
CSE211: Compiler Design 
Oct. 2, 2023

• Topic: Intro to parsing

• Previous Questions:
• What is a compiler?

• What are some of your favorite 
compilers?

• Have you ever built a compiler?



Announcements

• Didn’t get a chance to:
• Set up Piazza
• Set office hours
• Reply to people’s emails

• I will do it all today!

• As a reminder:
• If you are an undergrad, you need to message me for a permission code!



Discussion from last time



What is a compiler?



What are some of your favorite compilers



Building this website started with:
• Markdown to describe the page
• compiled with Jekyll to a static webpage
• static webpage is in HTML and javascript



Have you ever built a compiler?
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What is a compiler?

CompilerInput Output

Strings belonging to
language L’

A series of statements in
programming language L

An executable binary file
in an ISA language

A program written in C++
An x86 Binary executable

Analysis

warnings

A valid input must have a 
valid output. 

Semantic equivalence

What can happen when
the Input isn’t valid?

Strings belonging to
language L



What can happen when the Input isn’t valid?

Try running this through clang. What happens?

int main() {
    int my_var = 5;
    my_var = my_car + 5;
    return 0;
}



What can happen when the Input isn’t valid?

What about this one?

int main() {
    int my_var = 5;
    my_var = my_car + 5;
    return 0;
}

#include <stdlib.h>

int foo() {
   int *x = (int *) malloc(100*sizeof(int));
   return x[100];
}



Can the compiler make your code go faster?

Try running this on https://godbolt.org/ 
change the optimization level to -O3 and see what happens!

int foo() {
    int my_var = 0;
    for (int i = 0; i < 128; i++) {
        my_var++;
    }
    return my_var;
}

https://godbolt.org/


What is the compiler allowed to do?

Try running this on https://godbolt.org/ 
change the optimization level to -O3 and see what happens!
Look for instructions like paddd. what does it do?

void add_arrays(int *a, int *b) {
    for (int i = 0; i < 128; i++) {
        a[i] += b[i];
    }
}

https://godbolt.org/


Moving to Module 1



Starting Module 1

• Topic: Parsing

• Questions:
• What is parsing?

• Have you used Regular Expressions before?

• How do you parse Regular Expressions? What about Context-free Grammars?

..

.. ..

....

int main() {
 printf(““);
 return 0;
}



Compiler architecture overview

String Compiler output
(string, executable)
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Compiler architecture overview

String output
(string, executable)

parser
transformations 

and analysis backend

Parsing is the first step in the compiler

Creates structure

..

.. ..

....

int main() {
 printf(““);
 return 0;
}



Parsing is the first step in a compiler

• How do we parse a sentence in English?
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Parsing is the first step in a compiler

• How do we parse a sentence in English?

Grammar and Syntax

What about semantics?

My dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN



New Question

Can we define a simple language using these building blocks?

• ARTICLE
• NOUN
• VERB
• ADJECTIVE



A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}
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A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Question mark means optional
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A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

My            Old                  Computer    Crashed

ARTICLE   ADJECTIVE?   NOUN          VERB



A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}
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A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Syntactically correct,
logically correct?

The           Purple            Dog              Crashed

ARTICLE   ADJECTIVE?   NOUN          VERB



A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

What other languages can you specify?

ARTICLE   ADJECTIVE   NOUN          VERB



Goals in this module

• Understand the architecture of a modern parser (tokenizing and 
parsing)

• Understand the language of tokens (regular expressions) and parsers 
(context-free grammars)

• How to design CFG production rules to avoid ambiguity

• Utilize a classic parser generator (Lex and Yacc) for a simple language



Goals in this module

• We will NOT discuss parsing algorithms for CFGs. If you are interested, 
you can do this for a paper assignment.

• This module should provide you with the background to implement 
parsers, which are USEFUL in many different projects. 

• These topics are typically covered in more depth in an undergrad 
course.



High-level parser

Parser



High-level parser

Parser

A parser needs to know about the language:
• What forms can these take?



High-level parser

Parser

A parser needs to know about the language:
• 1800 page C++ specification, 
• English language

• Formal specification, mathematical
• Mostly used in academics
• X86, ARM, Functional languages



High-level parser

Parser

Parser needs only a small part of the specification!
The Grammar!

A parser needs to know about the language:
• 1800 page C++ specification, 
• English language

• Formal specification, mathematical
• Mostly used in academics
• X86, ARM, Functional languages



High-level parser
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Recognizer for 
L’s Grammar
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High-level parser

Reject

Accept

Input

A string

Parser

Syntax error

The input string 
satisfies L’s grammar

The input string is NOT 
in the language L

what other types of 
errors might happen up 
here?

Some languages
try to move logic errors
to syntax errors!

Language
Recognizer for 
L’s Grammar



High-level parser

Reject

Accept

Input

A string

Parser

Syntax error

The input string 
satisfies L’s grammar

The input string is NOT 
in the language L

structured data 
(e.g. AST)

continue to the rest 
of compilation

Language
Recognizer for 
L’s Grammar



Parser architecture
Parser

Scanner 
(Lexer)

(Tokenizer)
Parser



Parser architecture

First level of 
abstraction.

Transforms a string of 
characters into a string

of tokens

Second level:
transforms a string 

of tokens in a tree of 
tokens.
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Parser architecture

First level of 
abstraction.

Transforms a string of 
characters into a string

of tokens

Second level:
transforms a string 

of tokens in a tree of 
tokens.

Language:
Regular Expressions 

(REs)

Language:
Context-Free Grammars 

(CFGs)

Parser

Parser
Scanner 
(Lexer)

(Tokenizer)



Scanner

• List of tokens: 
• e.g. {NOUN, ARTICLE, ADJECTIVE, VERB}



Scanner

My Old Computer Crashed



Scanner

My Old Computer Crashed

[(ARTICLE, “my”) (ADJECTIVE, “old”) (NOUN, “Computer”) (VERB, “Crashed”)]

Scanner



Scanner

My Old Computer Crashed

Lexeme: (TOKEN, value) 

Scanner

[(ARTICLE, “my”) (ADJECTIVE, “old”) (NOUN, “Computer”) (VERB, “Crashed”)]



Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3

ideas?



Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3LPAREN = ‘(‘ 
NUMBER = {‘5’,’4’,’3’, ..} 
PLUS = ‘+’
RPAREN = ‘)’
TIMES = ‘*’ 



Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3

You can generalize tokens

LPAREN = ‘(‘ 
NUMBER = {‘5’,’4’,’3’, ..} 
PLUS = ‘+’
RPAREN = ‘)’
TIMES = ‘*’ 

LPAREN = ‘(‘ 
NUMBER = {‘5’,’4’,’3’, ..} 
OP = {‘+’, “*”}
RPAREN = ‘)’



Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3

You can make tokens more specific

LPAREN = ‘(‘ 
NUMBER = {‘5’,’4’,’3’, ..} 
PLUS = ‘+’
RPAREN = ‘)’
TIMES = ‘*’ 

LPAREN = ‘(‘ 
ONE = ‘1’
TWO = ‘2’
THREE = ‘3’
...
PLUS = ‘+’
RPAREN = ‘)’
TIMES = ‘*’ 



Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3

What about this one?

LPAREN = ‘(‘ 
NUMBER = {‘5’,’4’,’3’, ..} 
PLUS = ‘+’
RPAREN = ‘)’
TIMES = ‘*’ 

PAREN = {‘(‘, ‘)’} 
NUMBER = {‘5’,’4’,’3’, ..} 
PLUS = ‘+’
TIMES = ‘*’ 



Defining tokens
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• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’
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Defining tokens

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = {“Cat”, “Dog”, “Car”}



Defining tokens

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = {“Cat”, “Dog”, “Car”}

• Numbers
• NUM = {“0”, “1” …}



Defining tokens

• Regular expressions!• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = {“Cat”, “Dog”, “Car”}

• Numbers
• NUM = {“0”, “1” …}



Regular Expressions

• Lots of literature!
• Simplest grammar in the 

Chomsky language
hierarchy

• abstract machine definition 
(finite automata) 

• Many implementations (e.g. 
Python standard library)

image source: wikipedia



Regular Expressions

We will define RE’s recursively:

Input:
• Regular Expression R
• String S

Output:
• Does the Regular Expression R match the string S



Regular Expressions

We will define RE’s recursively:

The base case: a character literal
• The RE for a character ‘x’ is given by ‘x’. It matches only the 

character ‘x’



Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under concatenation:

• The concatenation of two REs x and y is given by xy and matches 
the strings of RE x concatenated with the strings of RE y



Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under union:

• The union of two REs x and y is given by x|y and matches 
the strings of RE x OR the strings of RE y



Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under Kleene star:

• The Kleene star of an RE x is given by x* and matches the 
strings of RE x REPEATED 0 or more times



Regular Expressions

Examples



Regular Expressions

• Use ()’s to force precedence!

• Just like in math:
• 3 + 4 * 5

• what is the precedence of concatenation, union, and star?
• “x | yw” 

• Is it “(x | y)w” or “x | (yw)”
• “xy*”

• is it (xy)* or x(y*) 



Regular Expressions

• Use ()’s to force precedence!

• Just like in math:
• 3 + 4 * 5

• what is the precedence of concatenation, union, and star?
• “x | yw” 

• Is it “(x | y)w” or “x | (yw)”
• “xy*”

• is it (xy)* or x(y*) How can we determine precedence?



Regular Expressions

• Use ()’s to force precedence!

• Just like in math:
• 3 + 4 * 5

• what is the precedence of concatenation, union, and star?
• Star > Concat > Union
• use () to avoid mistakes!



Regular Expressions

Most RE implementations provide syntactic sugar:

• Ranges:
• [0-9]: any number between 0 and 9 
• [a-z]: any lower case character
• [A-Z]: any upper case character

• Optional(?)
• Matches 0 or 1 instances:
• ab?c matches ”abc” or ”ac”
• can be implemented as: (abc | ac)



Defining tokens using REs

• Literal – single character:
• PLUS = ‘\+’, TIMES = ‘\*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = “(Cat)|(Dog)|(Car)”

• Numbers
• SINGLE_NUM = [0-9]
• how to do INT = [0-9]*
• how to do FLOAT?



Defining tokens using REs

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = “(Cat)|(Dog)|(Car)”

• Numbers
• SINGLE_NUM = [0-9]
• INT = -?([1-9][0-9]*) | 0
• FLOAT =?



Scanner

• Takes in a list of tokens and a string and tokenizes the input



Scanner

Input
“My Old Computer Crashed”

Scanner

[(ARTICLE, “my”) (ADJECTIVE, “old”) (NOUN, “Computer”) (VERB, “Crashed”)]

Tokens are defined with Regular
expressions, which are used to split
up the input stream into lexemes

Tokens
• ARTICLE = ”The|A|My|Your”
• NOUN = “Dog|Car|Computer”
• VERB = ”Ran|Crashed|Accelerated”
• ADJECTIVE = “Purple|Spotted|Old”



Scanner

Scanner

“(5 + 4) * 3”

LPAREN =  ‘(‘
NUMBER = ‘[0-9]+’
PLUS = ‘+’
RPAREN = ‘)’ 
TIMES = ‘*’ 



re.match

• A streaming API supported by most RE libraries
• Only has to match part the beginning part of the string, not the entire string



re.match

• A streaming API supported by most RE libraries
• Only has to match part the beginning part of the string, not the entire string

• CLASS_TOKEN = {“cse |211|cse211”}

• What would get matched here?: “cse211”

• (CLASS_TOKEN, ?)



• Important for operators, e.g. in C
• ++, +=,

how would we parse “x++;”

(ID, “x”) (ADD, “+”) (ADD, “+”) (SEMI, “;”)

(ID, “x”) (INCREMENT, “++”) (SEMI, “;”)

Scanners should provide the longest possible 
match

We can experiment in Godbolt using the clang args:: -fsyntax-only -Xclang -dump-tokens



Subtle differences here

• RE definitions are not guaranteed to give you the longest possible match
• OP = “+|++”, ID = ”[a-z]”
• What will this return for “x++”

• Scanners will tokenize the string according to the token with the longest 
match
• PLUS = “+”, PP = “++”, ID = ”[a-z]”
• What will this return for “x++”

• What does this mean for you? 
• If you are implementing a scanner?
• If you are writing tokens?



Scanner Summary

• Tokens are defined using regular expressions

• A scanner uses tokens to split a string into lexemes

• Regular expressions are good for splitting up a program into numbers, 
variables, operators, and structure (e.g. parenthesis and braces)

• You will get more practice using them in the homework

• Chapter 2 in EAC goes into detail on regular expression parsing 
• Finite automata etc.



Define a full language using tokens?

• What about a mathematical sentence (expression)?
limited to non-negative integers
and just using + and *
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• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
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and just using + and *



• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’\*’

• What should our language look like?

Define a full language using tokens?
limited to non-negative integers
and just using + and *



• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’\*’

• What should our language look like?
• NUM

Define a full language using tokens?
limited to non-negative integers
and just using + and *



• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’\*’

• What should our language look like?
• NUM
• NUM PLUS NUM

Define a full language using tokens?
limited to non-negative integers
and just using + and *



• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’\*’

• What should our language look like?
• NUM
• NUM PLUS NUM
• ...

Define a full language using tokens?
limited to non-negative integers
and just using + and *



• What about a mathematical sentence (expression)?

• First let’s define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’\*’

• What should our language look like?
• NUM
• NUM PLUS NUM
• ...

Why not just use regular
expressions?

What would the expression
look like?

Define a full language using tokens?
limited to non-negative integers
and just using + and *



Define a full language using tokens?

• Where are we going to run into issues?



What about ()’s

• there is a formal proof available that regex CANNOT match ()’s: 
pumping lemma

• Informal argument:
• Try matching (!)!using Kleene star
• Impossible!

• We are going to need a more powerful language description 
framework!



Context Free Grammars

• Backus–Naur form (BNF)
• A syntax for representing context free 

grammars

• Naturally creates tree-like structures

• More powerful than regular 
expressions

Image Credit:
By Jochgem - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=5036988



BNF Production Rules

• <production name> : <token list>
• Example: 

sentence: ARTICLE NOUN VERB

• <production name> : <token list> | <token list>
• Example:
sentence: ARTICLE ADJECTIVE NOUN VERB 
                | ARTICLE NOUN VERB

Convention: Tokens in all caps,
production rules in lower case



BNF Production Rules

• Production rules can reference other production rules

sentence: non_adjective_sentence
                | adjective_sentence

non_adjective_sentence: ARTICLE NOUN VERB

adjective_sentence: ARTICLE ADJECTIVE NOUN VERB



BNF Production Rules

sentence: ARTICLE ADJECTIVE* NOUN VERB



BNF Production Rules

sentence: ARTICLE ADJECTIVE* NOUN VERB
We cannot do the star in production rules



BNF Production Rules

• Production rules can be recursive
• Imagine a list of adjectives:

“The small brown energetic dog barked”

sentence: ARTICLE adjective_list NOUN VERB

adjective_list: ADJECTIVE adjective_list 
                        | <empty>



Let’s go back to mathematical sentences 
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’\*’

How can we make BNF production rules for this? 



Let’s go back to mathematical sentences 
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’\*’

expression : NUM 
                    | expression PLUS expression
                    | expression TIMES expression



Let’s go back to mathematical sentences 
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’\*’

expression : NUM 
                    | expression PLUS expression
                    | expression TIMES expression

Let’s add () to the language!



Let’s go back to mathematical sentences 
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’\*’
• LPAREN = ‘\(‘
• RPAREN = ‘\)’

expression : NUM 
                    | expression PLUS expression
                    | expression TIMES expression
                    | LPAREN expression RPAREN

What other syntax like ()
are used in programming 
languages?



Let’s go back to mathematical sentences 
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’\*’
• LPAREN = ‘\(‘
• RPAREN = ‘\)’

expression : NUM 
                    | expression PLUS expression
                    | expression TIMES expression
                    | LPAREN expression RPAREN

What other syntax like ()
are used in programming 
languages?

https://stackoverflow.com/questions/1
732348/regex-match-open-tags-except-
xhtml-self-contained-tags

(previously) 2nd most upvoted
 post on stackoverflow



How to determine if a string matches a CFG? 



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

input: 5



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

expr

input: 5



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

expr

input: 5

root of the tree is
the entry production



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

expr

<NUM, 5>

input: 5

leafs are lexemes 



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

input: 5*6



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

expr

input: 5*6



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

expr

expr <TIMES>

input: 5*6

expr



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

expr

<NUM, 5>

expr

<NUM, 6>

<TIMES>

input: 5*6

expr



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

expr

input: 5**6

What happens
in an error?



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

expr

expr <TIMES>

input: 5**6

expr

What happens
in an error?



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

expr

<TIMES>

expr

<NUM, 6>

<TIMES>

input: 5**6

expr

<NUM, 5>

Not possible!

What happens
in an error?



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

input: (1+5)*6



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

input: (1+5)*6

expr



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

input: (1+5)*6

expr

expr <TIMES> expr



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6>



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse 
tree. 

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

<NUM, 5><NUM, 1>



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• Reverse question: given a parse tree: how do you create a string?

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

<NUM, 5><NUM, 1>

input: ?



Ambiguous grammars

“I saw a person on a hill with a telescope.”

What does it mean??

https://www.quora.com/What-are-some-examples-of-
ambiguous-sentences



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• Try making a parse tree from: 1 + 5 * 6



Parse trees

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN

• Try making a parse tree from: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>



Parse trees

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN



Parse trees

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr

expr <PLUS> expr

<NUM, 1> <TIMES>expr expr

<NUM, 6><NUM, 5>

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN



Ambiguous grammars

• What’s the issue?

ParserInput

A string Language
Recognizer for 

language L

Reject

Accept



Ambiguous grammars

• What’s the issue?

ParserInput

A string Language
Recognizer for 

language L

Reject

Accept
structured data 

(e.g. AST)

continue to the rest 
of compilation



Meaning into structure

• Structural meaning defined to be a post-order traversal 



Meaning into structure

• Structural meaning defined to be a post-order traversal 
• Children return values to their parent
• Nodes are only evaluated once all their children have been evaluated
• Evaluated from left to right
• Also called “Natural Order”



Meaning into structure

• Structural meaning defined to be a post-order traversal 
• Children return values to their parent
• Nodes are only evaluated once all their children have been evaluated
• Evaluated from left to right

• Can also encode the order of operation



Ambiguous grammars

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr

expr <PLUS> expr

<NUM, 1> <TIMES>expr expr

<NUM, 6><NUM, 5>

expr : NUM 

         | expr PLUS expr

         | expr TIMES expr

         | LPAREN expr RPAREN



Avoiding Ambiguity

• How to avoid ambiguity related to precedence?

• Define precedence: ambiguity comes from conflicts. Explicitly define 
how to deal with conflicts, e.g. write* has higher precedence than +

• Some parser generators support this, e.g. Yacc



Avoiding Ambiguity

• How to avoid ambiguity related to 
precedence?

• Second way: new production rules
• One rule for each level of precedence
• lowest precedence at the top
• highest precedence at the bottom

• Lets try with expressions and the 
following:
• + * ()



Avoiding Ambiguity

• How to avoid ambiguity related to 
precedence?

• Second way: new production rules
• One rule for each level of precedence
• lowest precedence at the top
• highest precedence at the bottom

• Lets try with expressions and the 
following:
• + * ()

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Precedence
increases going down



Now lets create a parse tree
input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM



Now lets create a parse tree

expr

input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM



Now lets create a parse tree

expr

expr <PLUS> expr

input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM



Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

term

factor

input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM



Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

term

factor

input: 1+5*6

term

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM



Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

<TIMES>term term

term

factor

input: 1+5*6

term

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM



Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

<TIMES>term term

term

factor

input: 1+5*6

term

<NUM, 5>

factor

<NUM, 6>

factor

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM



Parsing REs

Let’s try it for regular expressions, {| . * ()}  (where . is concat)

Operator Name Productions

|

.

*

()



Parsing REs

Operator Name Productions

| union : union PIPE union
| concat

. concat : concat DOT concat
| starred

* starred : starred STAR
| unit

() unit : LPAREN union RPAREN
| CHAR

Let’s try it for regular expressions, {| . * ()} (where . is concat)



Parsing REs

Let’s try it for regular expressions, {| . * ()}
input: a.b | c*

Operator Name Productions

| union : union PIPE union
| concat

. concat : concat DOT concat
| starred

* starred : starred STAR
| unit

() unit : LPAREN union RPAREN
| CHAR



Parsing REs

Let’s try it for regular expressions, {| . * ()}
input: a.b | c*

union

union <|> union

starred

concat

concat

concat

<CHAR, c>

unit <*>

concat

starred

unit

<CHAR, a>

starred

unit

<CHAR ,b>

<.>

Operator Name Productions

| union : union PIPE union
| concat

. concat : concat DOT concat
| starred

* starred : starred STAR
| unit

() unit : LPAREN union RPAREN
| CHAR


