
strings of RE x REPEATED 0 or more times

Regular Expressions

Examples

Regular Expressions

• Use ()’s to force precedence!

• Just like in math:
• 3 + 4 * 5

• what is the precedence of concatenation, union, and star?
• “x | yw”

• Is it “(x | y)w” or “x | (yw)”
• “xy*”

• is it (xy)* or x(y*)

Regular Expressions

• Use ()’s to force precedence!

• Just like in math:
• 3 + 4 * 5

• what is the precedence of concatenation, union, and star?
• “x | yw”

• Is it “(x | y)w” or “x | (yw)”
• “xy*”

• is it (xy)* or x(y*) How can we determine precedence?

Regular Expressions

• Use ()’s to force precedence!

• Just like in math:
• 3 + 4 * 5

• what is the precedence of concatenation, union, and star?
• Star > Concat > Union
• use () to avoid mistakes!

Regular Expressions

Most RE implementations provide syntactic sugar:

• Ranges:
• [0-9]: any number between 0 and 9
• [a-z]: any lower case character
• [A-Z]: any upper case character

• Optional(?)
• Matches 0 or 1 instances:
• ab?c matches ”abc” or ”ac”
• can be implemented as: (abc | ac)

Defining tokens using REs

• Literal – single character:
• PLUS = ‘\+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = “(Cat)|(Dog)|(Car)”

• Numbers
• SINGLE_NUM = [0-9]
• how to do INT?
• how to do FLOAT?

Why the backslash characters?

Defining tokens using REs

• Literal – single character:
• PLUS = ‘\+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = “(Cat)|(Dog)|(Car)”

• Numbers
• SINGLE_NUM = [0-9]
• INT = -?([1-9][0-9]*) | 0
• FLOAT =?

Scanner

• Takes in a list of tokens and a string and tokenizes the input

Scanner

Input
“My Old Computer Crashed”

Scanner

[(ARTICLE, “my”) (ADJECTIVE, “old”) (NOUN, “Computer”) (VERB, “Crashed”)]

Tokens are defined with Regular
expressions, which are used to split
up the input stream into lexemes

Tokens
• ARTICLE = ”The|A|My|Your”
• NOUN = “Dog|Car|Computer”
• VERB = ”Ran|Crashed|Accelerated”
• ADJECTIVE = “Purple|Spotted|Old”

re.match

• A streaming API supported by most RE libraries
• Only has to match part the beginning part of the string, not the entire string

re.match

• A streaming API supported by most RE libraries
• Only has to match part the beginning part of the string, not the entire string

• CLASS_TOKEN = {“cse |211|cse211”}

• What would get matched here?: “cse211”

• (CLASS_TOKEN, ?)

• Important for operators, e.g. in C
• ++, +=,

how would we parse “x++;”

(ID, “x”) (ADD, “+”) (ADD, “+”) (SEMI, “;”)

(ID, “x”) (INCREMENT, “++”) (SEMI, “;”)

Scanners should provide the longest possible
match

We can experiment in Godbolt using the clang args:: -fsyntax-only -Xclang -dump-tokens

Subtle differences here

• RE definitions are not guaranteed to give you the longest possible match
• OP = “+|++”, ID = ”[a-z]”
• What will this return for “x++”

• Scanners will tokenize the string according to the token with the longest
match
• PLUS = “+”, PP = “++”, ID = ”[a-z]”
• What will this return for “x++”

• What does this mean for you?
• If you are implementing a scanner?
• If you are writing tokens?

Scanner Summary

• Tokens are defined using regular expressions

• A scanner uses tokens to split a string into lexemes

• Regular expressions are good for splitting up a program into numbers,
variables, operators, and structure (e.g. parenthesis and braces)

• You will get more practice using them in the homework

• Chapter 2 in EAC goes into detail on regular expression parsing
• Finite automata etc.

Define a full language using tokens?

• What about a mathematical sentence (expression)?
limited to non-negative integers
and just using + and *

• What about a mathematical sentence (expression)?

• First let’s define tokens:

Define a full language using tokens?
limited to non-negative integers
and just using + and *

• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

Define a full language using tokens?
limited to non-negative integers
and just using + and *

• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

• What should our language look like?

Define a full language using tokens?
limited to non-negative integers
and just using + and *

• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

• What should our language look like?
• NUM

Define a full language using tokens?
limited to non-negative integers
and just using + and *

• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

• What should our language look like?
• NUM
• NUM PLUS NUM

Define a full language using tokens?
limited to non-negative integers
and just using + and *

• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

• What should our language look like?
• NUM
• NUM PLUS NUM
• ...

Define a full language using tokens?
limited to non-negative integers
and just using + and *

• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

• What should our language look like?
• NUM
• NUM PLUS NUM
• ...

Why not just use regular
expressions?

What would the expression
look like?

Define a full language using tokens?
limited to non-negative integers
and just using + and *

Define a full language using tokens?

• Where are we going to run into issues?

What about ()’s

• there is a formal proof available that regex
CANNOT match ()’s: pumping lemma

• Informal argument:
• Try matching (!)!using Kleene star
• Impossible!

• We are going to need a more powerful
language description framework!

What about ()’s

• there is a formal proof available that regex
CANNOT match ()’s: pumping lemma

• Informal argument:
• Try matching (!)!using Kleene star
• Impossible!

• We are going to need a more powerful
language description framework!

What other syntax like ()
are used in programming
languages?

https://stackoverflow.com/questions/1
732348/regex-match-open-tags-except-
xhtml-self-contained-tags

(previously) 2nd most upvoted
 post on stackoverflow

Context Free Grammars

• Backus–Naur form (BNF)
• A syntax for representing context free

grammars

• Naturally creates tree-like structures

• More powerful than regular
expressions

Image Credit:
By Jochgem - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=5036988

BNF Production Rules

• <production name> : <token list>
• Example:

sentence: ARTICLE NOUN VERB

• <production name> : <token list> | <token list>
• Example:
sentence: ARTICLE ADJECTIVE NOUN VERB
 | ARTICLE NOUN VERB

Convention: Tokens in all caps,
production rules in lower case

BNF Production Rules

• Production rules can reference other production rules

sentence: non_adjective_sentence
 | adjective_sentence

non_adjective_sentence: ARTICLE NOUN VERB

adjective_sentence: ARTICLE ADJECTIVE NOUN VERB

BNF Production Rules

sentence: ARTICLE ADJECTIVE* NOUN VERB

BNF Production Rules

sentence: ARTICLE ADJECTIVE* NOUN VERB
We cannot do the star in production rules

BNF Production Rules

• Production rules can be recursive
• Imagine a list of adjectives:

“The small brown energetic dog barked”

sentence: ARTICLE adjective_list NOUN VERB

adjective_list: ADJECTIVE adjective_list
 | <empty>

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

How can we make BNF production rules for this?

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

expression : NUM
 | expression PLUS expression
 | expression TIMES expression

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

expression : NUM
 | expression PLUS expression
 | expression TIMES expression

Let’s add () to the language!

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’
• LPAREN = ‘\(‘
• RPAREN = ‘\)’

expression : NUM
 | expression PLUS expression
 | expression TIMES expression
 | LPAREN expression RPAREN

What other syntax like ()
are used in programming
languages?

How to determine if a string matches a CFG?

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: 5

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

input: 5

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

input: 5

root of the tree is
the entry production

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

<NUM, 5>

input: 5

leafs are lexemes

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: 5*6

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

input: 5*6

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

expr <TIMES>

input: 5*6

expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

<NUM, 5>

expr

<NUM, 6>

<TIMES>

input: 5*6

expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

input: 5**6

What happens
in an error?

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

expr <TIMES>

input: 5**6

expr

What happens
in an error?

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

<TIMES>

expr

<NUM, 6>

<TIMES>

input: 5**6

expr

<NUM, 5>

Not possible!

What happens
in an error?

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6>

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

<NUM, 5><NUM, 1>

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• Reverse question: given a parse tree: how do you create a string?

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

<NUM, 5><NUM, 1>

input: ?

Ambiguous grammars

“I saw a person on a hill with a telescope.”

What does it mean??

https://www.quora.com/What-are-some-examples-of-
ambiguous-sentences

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• Try making a parse tree from: 1 + 5 * 6

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• Try making a parse tree from: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

Parse trees

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

Parse trees

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr

expr <PLUS> expr

<NUM, 1> <TIMES>expr expr

<NUM, 6><NUM, 5>

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

Ambiguous grammars

• What’s the issue?

ParserInput

A string Language
Recognizer for

language L

Reject

Accept

Ambiguous grammars

• What’s the issue?

ParserInput

A string Language
Recognizer for

language L

Reject

Accept
structured data

(e.g. AST)

continue to the rest
of compilation

Meaning into structure

• Structural meaning defined to be a post-order traversal

Meaning into structure

• Structural meaning defined to be a post-order traversal
• Children return values to their parent
• Nodes are only evaluated once all their children have been evaluated
• Evaluated from left to right
• Also called “Natural Order”

Meaning into structure

• Structural meaning defined to be a post-order traversal
• Children return values to their parent
• Nodes are only evaluated once all their children have been evaluated
• Evaluated from left to right

• Can also encode the order of operation

Ambiguous grammars

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr

expr <PLUS> expr

<NUM, 1> <TIMES>expr expr

<NUM, 6><NUM, 5>

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

Avoiding Ambiguity

• How to avoid ambiguity related to precedence?

• Define precedence: ambiguity comes from conflicts. Explicitly define
how to deal with conflicts, e.g. write* has higher precedence than +

• Some parser generators support this, e.g. Yacc

Avoiding Ambiguity

• How to avoid ambiguity related to
precedence?

• Second way: new production rules
• One rule for each level of precedence
• lowest precedence at the top
• highest precedence at the bottom

• Lets try with expressions and the
following:
• + * ()

Avoiding Ambiguity

• How to avoid ambiguity related to
precedence?

• Second way: new production rules
• One rule for each level of precedence
• lowest precedence at the top
• highest precedence at the bottom

• Lets try with expressions and the
following:
• + * ()

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Precedence
increases going down

Now lets create a parse tree
input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

term

factor

input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

term

factor

input: 1+5*6

term

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

<TIMES>term term

term

factor

input: 1+5*6

term

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

<TIMES>term term

term

factor

input: 1+5*6

term

<NUM, 5>

factor

<NUM, 6>

factor

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Parsing REs

Let’s try it for regular expressions, {| . * ()} (where . is concat)

Operator Name Productions

Parsing REs

Let’s try it for regular expressions, {| . * ()} (where . is concat)

Operator Name Productions

|

.

*

()

Parsing REs

Operator Name Productions

| union

. concat

* starred

() unit

Let’s try it for regular expressions, {| . * ()} (where . is concat)

Parsing REs

Operator Name Productions

| union : union PIPE union
| concat

. concat : concat DOT concat
| starred

* starred : starred STAR
| unit

() unit : LPAREN union RPAREN
| CHAR

Let’s try it for regular expressions, {| . * ()} (where . is concat)

Parsing REs

Let’s try it for regular expressions, {| . * ()}
input: a.b | c*

Operator Name Productions

| union : union PIPE union
| concat

. concat : concat DOT concat
| starred

* starred : starred STAR
| unit

() unit : LPAREN union RPAREN
| CHAR

Parsing REs

Let’s try it for regular expressions, {| . * ()}
input: a.b | c*

union

union <|> union

starred

concat

concat

concat

<CHAR, c>

unit <*>

concat

starred

unit

<CHAR, a>

starred

unit

<CHAR ,b>

<.>

Operator Name Productions

| union : union PIPE union
| concat

. concat : concat DOT concat
| starred

* starred : starred STAR
| unit

() unit : LPAREN union RPAREN
| CHAR

