
CSE211: Compiler Design
Oct. 2, 2023

• Topic: Intro to parsing

• Previous Questions:
• What is a compiler?

• What are some of your favorite
compilers?

• Have you ever built a compiler?

Announcements

• Didn’t get a chance to:
• Set up Piazza
• Set office hours
• Reply to people’s emails

• I will do it all today!

• As a reminder:
• If you are an undergrad, you need to message me for a permission code!

Discussion from last time

What is a compiler?

What are some of your favorite compilers

Building this website started with:
• Markdown to describe the page
• compiled with Jekyll to a static webpage
• static webpage is in HTML and javascript

Have you ever built a compiler?

What is a compiler?

CompilerInput Output

What is a compiler?

CompilerInput Output

Strings belonging to
language L

Strings belonging to
language L’

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

Strings belonging to
language L

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

A program written in C++
An x86 Binary executable

Strings belonging to
language L

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

A program written in C++
An x86 Binary executable

Strings belonging to
language L

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

A program written in C++
An x86 Binary executable

Analysis

warnings

Strings belonging to
language L

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

A program written in C++
An x86 Binary executable

Analysis

warnings

A valid input must have a
valid output.

Semantic equivalence

Strings belonging to
language L

What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

A program written in C++
An x86 Binary executable

Analysis

warnings

A valid input must have a
valid output.

Semantic equivalence

What can happen when
the Input isn’t valid?

Strings belonging to
language L

What can happen when the Input isn’t valid?

Try running this through clang. What happens?

int main() {
 int my_var = 5;
 my_var = my_car + 5;
 return 0;
}

What can happen when the Input isn’t valid?

What about this one?

int main() {
 int my_var = 5;
 my_var = my_car + 5;
 return 0;
}

#include <stdlib.h>

int foo() {
 int *x = (int *) malloc(100*sizeof(int));
 return x[100];
}

Can the compiler make your code go faster?

Try running this on https://godbolt.org/
change the optimization level to -O3 and see what happens!

int foo() {
 int my_var = 0;
 for (int i = 0; i < 128; i++) {
 my_var++;
 }
 return my_var;
}

https://godbolt.org/

What is the compiler allowed to do?

Try running this on https://godbolt.org/
change the optimization level to -O3 and see what happens!
Look for instructions like paddd. what does it do?

void add_arrays(int *a, int *b) {
 for (int i = 0; i < 128; i++) {
 a[i] += b[i];
 }
}

https://godbolt.org/

Moving to Module 1

Starting Module 1

• Topic: Parsing

• Questions:
• What is parsing?

• Have you used Regular Expressions before?

• How do you parse Regular Expressions? What about Context-free Grammars?

..

.. ..

....

int main() {
 printf(““);
 return 0;
}

Compiler architecture overview

String Compiler output
(string, executable)

Compiler architecture overview

String output
(string, executable)

parser
transformations

and analysis backend

Compiler architecture overview

String output
(string, executable)

parser
transformations

and analysis backend

Parsing is the first step in the compiler

Creates structure

..

.. ..

....

int main() {
 printf(““);
 return 0;
}

Parsing is the first step in a compiler

• How do we parse a sentence in English?

Parsing is the first step in a compiler

• How do we parse a sentence in English?

The dog ran across the park

Parsing is the first step in a compiler

• How do we parse a sentence in English?

The dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

Parsing is the first step in a compiler

• How do we parse a sentence in English?

Grammar and Syntax

What about semantics?

The dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

Parsing is the first step in a compiler

• How do we parse a sentence in English?

Grammar and Syntax

What about semantics?

The dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

Parsing is the first step in a compiler

• How do we parse a sentence in English?

Grammar and Syntax

What about semantics?

My dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

New Question

Can we define a simple language using these building blocks?

• ARTICLE
• NOUN
• VERB
• ADJECTIVE

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

ARTICLE NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

ARTICLE ADJECTIVE NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Question mark means optional

ARTICLE ADJECTIVE? NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

My Old Computer Crashed

ARTICLE ADJECTIVE? NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

The Purple Dog Crashed

ARTICLE ADJECTIVE? NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Syntactically correct,
logically correct?

The Purple Dog Crashed

ARTICLE ADJECTIVE? NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

What other languages can you specify?

ARTICLE ADJECTIVE NOUN VERB

Goals in this module

• Understand the architecture of a modern parser (tokenizing and
parsing)

• Understand the language of tokens (regular expressions) and parsers
(context-free grammars)

• How to design CFG production rules to avoid ambiguity

• Utilize a classic parser generator (Lex and Yacc) for a simple language

Goals in this module

• We will NOT discuss parsing algorithms for CFGs. If you are interested,
you can do this for a paper assignment.

• This module should provide you with the background to implement
parsers, which are USEFUL in many different projects.

• These topics are typically covered in more depth in an undergrad
course.

High-level parser

Parser

High-level parser

Parser

A parser needs to know about the language:
• What forms can these take?

High-level parser

Parser

A parser needs to know about the language:
• 1800 page C++ specification,
• English language

• Formal specification, mathematical
• Mostly used in academics
• X86, ARM, Functional languages

High-level parser

Parser

Parser needs only a small part of the specification!
The Grammar!

A parser needs to know about the language:
• 1800 page C++ specification,
• English language

• Formal specification, mathematical
• Mostly used in academics
• X86, ARM, Functional languages

High-level parser

Input

A string

Parser

Language
Recognizer for
L’s Grammar

High-level parser

Reject

Accept

Input

A string

Parser

Language
Recognizer for
L’s Grammar

High-level parser

Reject

Accept

Input

A string

Parser

The input string
satisfies L’s grammar

The input string is NOT
in the language L

Language
Recognizer for
L’s Grammar

High-level parser

Reject

Accept

Input

A string

Parser

Syntax error

The input string
satisfies L’s grammar

The input string is NOT
in the language L

what other types of
errors might happen up
here?

Language
Recognizer for
L’s Grammar

High-level parser

Reject

Accept

Input

A string

Parser

Syntax error

The input string
satisfies L’s grammar

The input string is NOT
in the language L

what other types of
errors might happen up
here?

Some languages
try to move logic errors
to syntax errors!

Language
Recognizer for
L’s Grammar

High-level parser

Reject

Accept

Input

A string

Parser

Syntax error

The input string
satisfies L’s grammar

The input string is NOT
in the language L

structured data
(e.g. AST)

continue to the rest
of compilation

Language
Recognizer for
L’s Grammar

Parser architecture
Parser

Scanner
(Lexer)

(Tokenizer)
Parser

Parser architecture

First level of
abstraction.

Transforms a string of
characters into a string

of tokens

Second level:
transforms a string

of tokens in a tree of
tokens.

Parser

Parser
Scanner
(Lexer)

(Tokenizer)

Parser architecture

First level of
abstraction.

Transforms a string of
characters into a string

of tokens

Second level:
transforms a string

of tokens in a tree of
tokens.

Language:
Regular Expressions

(REs)

Language:
Context-Free Grammars

(CFGs)

Parser

Parser
Scanner
(Lexer)

(Tokenizer)

Scanner

• List of tokens:
• e.g. {NOUN, ARTICLE, ADJECTIVE, VERB}

Scanner

My Old Computer Crashed

Scanner

My Old Computer Crashed

[(ARTICLE, “my”) (ADJECTIVE, “old”) (NOUN, “Computer”) (VERB, “Crashed”)]

Scanner

Scanner

My Old Computer Crashed

Lexeme: (TOKEN, value)

Scanner

[(ARTICLE, “my”) (ADJECTIVE, “old”) (NOUN, “Computer”) (VERB, “Crashed”)]

Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3

ideas?

Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3LPAREN = ‘(‘
NUMBER = {‘5’,’4’,’3’, ..}
PLUS = ‘+’
RPAREN = ‘)’
TIMES = ‘*’

Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3

You can generalize tokens

LPAREN = ‘(‘
NUMBER = {‘5’,’4’,’3’, ..}
PLUS = ‘+’
RPAREN = ‘)’
TIMES = ‘*’

LPAREN = ‘(‘
NUMBER = {‘5’,’4’,’3’, ..}
OP = {‘+’, “*”}
RPAREN = ‘)’

Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3

You can make tokens more specific

LPAREN = ‘(‘
NUMBER = {‘5’,’4’,’3’, ..}
PLUS = ‘+’
RPAREN = ‘)’
TIMES = ‘*’

LPAREN = ‘(‘
ONE = ‘1’
TWO = ‘2’
THREE = ‘3’
...
PLUS = ‘+’
RPAREN = ‘)’
TIMES = ‘*’

Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3

What about this one?

LPAREN = ‘(‘
NUMBER = {‘5’,’4’,’3’, ..}
PLUS = ‘+’
RPAREN = ‘)’
TIMES = ‘*’

PAREN = {‘(‘, ‘)’}
NUMBER = {‘5’,’4’,’3’, ..}
PLUS = ‘+’
TIMES = ‘*’

Defining tokens

Defining tokens

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

Defining tokens

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

Defining tokens

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = {“Cat”, “Dog”, “Car”}

Defining tokens

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = {“Cat”, “Dog”, “Car”}

• Numbers
• NUM = {“0”, “1” …}

Defining tokens

• Regular expressions!• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = {“Cat”, “Dog”, “Car”}

• Numbers
• NUM = {“0”, “1” …}

Regular Expressions

• Lots of literature!
• Simplest grammar in the

Chomsky language
hierarchy

• abstract machine definition
(finite automata)

• Many implementations (e.g.
Python standard library)

image source: wikipedia

Regular Expressions

We will define RE’s recursively:

Input:
• Regular Expression R
• String S

Output:
• Does the Regular Expression R match the string S

Regular Expressions

We will define RE’s recursively:

The base case: a character literal
• The RE for a character ‘x’ is given by ‘x’. It matches only the

character ‘x’

Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under concatenation:

• The concatenation of two REs x and y is given by xy and matches
the strings of RE x concatenated with the strings of RE y

Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under union:

• The union of two REs x and y is given by x|y and matches
the strings of RE x OR the strings of RE y

Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under Kleene star:

• The Kleene star of an RE x is given by x* and matches the
strings of RE x REPEATED 0 or more times

Regular Expressions

Examples

Regular Expressions

• Use ()’s to force precedence!

• Just like in math:
• 3 + 4 * 5

• what is the precedence of concatenation, union, and star?
• “x | yw”

• Is it “(x | y)w” or “x | (yw)”
• “xy*”

• is it (xy)* or x(y*)

Regular Expressions

• Use ()’s to force precedence!

• Just like in math:
• 3 + 4 * 5

• what is the precedence of concatenation, union, and star?
• “x | yw”

• Is it “(x | y)w” or “x | (yw)”
• “xy*”

• is it (xy)* or x(y*) How can we determine precedence?

Regular Expressions

• Use ()’s to force precedence!

• Just like in math:
• 3 + 4 * 5

• what is the precedence of concatenation, union, and star?
• Star > Concat > Union
• use () to avoid mistakes!

Regular Expressions

Most RE implementations provide syntactic sugar:

• Ranges:
• [0-9]: any number between 0 and 9
• [a-z]: any lower case character
• [A-Z]: any upper case character

• Optional(?)
• Matches 0 or 1 instances:
• ab?c matches ”abc” or ”ac”
• can be implemented as: (abc | ac)

Defining tokens using REs

• Literal – single character:
• PLUS = ‘\+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = “(Cat)|(Dog)|(Car)”

• Numbers
• SINGLE_NUM = [0-9]
• how to do INT = [0-9]*
• how to do FLOAT?

Defining tokens using REs

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = “(Cat)|(Dog)|(Car)”

• Numbers
• SINGLE_NUM = [0-9]
• INT = -?([1-9][0-9]*) | 0
• FLOAT =?

Scanner

• Takes in a list of tokens and a string and tokenizes the input

Scanner

Input
“My Old Computer Crashed”

Scanner

[(ARTICLE, “my”) (ADJECTIVE, “old”) (NOUN, “Computer”) (VERB, “Crashed”)]

Tokens are defined with Regular
expressions, which are used to split
up the input stream into lexemes

Tokens
• ARTICLE = ”The|A|My|Your”
• NOUN = “Dog|Car|Computer”
• VERB = ”Ran|Crashed|Accelerated”
• ADJECTIVE = “Purple|Spotted|Old”

Scanner

Scanner

“(5 + 4) * 3”

LPAREN = ‘(‘
NUMBER = ‘[0-9]+’
PLUS = ‘+’
RPAREN = ‘)’
TIMES = ‘*’

re.match

• A streaming API supported by most RE libraries
• Only has to match part the beginning part of the string, not the entire string

re.match

• A streaming API supported by most RE libraries
• Only has to match part the beginning part of the string, not the entire string

• CLASS_TOKEN = {“cse |211|cse211”}

• What would get matched here?: “cse211”

• (CLASS_TOKEN, ?)

• Important for operators, e.g. in C
• ++, +=,

how would we parse “x++;”

(ID, “x”) (ADD, “+”) (ADD, “+”) (SEMI, “;”)

(ID, “x”) (INCREMENT, “++”) (SEMI, “;”)

Scanners should provide the longest possible
match

We can experiment in Godbolt using the clang args:: -fsyntax-only -Xclang -dump-tokens

Subtle differences here

• RE definitions are not guaranteed to give you the longest possible match
• OP = “+|++”, ID = ”[a-z]”
• What will this return for “x++”

• Scanners will tokenize the string according to the token with the longest
match
• PLUS = “+”, PP = “++”, ID = ”[a-z]”
• What will this return for “x++”

• What does this mean for you?
• If you are implementing a scanner?
• If you are writing tokens?

Scanner Summary

• Tokens are defined using regular expressions

• A scanner uses tokens to split a string into lexemes

• Regular expressions are good for splitting up a program into numbers,
variables, operators, and structure (e.g. parenthesis and braces)

• You will get more practice using them in the homework

• Chapter 2 in EAC goes into detail on regular expression parsing
• Finite automata etc.

Define a full language using tokens?

• What about a mathematical sentence (expression)?
limited to non-negative integers
and just using + and *

• What about a mathematical sentence (expression)?

• First let’s define tokens:

Define a full language using tokens?
limited to non-negative integers
and just using + and *

• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

Define a full language using tokens?
limited to non-negative integers
and just using + and *

• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

• What should our language look like?

Define a full language using tokens?
limited to non-negative integers
and just using + and *

• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

• What should our language look like?
• NUM

Define a full language using tokens?
limited to non-negative integers
and just using + and *

• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

• What should our language look like?
• NUM
• NUM PLUS NUM

Define a full language using tokens?
limited to non-negative integers
and just using + and *

• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

• What should our language look like?
• NUM
• NUM PLUS NUM
• ...

Define a full language using tokens?
limited to non-negative integers
and just using + and *

• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

• What should our language look like?
• NUM
• NUM PLUS NUM
• ...

Why not just use regular
expressions?

What would the expression
look like?

Define a full language using tokens?
limited to non-negative integers
and just using + and *

Define a full language using tokens?

• Where are we going to run into issues?

What about ()’s

• there is a formal proof available that regex CANNOT match ()’s:
pumping lemma

• Informal argument:
• Try matching (!)!using Kleene star
• Impossible!

• We are going to need a more powerful language description
framework!

Context Free Grammars

• Backus–Naur form (BNF)
• A syntax for representing context free

grammars

• Naturally creates tree-like structures

• More powerful than regular
expressions

Image Credit:
By Jochgem - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=5036988

BNF Production Rules

• <production name> : <token list>
• Example:

sentence: ARTICLE NOUN VERB

• <production name> : <token list> | <token list>
• Example:
sentence: ARTICLE ADJECTIVE NOUN VERB
 | ARTICLE NOUN VERB

Convention: Tokens in all caps,
production rules in lower case

BNF Production Rules

• Production rules can reference other production rules

sentence: non_adjective_sentence
 | adjective_sentence

non_adjective_sentence: ARTICLE NOUN VERB

adjective_sentence: ARTICLE ADJECTIVE NOUN VERB

BNF Production Rules

sentence: ARTICLE ADJECTIVE* NOUN VERB

BNF Production Rules

sentence: ARTICLE ADJECTIVE* NOUN VERB
We cannot do the star in production rules

BNF Production Rules

• Production rules can be recursive
• Imagine a list of adjectives:

“The small brown energetic dog barked”

sentence: ARTICLE adjective_list NOUN VERB

adjective_list: ADJECTIVE adjective_list
 | <empty>

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

How can we make BNF production rules for this?

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

expression : NUM
 | expression PLUS expression
 | expression TIMES expression

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

expression : NUM
 | expression PLUS expression
 | expression TIMES expression

Let’s add () to the language!

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’
• LPAREN = ‘\(‘
• RPAREN = ‘\)’

expression : NUM
 | expression PLUS expression
 | expression TIMES expression
 | LPAREN expression RPAREN

What other syntax like ()
are used in programming
languages?

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’
• LPAREN = ‘\(‘
• RPAREN = ‘\)’

expression : NUM
 | expression PLUS expression
 | expression TIMES expression
 | LPAREN expression RPAREN

What other syntax like ()
are used in programming
languages?

https://stackoverflow.com/questions/1
732348/regex-match-open-tags-except-
xhtml-self-contained-tags

(previously) 2nd most upvoted
 post on stackoverflow

How to determine if a string matches a CFG?

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: 5

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

input: 5

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

input: 5

root of the tree is
the entry production

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

<NUM, 5>

input: 5

leafs are lexemes

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: 5*6

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

input: 5*6

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

expr <TIMES>

input: 5*6

expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

<NUM, 5>

expr

<NUM, 6>

<TIMES>

input: 5*6

expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

input: 5**6

What happens
in an error?

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

expr <TIMES>

input: 5**6

expr

What happens
in an error?

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

<TIMES>

expr

<NUM, 6>

<TIMES>

input: 5**6

expr

<NUM, 5>

Not possible!

What happens
in an error?

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6>

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

<NUM, 5><NUM, 1>

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• Reverse question: given a parse tree: how do you create a string?

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

<NUM, 5><NUM, 1>

input: ?

Ambiguous grammars

“I saw a person on a hill with a telescope.”

What does it mean??

https://www.quora.com/What-are-some-examples-of-
ambiguous-sentences

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• Try making a parse tree from: 1 + 5 * 6

Parse trees

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

• Try making a parse tree from: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

Parse trees

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

Parse trees

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr

expr <PLUS> expr

<NUM, 1> <TIMES>expr expr

<NUM, 6><NUM, 5>

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

Ambiguous grammars

• What’s the issue?

ParserInput

A string Language
Recognizer for

language L

Reject

Accept

Ambiguous grammars

• What’s the issue?

ParserInput

A string Language
Recognizer for

language L

Reject

Accept
structured data

(e.g. AST)

continue to the rest
of compilation

Meaning into structure

• Structural meaning defined to be a post-order traversal

Meaning into structure

• Structural meaning defined to be a post-order traversal
• Children return values to their parent
• Nodes are only evaluated once all their children have been evaluated
• Evaluated from left to right
• Also called “Natural Order”

Meaning into structure

• Structural meaning defined to be a post-order traversal
• Children return values to their parent
• Nodes are only evaluated once all their children have been evaluated
• Evaluated from left to right

• Can also encode the order of operation

Ambiguous grammars

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr

expr <PLUS> expr

<NUM, 1> <TIMES>expr expr

<NUM, 6><NUM, 5>

expr : NUM

 | expr PLUS expr

 | expr TIMES expr

 | LPAREN expr RPAREN

Avoiding Ambiguity

• How to avoid ambiguity related to precedence?

• Define precedence: ambiguity comes from conflicts. Explicitly define
how to deal with conflicts, e.g. write* has higher precedence than +

• Some parser generators support this, e.g. Yacc

Avoiding Ambiguity

• How to avoid ambiguity related to
precedence?

• Second way: new production rules
• One rule for each level of precedence
• lowest precedence at the top
• highest precedence at the bottom

• Lets try with expressions and the
following:
• + * ()

Avoiding Ambiguity

• How to avoid ambiguity related to
precedence?

• Second way: new production rules
• One rule for each level of precedence
• lowest precedence at the top
• highest precedence at the bottom

• Lets try with expressions and the
following:
• + * ()

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Precedence
increases going down

Now lets create a parse tree
input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

term

factor

input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

term

factor

input: 1+5*6

term

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

<TIMES>term term

term

factor

input: 1+5*6

term

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

<TIMES>term term

term

factor

input: 1+5*6

term

<NUM, 5>

factor

<NUM, 6>

factor

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Parsing REs

Let’s try it for regular expressions, {| . * ()} (where . is concat)

Operator Name Productions

|

.

*

()

Parsing REs

Operator Name Productions

| union : union PIPE union
| concat

. concat : concat DOT concat
| starred

* starred : starred STAR
| unit

() unit : LPAREN union RPAREN
| CHAR

Let’s try it for regular expressions, {| . * ()} (where . is concat)

Parsing REs

Let’s try it for regular expressions, {| . * ()}
input: a.b | c*

Operator Name Productions

| union : union PIPE union
| concat

. concat : concat DOT concat
| starred

* starred : starred STAR
| unit

() unit : LPAREN union RPAREN
| CHAR

Parsing REs

Let’s try it for regular expressions, {| . * ()}
input: a.b | c*

union

union <|> union

starred

concat

concat

concat

<CHAR, c>

unit <*>

concat

starred

unit

<CHAR, a>

starred

unit

<CHAR ,b>

<.>

Operator Name Productions

| union : union PIPE union
| concat

. concat : concat DOT concat
| starred

* starred : starred STAR
| unit

() unit : LPAREN union RPAREN
| CHAR

