
CSE211: Compiler Design 
Oct. 27, 2023

• Topic: global optimizations 
continuted

• Questions:
• What is a fixed point iteration?
• How can we speed up fixed point 

iteration algorithms?



Announcements

• Homework 1 was due on Wednesday

• Homework 2 is out
• Fixed the links
• I noticed that I did give some scheduling flexibility 

• Part 1 is about local value numbering
• You should have everything you need to do it

• Part 2 is about live variable analysis
• It is a global analysis that we will learn about



Announcements

• Paper review is due on Monday (by midnight)
• Midterm is on Monday
• In person during class time
• 10% of grade
• 3 pages of notes



Review



Global optimizations

• Difference between regional:
• handle arbitrary CFGs, cannot rely on structure!
• Algorithms become more general
• Potential for more optimizations!

• Highly suggest reading for this part of the class
• Chapter 9 of EAC



First concept:

• Dominance in a CFG

• Builds up a framework for reasoning

• Building block for many algorithms
• global local value numbering when unlimited registers
• Conversion to SSA



Dominance
start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

Dominators
b1,b0

Dominators
b2, b0

Dominators
b3,b0

dominators

• a block bx dominates block by if 
every path from the start to block 
by goes through bx

• definition: 
• domination (includes itself) 
• strict domination (does not include 

itself)

• Can we use this notion to extend 
local value numbering?

Dominators:
b0



Node Dominators

B0 B0

B1 B0, B1

B2 B0, B1, B2

B3 B0, B1, B3

B4 B0, B1, B3, B4

B5 B0, B1, B5

B6 B0, B1, B5, B6

B7 B0, B1, B5, B7

B8 B0, B1, B5, B8

Concept introduced in 1959, algorithm not not given until 10 years later



Computing dominance

• Iterative fixed-point algorithm

• Initial state, all nodes start with all other nodes are dominators:
• Dom(n) = N
• Dom(start) = {start}

iteratively compute:

Dom(n) = {n} ∪ ( ⋂m in preds(n)  Dom(m) )   



Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Dom(n) = {n} ∪ ( ⋂p in preds(n)  Dom(p) )   

Forward flow, as updates flow from
parents to children.



How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0 ...

B1 N B0,B1 ...

B2 N B0,B1,B2 ...

B5 N B0,B1,B5 ...

B6 N B0,B1,B5,B6 ...

B8 N B0,B1,B5,B8 ...

B7 N B0,B1,B5,B7 ...

B3 N B0,B1,B3 ...

B4 N B0,B1,B4 ...



New Material



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:
   



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:
   

x = 5
if (z):
   y = 6
else:
   y = x
print(y)
print(w)



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:
   

Live variables: z, w 
p

x = 5
if (z):
   y = 6
else:
   y = x
print(y)
print(w)



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:
   

Live variables: ?px = 5
if (z):
   y = 6
else:
   y = x
print(y)
print(w)



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:
   

Live variables: x,w
px = 5

...
if (z):
   y = 6
else:
   y = x
print(y)
print(w)

x = 5
...
if (z):
   y = 6
else:
   y = x
print(y)
print(w)



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:
   

Live variables: x,w

Live variables: ?

p

p

x = 5
...
if (z):
   y = 6
else:
   y = x
print(y)
print(w)

x = 5
...
if (z):
   y = 6
else:
   y = x
print(y)
print(w)



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:
   

x = 5
...
if (z):
   y = 6
else:
   y = x
print(y)
print(w)

x = 5
...
if (z):
   y = 6
else:
   y = x
print(y)
print(w)

Live variables: y,w

p

p

Live variables: x,w



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:
   

//start
x = 5
...
if (z):
   y = 6
else:
   y = x
print(y)
print(w)

Live variables: ?
p

x = 5
...
if (z):
   y = 6
else:
   y = x
print(y)
print(w)

p
Live variables: x,w



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:
   

//start
x = 5
...
if (z):
   y = 6
else:
   y = x
print(y)
print(w)

Live variables: w,z
p

x = 5
...
if (z):
   y = 6
else:
   y = x
print(y)
print(w)

p
Live variables: x,w



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:
   

//start
x = 5
...
if (z):
   y = 6
else:
   y = x
print(y)
print(w)

Live variables: w,z
p

Accessing an uninitialized 
variable!

x = 5
...
if (z):
   y = 6
else:
   y = x
print(y)
print(w)

p
Live variables: x,w



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

For each block Bx : we want to compute LiveOut:
The set of variables that are live at the end of Bx



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Live variables: ?

Live variables: ?

Live variables: ?

Live variables: {}

Live variables: ?



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Live variables: i, s

Live variables: i,s

Live variables: i,s

Live variables: {}

Live variables: i,s



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Block VarKill UEVar

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b 
is any variable in b that is satisfies these two conditions
• it is not written to and it is read
• it is read before it is written to



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Block VarKill UEVar

B0 i

B1 {}

B2 s

B3 s,i

B4 {}

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b 
is any variable in b that is satisfies these two conditions
• it is not written to and it is read
• it is read before it is written to



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b 
is any variable in b that is satisfies these two conditions
• it is not written to and it is read
• it is read before it is written to

Block VarKill UEVar

B0 i {}

B1 {} i

B2 s {}

B3 s,i s,i

B4 {} s



Live variable analysis in the CFG:

• Initial condition: LiveOut(n) = {} for all nodes
• Ground truth, no variables are live at the exit of the program, i.e. end node 

nend has LiveOut(nend)= {}



Live variable analysis in the CFG:

Now we can perform the iterative fixed-point computation:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

• Initial condition: LiveOut(n) = {} for all nodes
• Ground truth, no variables are live at the exit of the program, i.e., end node 

nend has LiveOut(nend)= {}



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

n

s0 s1 s2

Backwards flow analysis
because values flow from
successors



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

n

s0 s1 s2 any variable in UEVar(s)
is live at n



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

n

s0 s1 s2 variables that are not
overwritten in s



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

n

s0 s1 s2 variables that are live
at the end of s



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

n

s0 s1 s2 variables that are live
at the end of s, and not
overwritten by s



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

n

s0 s1 s2

LiveOut is a union
rather than an intersection

Dom(n) = {n} ∪ ( ⋂p in preds(n) Dom(p) )   



Consider the language we use for each:

• Dominance of node bx contains by if: 
• every path from the start to bx goes through by

• LiveOut of node bx contains variable y if:
•  some path from bx contains a usage of y

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   
Dom(n) = {n} ∪ ( ⋂p in preds(n) Dom(p) )   



Consider the language we use for each:

• Dominance of node bx contains by if: 
• every path from the start to bx goes through by

• LiveOut of node bx contains variable y if:
•  some path from bx contains a usage of y

• Some vs. Every

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   
Dom(n) = {n} ∪ ( ⋂p in preds(n) Dom(p) )   



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar ~VarKill LiveOut I0
Bstart {} {} i,s {}

B0 i {} s {}

B1 {} i i,s {}

B2 s {} i {}

B3 i,s i,s {} {}

B4 {} s i,s {}

Bend {} {} i,s {}

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

Bend

Bstart



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1
Bstart {} {} i,s {}

B0 i {} s {}

B1 {} i i,s {}

B2 s {} i {}

B3 i,s i,s {} {}

B4 {} s i,s {}

Bend {} {} i,s {}

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

Bend

Bstart



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

Bend

Bstart

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1 LiveOut I2
Bstart {} {} i,s {} {}

B0 i {} s {} i

B1 {} i i,s {} i,s

B2 s {} i {} i,s

B3 i,s i,s {} {} i,s

B4 {} s i,s {} {}

Bend {} {} i,s {} {}



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

Bend

Bstart

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1 LiveOut I2 .. I3
Bstart {} {} i,s {} {} {}

B0 i {} s {} i i,s

B1 {} i i,s {} i,s i,s

B2 s {} i {} i,s i,s

B3 i,s i,s {} {} i,s i,s

B4 {} s i,s {} {} {}

Bend {} {} i,s {} {} {}



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

Bend

Bstart

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1 LiveOut I2 .. I3
Bstart {} {} i,s {} {} {} s

B0 i {} s {} i i,s i,s

B1 {} i i,s {} i,s i,s i,s

B2 s {} i {} i,s i,s i,s

B3 i,s i,s {} {} i,s i,s i,s

B4 {} s i,s {} {} {} {}

Bend {} {} i,s {} {} {} {}



Node ordering for backwards flow

• Reverse post-order was good for forward flow:
• Parents are computed before their children

• For backwards flow: use reverse post-order of the reverse CFG
• Reverse the CFG
• perform a reverse post-order

• Different from post order?



Example

A

BC

D

post order: D, C, B, A

acks: thanks to this blog post for the example!
https://eli.thegreenplace.net/2015/directed-graph-traversal-orderings-and-applications-to-data-flow-analysis/



Example

A

BC

D

post order: D, C, B, A

A

BC

D

reverse CFG

rpo on reverse CFG: D, B, C, A



Example

A

BC

D

post order: D, C, B, A

rpo on reverse CFG: D, B, C, A

rpo on reverse CFG computes B before C, thus, C can see updated
information from B



Example

A

BC

D

post order: D, C, B, A

rpo on reverse CFG: D, B, C, A

rpo on reverse CFG computes B before C, thus, C can see updated
information from B

updates in backwards flow



Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before 
being overwritten.

Consider:

s = a[x] + 1;



Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before 
being overwritten.

Consider:

s = a[x] + 1;

UEVar needs to assume a[x] is any memory location that it cannot prove non-aliasing

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   



Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before 
being overwritten.

Consider:

a[x] = s + 1;

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   



Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before 
being overwritten.

Consider:

a[x] = s + 1;

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

VarKill also needs to know about aliasing



Live variable limitations

Imprecision can come from CFG construction:

consider:

br 1 < 0, dead_branch, alive_branch



Live variable limitations

Imprecision can come from CFG construction:

consider:

br 1 < 0, dead_branch, alive_branch

could come from arguments, etc.
n

s0 s1

dead_branch

alive_branch



Live variable limitations

Imprecision can come from CFG construction:

consider first class labels (or functions):

br label_reg

where label_reg is a register that contains a register

n

s2 s3
s0 s1

need to branch to all possible
basic blocks!



The Data Flow Framework

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

f(x) = Opv in (succ | preds) c0(v) op1 (f(v) op2 c2(v))



Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

An expression e is “available” at the beginning of a basic 
block bx if for all paths to bx , e is evaluated and none of its 
arguments are overwritten 



Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

Forward Flow



Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

intersection implies “must” analysis



Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

DEExpr(p) is all Downward Exposed Expressions in p. That is expressions 
that are evaluated AND operands are not redefined



Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

AvailExpr(p) is any expression that is available at p



Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

ExprKill(p) is any expression that p killed, i.e. if one or more of its operands is redefined 
in p



Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

n

p0 p1 p2

Any expression
that is available (and not killed)
the parents, along with expressions exposed by
all the parents.

pp0
x = y + z; 



Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

Application: you can add availExpr(n) to local optimizations in n, e.g. local value numbering



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

An expression e is “anticipable” at a basic block bx if for all 
paths that leave bx , e is evaluated



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

Backwards flow



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))
”must” analysis



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

UEExpr(p) is all Upward Exposed Expressions in p. That is expressions 
that are computed in p before operands are overwritten.



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

n

s0 s1 s2

x = y + z; 
x = y + z; x = y + z; 



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

n

s0 s1 s2
x = y + z; 

x = y + z; 

s3x = y + z; 



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

n

s0 s1 s2
x = y + z; 

x = y + z; 

s3x = y + z; 

y = 128;



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

Application: you can hoist AntOut expressions to compute as early as possible

potentially try to reduce code size: -Oz



More flow algorithms:

Check out chapter 9 in EAC: Several more algorithms.

“Reaching definitions” have applications in memory analysis



Next time:

• More global analysis!


