CSE211: Compiler Design Oct. 27, 2023

- **Topic**: global optimizations continuted
- Questions:
 - What is a fixed point iteration?
 - How can we speed up fixed point iteration algorithms?

Announcements

- Homework 1 was due on Wednesday
- Homework 2 is out
 - Fixed the links
 - I noticed that I did give some scheduling flexibility
 - Part 1 is about local value numbering
 - You should have everything you need to do it
 - Part 2 is about live variable analysis
 - It is a global analysis that we will learn about

Announcements

- Paper review is due on Monday (by midnight)
- Midterm is on Monday
 - In person during class time
 - 10% of grade
 - 3 pages of notes

Review

Global optimizations

- Difference between regional:
 - handle arbitrary CFGs, cannot rely on structure!
 - Algorithms become more general
 - Potential for more optimizations!
- Highly suggest reading for this part of the class
 - Chapter 9 of EAC

First concept:

- Dominance in a CFG
- Builds up a framework for reasoning
- Building block for many algorithms
 - global local value numbering when unlimited registers
 - Conversion to SSA

Dominance

- a block b_x dominates block b_y if every path from the start to block b_y goes through b_x
- definition:
 - domination (includes itself)
 - strict domination (does not include itself)
- Can we use this notion to extend local value numbering?

Node	Dominators
BO	во
B1	B0, B1
B2	B0, B1, B2
B3	B0, B1, B3
B4	B0, B1, B3, B4
B5	B0, B1, B5
B6	B0, B1, B5, B6
B7	B0, B1, B5, B7
B8	B0, B1, B5, B8

Concept introduced in 1959, algorithm not not given until 10 years later

Computing dominance

- Iterative fixed-point algorithm
- Initial state, all nodes start with all other nodes are dominators:
 - *Dom(n) = N*
 - Dom(start) = {start}

iteratively compute:

$$Dom(n) = \{n\} \cup (\bigcap_{\min preds(n)} Dom(m))$$

Now lets think about dominance

- Root node is initialized to itself
- Every node determines new dominators based on parent dominators

How can we optimize the algorithm?

Node	Initial	Iteration 1	Iteration 2	Iteration 3
ВО	BO	ВО		
B1	N	B0,B1		
B2	N	B0,B1,B2		
B5	Ν	B0,B1,B5		
B6	N	B0,B1,B5,B6		
B8	Ν	B0,B1,B5,B8		
В7	N	B0,B1,B5,B7		
B3	N	B0,B1,B3		
B4	N	B0,B1,B4		

New Material

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

• examples:

x = 5
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

• examples:

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

$$x = 5$$

$$\therefore \qquad p$$
Live variables: x,w
if (z):
$$y = 6$$
else:
$$y = x$$
print(y)
print(w)
$$x = 5$$

$$\therefore$$
if (z):
$$y = 6 \quad p$$
else:
$$y = x$$
print(y)
print(w)

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

$$x = 5$$

$$\therefore \qquad p$$
Live variables: x,w
$$x = 5$$

$$\therefore \qquad if (z):$$

$$y = 6$$
else:
$$y = x$$

$$y = x$$
print(y)
print(w)
$$x = 5$$

$$\therefore \qquad if (z):$$

$$y = 6 \qquad p$$
Live variables: y,w
$$y = x$$

$$y = x$$
print(y)
print(w)

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

$$x = 5$$

$$p$$
Live variables: x,w
if (z):
$$y = 6$$
else:
$$y = x$$
print(y)
print(w)
$$p = \frac{p}{2}$$
Live variables: x,w
$$p = 5$$

$$p = 5$$

$$p = 5$$

$$p = 6$$
else:
$$p = x$$
print(y)
print(w)

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

$$x = 5 \qquad p \qquad \text{Live variables: } x, w \qquad x = 5 \qquad y = 6 \qquad y = 8 \qquad y = 10 \qquad y$$

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

• examples:

Accessing an uninitialized variable!

For each block B_x : we want to compute LiveOut: The set of variables that are live at the end of B_x

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is satisfies these two conditions

- it is not written to and it is read
- it is read before it is written to

Block	VarKill	UEVar
BO		
B1		
B2		
B3		
B4		

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is satisfies these two conditions

- it is not written to and it is read
- it is read before it is written to

Block	VarKill	UEVar
ВО	i	
B1	{}	
B2	S	
В3	s,i	
B4	{}	

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is satisfies these two conditions

- it is not written to and it is read
- it is read before it is written to

Block	VarKill	UEVar
ВО	i	{}
B1	{}	i
B2	S	{}
В3	s,i	s,i
B4	{}	S

- Initial condition: LiveOut(n) = {} for all nodes
 - Ground truth, no variables are live at the exit of the program, i.e. end node n_{end} has LiveOut(n_{end})= {}

- Initial condition: LiveOut(n) = {} for all nodes
 - Ground truth, no variables are live at the exit of the program, i.e., end node n_{end} has LiveOut(n_{end})= {}

Now we can perform the iterative fixed-point computation:

 $LiveOut(n) = \bigcup_{s \text{ in succ}(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$

 $LiveOut(n) = \bigcup_{s \text{ in succ}(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$

Backwards flow analysis because values flow from successors

 $LiveOut(n) = \bigcup_{s \text{ in } succ(n)} \left(\frac{UEVar(s)}{UEVar(s)} \cup (LiveOut(s) \cap VarKill(s)) \right)$

any variable in UEVar(s) is live at n

 $LiveOut(n) = \bigcup_{s \text{ in succ}(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$

variables that are not overwritten in s

 $LiveOut(n) = \bigcup_{s \text{ in } succ(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$

variables that are live at the end of s

 $LiveOut(n) = \bigcup_{s \text{ in } succ(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$

variables that are live at the end of s, and not overwritten by s

 $LiveOut(n) = \bigcup_{s \text{ in succ}(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$

LiveOut is a union rather than an intersection

$$Dom(n) = \{n\} \cup \left(\bigcap_{p \text{ in } preds(n)} Dom(p)\right)$$
Consider the language we use for each:

- **Dominance** of node b_x contains b_y if:
 - every path from the start to b_x goes through b_y
- LiveOut of node b_x contains variable y if:
 - some path from b_x contains a usage of y

 $LiveOut(n) = \bigcup_{s \text{ in succ(n)}} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$ $Dom(n) = \{n\} \cup (\bigcap_{p \text{ in preds(n)}} Dom(p))$

Consider the language we use for each:

- **Dominance** of node b_x contains b_y if:
 - every path from the start to b_x goes through b_y
- LiveOut of node b_x contains variable y if:
 - **some** path from b_x contains a usage of y
- Some vs. Every

 $LiveOut(n) = \bigcup_{s \text{ in succ}(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$ $Dom(n) = \{n\} \cup (\bigcap_{p \text{ in preds}(n)} Dom(p))$

LiveOut I₀ Block ~VarKill VarKill UEVar {} {} i,s {} Bstart {} {} B0 i S {} {} B1 i,s i {} {} B2 S {} {} Β3 i,s i,s {} {} B4 i,s S

i,s

{}

{}

{}

Bend

LiveOut(n) =
$$\bigcup_{s \text{ in succ}(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$$

Now we can perform the iterative fixed point computation:

Block	VarKill	UEVar	~VarKill	LiveOut I ₀	LiveOut I ₁
Bstart	{}	{}	i,s	{}	
BO	i	{}	S	{}	
B1	{}	i	i,s	{}	
B2	S	{}	i	{}	
B3	i,s	i,s	{}	{}	
B4	{}	S	i,s	{}	
Bend	{}	{}	i,s	{}	

Block	VarKill	UEVar	~VarKill	LiveOut I ₀	LiveOut I ₁	LiveOut I ₂
Bstart	{}	{}	i,s	{}	{}	
B0	i	{}	S	{}	i	
B1	{}	i	i,s	{}	i,s	
B2	S	{}	i	{}	i,s	
B3	i,s	i,s	{}	{}	i,s	
B4	{}	S	i,s	{}	{}	
Bend	{}	{}	i,s	{}	{}	

	Block	VarKill	UEVar	~VarKill	LiveOut I ₀	LiveOut I ₁	LiveOut I ₂	l ₃
.]	Bstart	{}	{}	i,s	{}	{}	{}	
,	BO	i	{}	S	{}	i	i,s	
	B1	{}	i	i,s	{}	i,s	i,s	
	B2	S	{}	i	{}	i,s	i,s	
	B3	i,s	i,s	{}	{}	i,s	i,s	
	B4	{}	S	i,s	{}	{}	{}	
	Bend	{}	{}	i,s	{}	{}	{}	

Block	VarKill	UEVar	~VarKill	LiveOut I ₀	LiveOut I ₁	LiveOut I ₂	l ₃
Bstart	{}	{}	i,s	{}	{}	{}	<mark>s</mark>
BO	i	{}	S	{}	i	i,s	i,s
B1	{}	i	i,s	{}	i,s	i,s	i,s
B2	S	{}	i	{}	i,s	i,s	i,s
B3	i,s	i,s	{}	{}	i,s	i,s	i,s
B4	{}	S	i,s	{}	{}	{}	{}
Bend	{}	{}	i,s	{}	{}	{}	{}

Node ordering for backwards flow

- Reverse post-order was good for forward flow:
 - Parents are computed before their children
- For backwards flow: use reverse post-order of the reverse CFG
 - Reverse the CFG
 - perform a reverse post-order
- Different from post order?

Example

post order: D, C, B, A

acks: thanks to this blog post for the example! https://eli.thegreenplace.net/2015/directed-graph-traversal-orderings-and-applications-to-data-flow-analysis/

Example

post order: D, C, B, A

rpo on reverse CFG: D, B, C, A

post order: D, C, B, A

rpo on reverse CFG: D, B, C, A

rpo on reverse CFG computes B before C, thus, C can see updated information from B

rpo on reverse CFG computes B before C, thus, C can see updated information from B

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:

s = a[x] + 1;

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:

s = a[x] + 1;

UEVar needs to assume a[x] is any memory location that it cannot prove non-aliasing

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:

a[x] = s + 1;

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:

a[x] = s + 1;

VarKill also needs to know about aliasing

Imprecision can come from CFG construction:

consider:

br 1 < 0, dead_branch, alive_branch</pre>

Imprecision can come from CFG construction:

consider:

br 1 < 0, dead_branch, alive_branch

could come from arguments, etc.

Imprecision can come from CFG construction:

consider first class labels (or functions):

br label_reg

where label_reg is a register that contains a register

need to branch to all possible basic blocks!

The Data Flow Framework

 $LiveOut(n) = \bigcup_{s \text{ in succ}(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$

$f(x) = Op_{v \text{ in (succ | preds)}} c_0(v) op_1 (f(v) op_2 c_2(v))$

AvailExpr(n)= $\bigcap_{p \text{ in preds}} DEExpr(p) \cup (AvailExpr(p) \cap ExprKill(p))$

An expression e is "available" at the beginning of a basic block b_x if for all paths to b_x , e is evaluated and none of its arguments are overwritten

AvailExpr(n)= ∩_{p in preds} DEExpr(p) ∪ (AvailExpr(p) ∩ ExprKill(p))

Forward Flow

AvailExpr(n)= $\bigcap_{p \text{ in preds}} DEExpr(p) \cup (AvailExpr(p) \cap ExprKill(p))$

intersection implies "must" analysis

AvailExpr(n)= $\bigcap_{p \text{ in preds}} \frac{\text{DEExpr(p)}}{\text{DEExpr(p)}} \cup (\text{AvailExpr(p)} \cap \text{ExprKill(p)})$

DEExpr(p) is all Downward Exposed Expressions in p. That is expressions that are evaluated AND operands are not redefined

AvailExpr(n)= $\bigcap_{p \text{ in preds}} DEExpr(p) \cup (AvailExpr(p) \cap ExprKill(p))$

AvailExpr(p) is any expression that is available at p

AvailExpr(n)= $\bigcap_{p \text{ in preds}} DEExpr(p) \cup (AvailExpr(p) \cap ExprKill(p))$

ExprKill(p) is any expression that p killed, i.e. if one or more of its operands is redefined in p

AvailExpr(n)= $\bigcap_{p \text{ in preds}} DEExpr(p) \cup (AvailExpr(p) \cap ExprKill(p))$

AvailExpr(n)= $\bigcap_{p \text{ in preds}} DEExpr(p) \cup (AvailExpr(p) \cap ExprKill(p))$

Application: you can add availExpr(n) to local optimizations in n, e.g. local value numbering

AntOut(n)= $\bigcap_{s \text{ in succ}} UEExpr(s) \cup (AntOut(s) \cap ExprKill(s))$

An expression e is "anticipable" at a basic block b_x if for all paths that leave b_x , e is evaluated

$AntOut(n) = \bigcap_{s \text{ in succ}} UEExpr(s) \cup (AntOut(s) \cap ExprKill(s))$

Backwards flow

AntOut(n)= $\bigcap_{s \text{ in succ}} UEExpr(s) \cup (AntOut(s) \cap ExprKill(s))$

"must" analysis

AntOut(n)= $\bigcap_{s \text{ in succ}} UEExpr(s) \cup (AntOut(s) \cap ExprKill(s))$

UEExpr(p) is all Upward Exposed Expressions in p. That is expressions that are computed in p before operands are overwritten.

AntOut(n)= $\bigcap_{s \text{ in succ}} UEExpr(s) \cup (AntOut(s) \cap ExprKill(s))$

AntOut(n)= $\bigcap_{s \text{ in succ}} UEExpr(s) \cup (AntOut(s)) \cap ExprKill(s))$

$AntOut(n) = \bigcap_{s \text{ in succ}} UEExpr(s) \cup (AntOut(s) \cap ExprKill(s))$

AntOut(n)= $\bigcap_{s \text{ in succ}} UEExpr(s) \cup (AntOut(s) \cap ExprKill(s))$

Application: you can hoist AntOut expressions to compute as early as possible

potentially try to reduce code size: -Oz
More flow algorithms:

Check out chapter 9 in EAC: Several more algorithms.

"Reaching definitions" have applications in memory analysis

Next time:

• More global analysis!