
CSE211: Compiler Design
Oct. 25, 2023

• Topic: global optimizations

• Questions:
• What is a control flow graph?

Announcements

• Homework 1 is due today
• No extensions
• Only one person needs to turn it in

• Homework 2 is released today
• Part 1 is about local value numbering

• You should have everything you need to do it
• Part 2 is about live variable analysis

• It is a global analysis that we will learn about

Announcements

• No office hours this week for me
• Only (planned) disruption this quarter
• Visit Rithik during his office hours
• Ask questions on piazza

Announcements

• Paper review is due on Monday (by midnight)
• Midterm is on Monday
• In person during class time
• 10% of grade
• 3 pages of notes

Review

• Regional optimizations:
• Examples?

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

• Usually constrained to a
“common” subset of the CFG:

• For example: if/else statements

Do local value numbering, but start off
with a non-empty hash table!

Which blocks can use which hash tables?

b0_H = {
 “...” : “r0”,
 “...” : ”r1”,
}

Regional optimization:
Super local value numbering

Regional optimization: Loop
unrolling:

<assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

Assume we
know that the loop will
iterate an even number
of times:

<assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

Assume we
know that the loop will
iterate an even number
of times:

<inside_loop_statements>

<update_expr>

Regional optimization: Loop
unrolling:

Regional Optimization:
Code placement:
• Back to if/else

• Eventually we will
straight line the
code:

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;
br next_lbl

If we know that one branch is taken more often than the other...
say the branch is true most often

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;
br next_lbl

New material

Global optimizations

• Difference between regional:
• handle arbitrary CFGs, cannot rely on structure!
• Algorithms become more general
• Potential for more optimizations!

• Highly suggest reading for this part of the class
• Chapter 9 of EAC

First concept:

• Dominance in a CFG

• Builds up a framework for reasoning

• Building block for many algorithms
• global local value numbering when unlimited registers
• Conversion to SSA

Dominance
start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

• a block bx dominates block by if
every path from the start to block
by goes through bx

• definition:
• domination (includes itself)
• strict domination (does not include

itself)

Dominance
start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

dominators

dominators

dominators

dominators

• a block bx dominates block by if
every path from the start to block
by goes through bx

• definition:
• domination (includes itself)
• strict domination (does not include

itself)

• Can we use this notion to extend
local value numbering?

Node Dominators

B0

B1

B2

B3

B4

B5

B6

B7

B8

Node Dominators

B0 B0

B1 B0, B1

B2 B0, B1, B2

B3 B0, B1, B3

B4 B0, B1, B3, B4

B5 B0, B1, B5

B6 B0, B1, B5, B6

B7 B0, B1, B5, B7

B8 B0, B1, B5, B8

Concept introduced in 1959, algorithm not not given until 10 years later

Computing dominance

• Iterative fixed-point algorithm

• Initial state, all nodes start with all other nodes are dominators:
• Dom(n) = N
• Dom(start) = {start}

iteratively compute:

Dom(n) = {n} ∪ (⋂m in preds(n) Dom(m))

Building intuition behind the math

• This algorithm is vertex centric
• local computations consider only a target node and its immediate neighbors

• At least one node is instantiated with ground truth:
• starting node dominator is itself

• Information flows through the graph as nodes are updated

For example: Bellman Ford Shortest path

• Root node is initialized to 0
• Every node determines new distances based on incoming distances.
• When distances stop updating, the algorithm is converged

n

p0 p1 p2

d0
d1

d2
Update:
for all parents p: min(p + d)

the next iteration, another parent
may have found a shorter path.

Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Forward flow, as updates flow from
parents to children.

Lets try it

Node Initial Iteration 1

B0 B0

B1 N

B2 N

B3 N

B4 N

B5 N

B6 N

B7 N

B8 N

Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Lets try it

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B3 N B0,B1,B2,B3

B4 N B0,B1,B2,B3,B4

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B7 N B0,B1,B5,B6,B7

B8 N B0,B1,B5,B8

Lets try it

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0 ...

B1 N B0,B1 ...

B2 N B0,B1,B2 ...

B3 N B0,B1,B2,B3 B0,B1,B3

B4 N B0,B1,B2,B3,B4 B0,B1,B3,B4

B5 N B0,B1,B5 ...

B6 N B0,B1,B5,B6 ...

B7 N B0,B1,B5,B6,B7 B0,B1,B5,B7

B8 N B0,B1,B5,B8 ...

How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B3 N B0,B1,B2,B3 B0,B1,B3 ...

B4 N B0,B1,B2,B3,B4 B0,B1,B3,B4 ...

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B7 N B0,B1,B5,B6,B7 B0,B1,B5,B7 ...

B8 N B0,B1,B5,B8

How can we optimize the algorithm?

This can be any order...

How can we optimize the order?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B3 N B0,B1,B2,B3 B0,B1,B3 ...

B4 N B0,B1,B2,B3,B4 B0,B1,B3,B4 ...

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B7 N B0,B1,B5,B6,B7 B0,B1,B5,B7 ...

B8 N B0,B1,B5,B8

Given this intuition, what ordering would be best?

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Forward flow, as updates flow from
parents to children.

How can we optimize the algorithm?

Node New Order

B0

B1

B2

B3

B4

B5

B6

B7

B8

Reverse
post-order (rpo),
where parents are visited
first

How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0

B1 N

B2 N

B5 N

B6 N

B8 N

B7 N

B3 N

B4 N

How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B8 N B0,B1,B5,B8

B7 N B0,B1,B5,B7

B3 N B0,B1,B3

B4 N B0,B1,B4

How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0 ...

B1 N B0,B1 ...

B2 N B0,B1,B2 ...

B5 N B0,B1,B5 ...

B6 N B0,B1,B5,B6 ...

B8 N B0,B1,B5,B8 ...

B7 N B0,B1,B5,B7 ...

B3 N B0,B1,B3 ...

B4 N B0,B1,B4 ...

A quick aside about graph algorithms:

• Does node ordering matter in SSSP?
• Yes! Dijkstra’s algorithm uses a priority queue
• Prioritize nodes with the lowest value

n

p0 p1 p2

d0
d1

d2
Update:
for all parents p: min(p + d)

the next iteration, another parent
may have found a shorter path.

Traversal order in graph algorithms
is a big research area!

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

x = 5
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Live variables: z, w
p

x = 5
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Live variables: ?px = 5
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Live variables: x,w
px = 5

...
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

x = 5
...
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Live variables: x,w

Live variables: ?

p

p

x = 5
...
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

x = 5
...
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

x = 5
...
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

x = 5
...
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

Live variables: y,w

p

p

Live variables: x,w

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

//start
x = 5
...
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

Live variables: ?
p

x = 5
...
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

p
Live variables: x,w

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

//start
x = 5
...
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

Live variables: w,z
p

x = 5
...
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

p
Live variables: x,w

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

//start
x = 5
...
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

Live variables: w,z
p

Accessing an uninitialized
variable!

x = 5
...
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

p
Live variables: x,w

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

For each block Bx : we want to compute LiveOut:
The set of variables that are live at the end of Bx

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Live variables: ?

Live variables: ?

Live variables: ?

Live variables: {}

Live variables: ?

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Live variables: i, s

Live variables: i,s

Live variables: i,s

Live variables: {}

Live variables: i,s

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Block VarKill UEVar

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b
is any variable in b that is satisfies these two conditions
• it is not written to and it is read
• it is read before it is written to

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Block VarKill UEVar

B0 i

B1 {}

B2 s

B3 s,i

B4 {}

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b
is any variable in b that is satisfies these two conditions
• it is not written to and it is read
• it is read before it is written to

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b
is any variable in b that is satisfies these two conditions
• it is not written to and it is read
• it is read before it is written to

Block VarKill UEVar

B0 i {}

B1 {} i

B2 s {}

B3 s,i s,i

B4 {} s

Live variable analysis in the CFG:

• Initial condition: LiveOut(n) = {} for all nodes
• Ground truth, no variables are live at the exit of the program, i.e. end node

nend has LiveOut(nend)= {}

Live variable analysis in the CFG:

Now we can perform the iterative fixed-point computation:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

• Initial condition: LiveOut(n) = {} for all nodes
• Ground truth, no variables are live at the exit of the program, i.e., end node

nend has LiveOut(nend)= {}

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2

Backwards flow analysis
because values flow from
successors

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2 any variable in UEVar(s)
is live at n

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2 variables that are not
overwritten in s

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2 variables that are live
at the end of s

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2 variables that are live
at the end of s, and not
overwritten by s

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2

LiveOut is a union
rather than an intersection

Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Consider the language we use for each:

• Dominance of node bx contains by if:
• every path from the start to bx goes through by

• LiveOut of node bx contains variable y if:
• some path from bx contains a usage of y

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))
Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Consider the language we use for each:

• Dominance of node bx contains by if:
• every path from the start to bx goes through by

• LiveOut of node bx contains variable y if:
• some path from bx contains a usage of y

• Some vs. Every

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))
Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Next time:

• More global analysis!

