CSE211: Compiler Design

Oct. 27/, 2023

* Topic: global optimizations
continuted

* Questions:
 What is a fixed point iteration?

* How can we speed up fixed point
iteration algorithms?




Announcements

* Homework 1 was due on Wednesday

* Homework 2 is out
Fixed the links
| noticed that | did give some scheduling flexibility

Part 1 is about local value numbering
* You should have everything you need to do it

Part 2 is about live variable analysis
* Itis a global analysis that we will learn about



Announcements

* Paper review is due on Monday (by midnight)

* Midterm is on Monday

* In person during class time
* 10% of grade
* 3 pages of notes



Review



Global optimizations

* Difference between regional:
* handle arbitrary CFGs, cannot rely on structure!
* Algorithms become more general
* Potential for more optimizations!

* Highly suggest reading for this part of the class
* Chapter 9 of EAC



First concept:

* Dominance in a CFG
 Builds up a framework for reasoning

* Building block for many algorithms
* global local value numbering when unlimited registers
* Conversion to SSA



Dominance

* a block b, dominates block b, if
every path from the start to block
b, goes through b,

* definition:
e domination (includes itself)

 strict domination (does not include
itself)

e Can we use this notion to extend
local value numbering?

dominators

start:
Dominators: rQ = ;
br

Dominators
bl,b0

b0

" /

if: else:

r2 = ...; r3 = ...;

br end if; br end if;
Dominators
b2, b0

Dominators end 1f: b3

b3,b0 rd = ...,




BO BO

Bl BO, B1

B2 BO, B1, B2

B3 BO, B1, B3

B4 BO, B1, B3, B4
B5 BO, B1, B5

B6 BO, B1, B5, B6
B7 BO, B1, B5, B7
B8 BO, B1, B5, B8

Concept introduced in 1959, algorithm not not given until 10 years later




Computing dominance
* |terative fixed-point algorithm

* |nitial state, all nodes start with all other nodes are dominators:
e Dom(n)=N
 Dom(start) = {start}

iteratively compute:

Dom(n)={n} U (N . oreds(n) Dom(m) )



Now lets think about dominance

* Root node is initialized to itself
* Every node determines new dominators based on parent dominators

D = {x,y,z} D = {x,y} D = {a,x,y}

update:
intersection of parent values

Forward flow, as updates flow from
parents to children.

Dom(n) = {n} U ( npin preds(n) Dom(p) )



BO BO BO

Bl
B2
B5
B6
B8
B7
B3
B4

How can we optimize the algorithm?

S22

BO,B1
BO,B1,B2
BO,B1,B5
BO,B1,B5,B6
BO,B1,B5,B8
BO,B1,B5,B7
BO,B1,B3
BO,B1,B4

g




New Material



Another analysis: Live Variable Analysis

* A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

e examples:
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Another analysis: Live Variable Analysis

* A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

e examples:

Live variables: z, w



Another analysis: Live Variable Analysis

* A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

e examples:

=5 p  Live variables: ?
Z



Another analysis: Live Variable Analysis

* A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

e examples:

Live variables: x,w



Another analysis: Live Variable Analysis

* A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

e examples:
X =5 X = b
ce. Live variables: x,w -
if (z): if (z):
= = 0

Y 0 Y i Live variables: ?
else: else:

y = X y = X
print (y) print (y)
print (w) print (w)



Another analysis: Live Variable Analysis

* A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

e examples:

X =95 x =5

ce. Live variables: x,w -

if (z): if (z):
y =6 y=6p

else: clse: <— Live variables: y,w
y = X y = x

print (y) print (y)

print (w) print (w)



Another analysis: Live Variable Analysis

* A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

e examples:
//start <—p Live variables: ?

x = 5 X =5

. Live variables: x,w ..
if (z): 1t (z):

y = 0 y = 6
else: else

y = X y = X
print (y) print (y)
print (w) print (w)



Another analysis: Live Variable Analysis

* A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

e examples:
//start — P Live variables: w,z

x = 5 X =5

. Live variables: x,w ..
if (z): 1t (z):

y = 0 y = 6
else: else

y = X y = X
print (y) print (y)
print (w) print (w)



Another analysis: Live Variable Analysis

* A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

e examples:

Accessing an uninitialized
variable!

//start <—p Live variables: w,z

X =5 X = 5
ce. P Live variables: x,w - .-
if (z): if (z7:

( (

Y 6 y = 0
else: else

y = X y = X
print (y) print (y)
print (w) print (w)



Live variable analysis in the CFG:

BO i=1;
For each block B, : we want to compute LiveOut:
The set of variables that are live at the end of B,
Bl <some branch on i>
s = 0; B2
s = s + 1;
83 i =14+ 1; |
<some branch on 1>

B4 | print (s) ;




Live variable analysis in the CFG:

Live variables: ?

BO i=1;
B1 <some branch on 1> Live variables: ?
s = 0; B2 Live variables: ?
s = s + 1;
83 i =1+ 1;
<some branch on i>

Live variables: ?

B4 | print (s)7 | |ive variables: {}




Live variable analysis in the CFG:

Live variables: i,s

BO 1= 1;
Bl <some branch on i>
\ Live variables: i,s
/ Live variables: i, s
s = s + 1;
L =1 + 1;
B3 |~ |
<some branch on 1>

Live variables: i,s

B4 | print (s)7 | |ive variables: {}




Live variable analysis in the CFG:

BO

1;

Bl

<some branch on i>

A 4

N\

B3

S
1

s + 1;
i+ 1;
<some branch on i>

B4

print (s)

B2

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b

is any variable in b that is satisfies these two conditions
* itis not written to and it is read

* itisread before it is written to

BO
Bl
B2
B3
B4



Live variable analysis in the CFG:

BO

1;

Bl

<some branch on i>

A 4

N\

B3

S
1

s + 1;
i+ 1;
<some branch on i>

B4

print (s)

B2

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b
is any variable in b that is satisfies these two conditions

e jtis not written to and it is read
e jtis read before it is written to

BO [
B1 {}
B2 S
B3 S,
B4 {0



Live variable analysis in the CFG:

To compute the LiveOut sets, we need two

BO i=1; initial sets:
VarKill for block b is any variable in block b that gets
overwritten
B1 <some branch on i>
UEVar (upward exposed variable) for block b
\ is any variable in b that is satisfies these two conditions
* itis not written to and it is read
s = 0; B2 * itisread before it is written to
s = s + 1; BO i {
i =1+ 1; .
B3 <some branch on i> B1 i !
B2 s {}
B3 S,i S,i
B4 {} S

B4 | print (s) ;




Live variable analysis in the CFG:

* Initial condition: LiveOut(n) = {} for all nodes

* Ground truth, no variables are live at the exit of the program, i.e. end node
Neng has LiveOut(n,,4)= {}



Live variable analysis in the CFG:

* Initial condition: LiveOut(n) = {} for all nodes

* Ground truth, no variables are live at the exit of the program, i.e., end node
Neng has LiveOut(n,,4)= {}

Now we can perform the iterative fixed-point computation:

LiveOut(n) = U, sucen) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))



Live variable analysis in the CFG:

LiveOut(n) = U, sucein) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))

Backwards flow analysis
because values flow from
successors




Live variable analysis in the CFG:

LiveOut(n) = U, sucein) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))

any variable in UEVar(s)
is live at n




Live variable analysis in the CFG:

LiveOut(n) = U, sucein) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))

variables that are not
overwrittenin s




Live variable analysis in the CFG:

LiveOut(n) = U, sucein) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))

variables that are live
at the end of s




Live variable analysis in the CFG:

LiveOut(n) = U, sucein) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))

variables that are live
at the end of s, and not
overwritten by s




Live variable analysis in the CFG:

LiveOut(n) = U, sucein) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))

LiveOut is a union Dom(n) ={n} U _ Dom
rather than an intersection (n)=1{n} U np'n preds(n) (p))



Consider the language we use for each:

* Dominance of node b, contains b, if:
* every path from the start to b, goes through b,

* LiveOut of node b, contains variable y if:
* some path from b, contains a usage of y

LiveOut(n) = U, sucein) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))
Dom(n) = {n} U ( npin preds(n) Dom(p) )



Consider the language we use for each:

* Dominance of node b, contains b, if:
* every path from the start to b, goes through b,

* LiveOut of node b, contains variable y if:
* some path from b, contains a usage of y

* Some vs. Every

LiveOut(n) = U, sucein) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))
Dom(n) = {n} U ( npin preds(n) Dom(p) )



Bstart Now we can perform the iterative fixed point computation:

LiveOut(n) = Ug i, sucern) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))

BO i=1;
Bl <so;e branch on i>
\ ERTS varkil  UEVar  ~Varkill

Bstart {} {} i,S {}

B2 15 2 97 ] g i 4 s 4

/ B1 ) i s 4

s =s + 1; B2 s 0 i 0

3 |1~ L | B3 s s 4 i
<some branch on 1>

B4 {} S i,S {}

Bend {} {} i,S {}

B4 |print (s);

l

Bend




Bstart Now we can perform the iterative fixed point computation:

LiveOut(n) = Ui, sueen) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))

BO i=1;
Bl <so;e branch on 1>
\ EETS varkill  UEvar  ~Varkill

Bstart {} {} i, {}

g S Y i 0 ; 0

/ B1 0 i s i

s = s + 1; B2 S {} i {}

g3 |+~ Y L B3 s s 3 0
<some branch on 1>

B4 {} S i,S {}

Bend {} {} i,S {}

B4 |print(s);

l

Bend




BO

Bl

B3

B4

Bstart

A4

<some branch on 1>

B2 |s

~

s = s + 1;
1 =1+ 1;

<some branch on 1>

print (s) ;

l

Bend

BO
Bl
B2
B3
B4

Bend

Now we can perform the iterative fixed point computation:

LiveOut(n) = Ui, sueen) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))

Block  [RELBMRTAYIERVY G I LiveOut | | LiveOut I, | LiveOut I,

Bstart

{} {} i,s {} {}
' {} s {} i
{} i i,S {} i,S
{} i {} i,s
I,s i,s {} {} i,s
{} s i,s {} {}
{} {} i,s {} {}



BO

Bl

B3

B4

Bstart

4

<some branch on 1>

\

B2 |s

~

S
1

s + 1;
i+ 1;

<some branch on 1>

print (s) ;

l

Bend

Now we can perform the iterative fixed point computation:

LiveOut(n) = Ui, sueen) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))

Block [ RTINSO LiveOut o | LiveOut Iy | LiveQutly | .1y
{} {} {}

Bstart  {} {} i,S

BO i {} S {} i i,S
B1 {} [ i,S {} i,S i,S
B2 S {} [ {} i,S i,S
B3 i,S i,S {} {} i,S i,S
B4 {} S i,S {} {} {}
Bend  {} {} I, {} {} {}



BO

Bl

B3

B4

Bstart

4

<some branch on 1>

\

B2 |s

~

S
1

s + 1;
i+ 1;

<some branch on 1>

print (s) ;

l

Bend

Now we can perform the iterative fixed point computation:

LiveOut(n) = Ui, sueen) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))

Block [ RTINSO LiveOut o | LiveOut Iy | LiveQutly | .1y
{} {} {} s

Bstart  {} {} i,S

BO [ {} S {} [ i,S i,S
B1 {} [ i,S {} i,S i,S i,S
B2 S {} [ {} i,S i,S i,S
B3 i,S i,S {} {} i,S i,S i,S
B4 {} S I, {} {} {} {}
Bend  {} {} I, {} {} {} {}



Node ordering for backwards flow

* Reverse post-order was good for forward flow:
* Parents are computed before their children

* For backwards flow: use reverse post-order of the reverse CFG
* Reverse the CFG
e perform a reverse post-order

e Different from post order?



Example

acks: thanks to this blog post for the example!
https://eli.thegreenplace.net/2015/directed-graph-traversal-orderings-and-applications-to-data-flow-analysis/

post order: D, C, B, A



Example

OO
D @
OO

reverse CFG

post order: D, C, B, A

rpo on reverse CFG: D, B, C, A



Example

post order: D, C, B, A

rpo on reverse CFG: D, B, C, A

rpo on reverse CFG computes B before C, thus, C can see updated
information from B



Example

post order: D, C, B, A

rpo on reverse CFG: D, B, C, A

updates in backwards flow

rpo on reverse CFG computes B before C, thus, C can see updated
information from B



Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before
being overwritten.

Consider:



Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before
being overwritten.

Consider:

UEVar needs to assume a[x] is any memory location that it cannot prove non-aliasing

LiveOut(n) = Uiy sueen) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))



Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before
being overwritten.

Consider:

alx] = s + 1;

LiveOut(n) = Uiy sueen) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))



Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before
being overwritten.

Consider:

alx] = s + 1;

VarKill also needs to know about aliasing

LiveOut(n) = Uiy sueen) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))



Live variable limitations

Imprecision can come from CFG construction:
consider:

br 1 < 0, dead branch, alive branch



Live variable limitations

Imprecision can come from CFG construction:
consider:

br 1 < 0, dead branch, alive branch

could come from arguments, etc.

dead _branch

alive_branch




Live variable limitations

Imprecision can come from CFG construction:

consider first class labels (or functions):

br label reg

need to branch to all possible
basic blocks!

where label reg is a register that contains a register




The Data Flow Framework

LiveOut(n) = U, sucein) ( UEVar(s) U (LiveOut(s) N VarKill(s) ))

f (X) = O,D v in (succ | preds) CO(V) 0P, (f (V) 0P, CZ( V))



Available Expressions

AvailExpr(n)= N DEExpr(p) U (AvailExpr(p) N ExprKill(p))

p in preds

An expression e is “available” at the beginning of a basic
block b, if for all paths to b,, e is evaluated and none of its
arguments are overwritten



Available Expressions

AvailExpr(n)= N DEExpr(p) U (AvailExpr(p) N ExprKill(p))

p in preds

Forward Flow



Available Expressions

AvailExpr(n)= N DEExpr(p) U (AvailExpr(p) N ExprKill(p))

p in preds

intersection implies “must” analysis



Available Expressions

AvailExpr(n)= N DEExpr(p) U (AvailExpr(p) N ExprKill(p))

p in preds

DEExpr(p) is all Downward Exposed Expressions in p. That is expressions
that are evaluated AND operands are not redefined



Available Expressions

AvailExpr(n)= N DEExpr(p) U (AvailExpr(p) N ExprKill(p))

p in preds

AvailExpr(p) is any expression that is available at p



Available Expressions

AvailExpr(n)= N DEExpr(p) U (AvailExpr(p) N ExprKill(p))

p in preds

ExprKill(p) is any expression that p killed, i.e. if one or more of its operands is redefined
inp



Available Expressions

AvailExpr(n)= N DEExpr(p) U (AvailExpr(p) N ExprKill(p))

p in preds

Any expression
that is available (and not killed)
the parents, along with expressions exposed by
all the parents.



Available Expressions

AvailExpr(n)= N DEExpr(p) U (AvailExpr(p) N ExprKill(p))

p in preds

Application: you can add availExpr(n) to local optimizations in n, e.qg. local value numbering



Anticipable Expressions

AntOut(n)= N UEExpr(s) U (AntOut(s) N ExprKill(s))

S in succ

An expression e is “anticipable” at a basic block b, if for all
paths that leave b,, e is evaluated



Anticipable Expressions

AntOut(n)= N UEExpr(s) U (AntOut(s) N ExprKill(s))

S in succ

Backwards flow



Anticipable Expressions

AntOut(n)= N UEExpr(s) U (AntOut(s) N ExprKill(s))

S in succ

"must” analysis



Anticipable Expressions

AntOut(n)= N UEExpr(s) U (AntOut(s) N ExprKill(s))

S in succ

UEExpr(p) is all Upward Exposed Expressions in p. That is expressions
that are computed in p before operands are overwritten.



Anticipable Expressions

AntOut(n)= N UEExpr(s) U (AntOut(s) N ExprKill(s))

S in succ




Anticipable Expressions

AntOut(n)= N UEExpr(s) U (AntOut(s) N ExprKill(s))

S in succ




Anticipable Expressions

AntOut(n)= N, ... UEExpr(s) U (Antout(s) N EXOERIE))

n
X=y+z

X=Vy+2




Anticipable Expressions

AntOut(n)= N UEExpr(s) U (AntOut(s) N ExprKill(s))

S in succ

Application: you can hoist AntOut expressions to compute as early as possible

potentially try to reduce code size: -Oz



More flow algorithms:

Check out chapter 9 in EAC: Several more algorithms.

“Reaching definitions” have applications in memory analysis



Next time:

* More global analysis!



