
CSE211: Compiler Design 
Oct. 23, 2023

• Topic: Regional optimizations, 
intro to global optimizations

• Questions:
• Can we apply local value 

numbering to an entire program?



Announcements

• In Montreal
• Doing this lecture synchronously. 
• Plan on Wednesdays synchronously too

• Homework 1:
• Due on Wednesday by midnight
• Help will be sparse in evenings and weekends!

• Homework 2:
• Aim is to release on Wednesday by midnight
• 2 weeks to complete

• Local Value Numbering
• Live variable analysis



Announcements

• Midterm:
• Oct 30 (1 week from today)
• In person during class time
• 3 pages of notes (not required, only if you need them)
• Material is inclusive of what we cover up to on Friday

• Office hours
• I’m on the plane all day Thursday so I will need to cancel
• Rithik has office hours
• Ask on Piazza



Announcements

• Get your paper approved by me by midnight tonight, 
otherwise you cannot turn in the assignment! (5% of 
grade)

• Report is due on the same day as the midterm (Oct 
30)



Review



Review local value numbering

a = b + c;
b = a - d;
c = b + c;
d = a - d;

First step?

global_counter: 0



Review local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
}



Review local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
      “b0 + c1” : “a2”,
}



Review local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
      “b0 + c1” : “a2”,
      “a2 - d3” : ”b4”,
}



Review local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
      “b0 + c1” : “a2”,
      “a2 - d3” : ”b4”,
}



Review local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,

      “a2 - d3” : ”b4”,
}

mismatch due to
numberings!



Review local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
      “b0 + c1” : “a2”,
      “a2 - d3” : ”b4”,
      “b4 + c1” : “c5”,
}



Review local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
      “b0 + c1” : “a2”,
      “a2 - d3” : ”b4”,
      “b4 + c1” : “c5”,
}



Review local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = b4;

match!

H = {
      “b0 + c1” : “a2”,
      “a2 - d3” : ”b4”,
      “b4 + c1” : “c5”,
}



Other LVN considerations?



Other LVN considerations?

a = b + c;
f = a - d;
c = c + b;
d = d - a;

Can this block be optimized?



Local value numbering: Memory

• Consider a 3 address code that allows memory accesses

a[i] = x[j] + y[k];
b[i] = x[j] + y[k];

a[i] = x[j] + y[k];
b[i] = a[i];

is this transformation allowed?



Local value numbering: Memory

• Consider a 3 address code that allows memory accesses

a[i] = x[j] + y[k];
b[i] = x[j] + y[k];

a[i] = x[j] + y[k];
b[i] = a[i];

is this transformation allowed?
No!

only if the compiler can prove that a does not alias x and y

In the worst case, every time a memory location is updated,
the compiler must update the value for all pointers.



Local value numbering: Memory

• How to number: 
• Number each pointer/index pair

(a[i],3) = (x[j],1) + (y[k],2);
b[i] = x[j] + y[k];



Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);

• How to number: 
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each 
instruction



Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],1) + (y[k],2);

• How to number: 
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each 
instruction

compiler analysis:

can we trace a,x,y to 
a = malloc(…);
x = malloc(…);
y = malloc(…);

// a,x,y are never overwritten



Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],1) + (y[k],2);

• How to number: 
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each 
instruction

compiler analysis:

can we trace a,x,y to 
a = malloc(…);
x = malloc(…);
y = malloc(…);

// a,x,y are never overwritten

in this case we do not have to update the number



Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);

• How to number: 
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each 
instruction

programmer annotations can also tell 
the compiler that no other pointer
can access the memory pointed to by a



Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);

• How to number: 
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each 
instruction

restrict a

programmer annotations can also tell 
the compiler that no other pointer
can access the memory pointed to by ain this case we do not have to update the number



Local value numbering: Memory

(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (a[i],3);

• How to number: 
• Number each pointer/index pair

• Any pointer/index pair that might alias must be incremented at each 
instruction



What other local optimizations can you think 
of?



New material



Optimizing over wider regions

• Local value numbering operated over just one basic block.

• We want optimizations that operate over: 
• several basic blocks (regional)
• across an entire procedure (global)

• For this, we need Control Flow Graphs



Control flow graphs

A graph where:

• nodes are basic blocks

• edges mean that it is 
possible for one block to 
branch to another

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;reminder, what is a basic block?

What is 3 address code?



Control flow graphs

A graph where:

• nodes are basic blocks

• edges mean that it is 
possible for one block to 
branch to another

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;



Interesting CFGs

What are some you can think of?



Interesting CFGs

What are some you can think of?
switch(x):
case 1: 
   ...
   break;
case 2:
  ... 
  ....
  break
case 3:
  ....
  break

end_switch



Interesting CFGs

• Exceptions

• Break in a loop

• Switch statement (consider break, no break)

• first class branches (or functions)



Regional optimizations

• Usually constrained to a 
“common” subset of the CFG:

• For example: if/else statements

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;

end_if:
r4 = ...;



Regional optimizations

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

• Usually constrained to a 
“common” subset of the CFG:

• For example: if/else statements



start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

• Usually constrained to a 
“common” subset of the CFG:

• For example: if/else statements

What are the implications of doing local
value numbering in each of the basic blocks?

Super local value 
numbering



Super local value 
numbering

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

• Usually constrained to a 
“common” subset of the CFG:

• For example: if/else statements

What are the implications of doing local
value numbering in each of the basic blocks?

Global counter would need
to be kept across blocks when 
numbering



start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

• Usually constrained to a 
“common” subset of the CFG:

• For example: if/else statements

What are the implications of doing local
value numbering in each of the basic blocks?

b0_H = {
      “...” : “r0”,
      “...” : ”r1”,
}

breadth first traversal, creating hash tables for each block

Super local value 
numbering



start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

• Usually constrained to a 
“common” subset of the CFG:

• For example: if/else statements

Do local value numbering, but start off
with a non-empty hash table!

Which blocks can use which hash tables?

b0_H = {
      “...” : “r0”,
      “...” : ”r1”,
}

Super local value 
numbering



start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:

br end_if;

end_if:
r4 = a+b;

b0

b1 b2

b3

• Usually constrained to a 
“common” subset of the CFG:

• For example: if/else statements

Is it possible to re-write so that b3 can use 
expressions from b1 or b2?

breadth first traversal, creating hash tables for each block

b0_H = {
      “...” : “r0”,
      “...” : ”r1”,
}

Super local value 
numbering



start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
#br end_if;

else:
r3 = ...;
#br end_if;

#end_if:
r4 = ...;

b0

b1 b2

b3

• Usually constrained to a 
“common” subset of the CFG:

• For example: if/else statements

Is it possible to re-write so that b3 can use 
expressions from b1 and b2? Duplicate blocks and 
merge!

Pros? Cons?
#end_if:
r4 = ...;

b0_H = {
      “...” : “r0”,
      “...” : ”r1”,
}

Super local value 
numbering



Loop unrolling:
FOR

<after_loop_statements><cond_expr><assignment> <update_expr>

<inside_loop_statements>

for (int i = 0; i < 100; i++) {
 //inside loop
}
// after loop



FOR

<after_loop_statements><cond_expr><assignment> <update_expr>

<inside_loop_statements>

If all of these are basic blocks then the CFG looks like:

<after_loop_statements>

<cond_expr>

<assignment>

<update_expr>

<inside_loop_statements>



Loop unrolling: <assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

What could change this CFG?



Loop unrolling: <assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

Assume we 
know that the loop will
iterate an even number
of times:



Loop unrolling: <assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

<inside_loop_statements>

<update_expr>



Loop unrolling: <assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

Assume we 
know that the loop will
iterate an even number
of times:

<inside_loop_statements>

<update_expr>

What have we saved here?



Loop unrolling: <assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

Assume we 
know that the loop will
iterate an even number
of times:

<inside_loop_statements>

<update_expr>

What have we saved here?

merge into
1 basic block
and locally optimize!



Code placement:

• Back to if/else

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;



Code placement:

• Back to if/else

• Eventually we will 
straight line the 
code:

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;



Code placement:

• Back to if/else

• Eventually we will 
straight line the 
code:

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

one option, what else?



Code placement:

• Back to if/else

• Eventually we will 
straight line the 
code:

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

one option, what else?

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

Performance impact between the two?



Code placement:

• Back to if/else

• Eventually we will 
straight line the 
code:

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

one option, what else?

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

If we know that one branch is taken more often than the other...
say the branch is true most often



Code placement:

• Back to if/else

• Eventually we will 
straight line the 
code:

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

If we know that one branch is taken more often than the other...
say the branch is true most often

How many branches here



Code placement:

• Back to if/else

• Eventually we will 
straight line the 
code:

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;
br next_lbl

If we know that one branch is taken more often than the other...
say the branch is true most often

How many branches here



Code placement:

• Back to if/else

• Eventually we will 
straight line the 
code:

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;
br next_lbl

If we know that one branch is taken more often than the other...
say the branch is true most often

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;
br next_lbl



Global optimizations

• Difference between regional:
• handle arbitrary CFGs, cannot rely on structure!
• Algorithms become more general
• Potential for more optimizations!

• Highly suggest reading for this part of the class
• Chapter 9 of EAC



First concept:

• Dominance in a CFG

• Builds up a framework for reasoning

• Building block for many algorithms
• global local value numbering when unlimited registers
• Conversion to SSA



Dominance
start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

• a block bx dominates block by if 
every path from the start to block 
by goes through bx

• definition: 
• domination (includes itself) 
• strict domination (does not include 

itself)



Dominance
start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

dominators

dominators

dominators

dominators

• a block bx dominates block by if 
every path from the start to block 
by goes through bx

• definition: 
• domination (includes itself) 
• strict domination (does not include 

itself)

• Can we use this notion to extend 
local value numbering?



Node Dominators

B0

B1

B2

B3

B4

B5

B6

B7

B8



Node Dominators

B0 B0

B1 B0, B1

B2 B0, B1, B2

B3 B0, B1, B3

B4 B0, B1, B3, B4

B5 B0, B1, B5

B6 B0, B1, B5, B6

B7 B0, B1, B5, B7

B8 B0, B1, B5, B8

Concept introduced in 1959, algorithm not not given until 10 years later



Computing dominance

• Iterative fixed point algorithm

• Initial state, all nodes start with all other nodes are dominators:
• Dom(n) = N
• Dom(start) = {start}

iteratively compute:

Dom(n) = {n} ∪ ( ⋂m in preds(n)  Dom(m) )   



Building intuition behind the math

• This algorithm is vertex centric
• local computations consider only a target node and its immediate neighbors

• At least one node is instantiated with ground truth:
• starting node dominator is itself

• Information flows through the graph as nodes are updated



For example: Bellman Ford Shortest path

• Root node is initialized to 0
• Every node determines new distances based on incoming distances.
• When distances stop updating, the algorithm is converged

n

p0 p1 p2

d0
d1

d2
Update:
for all parents p: min(p + d)

the next iteration, another parent
may have found a shorter path.



Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values



Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}



Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Dom(n) = {n} ∪ ( ⋂p in preds(n)  Dom(p) )   



Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Dom(n) = {n} ∪ ( ⋂p in preds(n)  Dom(p) )   

Forward flow, as updates flow from
parents to children.



Lets try it

Node Initial Iteration 1

B0 B0

B1 N

B2 N

B3 N

B4 N

B5 N

B6 N

B7 N

B8 N

Dom(n) = {n} ∪ ( ⋂p in preds(n)  Dom(p) )   



Lets try it

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B3 N B0,B1,B2,B3

B4 N B0,B1,B2,B3,B4

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B7 N B0,B1,B5,B6,B7

B8 N B0,B1,B5,B8



Lets try it

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0 ...

B1 N B0,B1 ...

B2 N B0,B1,B2 ...

B3 N B0,B1,B2,B3 B0,B1,B3

B4 N B0,B1,B2,B3,B4 B0,B1,B3,B4

B5 N B0,B1,B5 ...

B6 N B0,B1,B5,B6 ...

B7 N B0,B1,B5,B6,B7 B0,B1,B5,B7

B8 N B0,B1,B5,B8 ...



How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0 ... ...

B1 N B0,B1 ... ...

B2 N B0,B1,B2 ... ...

B3 N B0,B1,B2,B3 B0,B1,B3 ...

B4 N B0,B1,B2,B3,B4 B0,B1,B3,B4 ...

B5 N B0,B1,B5 ... ...

B6 N B0,B1,B5,B6 ... ...

B7 N B0,B1,B5,B6,B7 B0,B1,B5,B7 ...

B8 N B0,B1,B5,B8 ... ...



How can we optimize the algorithm?

This can be any order...

How can we optimize the order? 

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0 ... ...

B1 N B0,B1 ... ...

B2 N B0,B1,B2 ... ...

B3 N B0,B1,B2,B3 B0,B1,B3 ...

B4 N B0,B1,B2,B3,B4 B0,B1,B3,B4 ...

B5 N B0,B1,B5 ... ...

B6 N B0,B1,B5,B6 ... ...

B7 N B0,B1,B5,B6,B7 B0,B1,B5,B7 ...

B8 N B0,B1,B5,B8 ... ...



Given this intuition, what ordering would be best?

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Dom(n) = {n} ∪ ( ⋂p in preds(n)  Dom(p) )   

Forward flow, as updates flow from
parents to children.



How can we optimize the algorithm?

Node New Order

B0

B1

B2

B3

B4

B5

B6

B7

B8

Reverse 
post-order (rpo),
where parents are visited 
first



How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0

B1 N

B2 N

B5 N

B6 N

B8 N

B7 N

B3 N

B4 N



How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B8 N B0,B1,B5,B8

B7 N B0,B1,B5,B7

B3 N B0,B1,B3

B4 N B0,B1,B4



How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0 ...

B1 N B0,B1 ...

B2 N B0,B1,B2 ...

B5 N B0,B1,B5 ...

B6 N B0,B1,B5,B6 ...

B8 N B0,B1,B5,B8 ...

B7 N B0,B1,B5,B7 ...

B3 N B0,B1,B3 ...

B4 N B0,B1,B4 ...



A quick aside about graph algorithms:

• Does node ordering matter in SSSP?
• Yes! Dijkstra’s algorithm uses a priority queue
• Prioritize nodes with the lowest value

n

p0 p1 p2

d0
d1

d2
Update:
for all parents p: min(p + d)

the next iteration, another parent
may have found a shorter path.

Traversal order in graph algorithms
is a big research area!
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• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined
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x = 5
if (z):
   y = 6
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Live variables: x,w

Live variables: ?

p

p
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   y = 6
else:
   y = x
print(y)
print(w)
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Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:
   

x = 5
...
if (z):
   y = 6
else:
   y = x
print(y)
print(w)

x = 5
...
if (z):
   y = 6
else:
   y = x
print(y)
print(w)

Live variables: y,w

p

p

Live variables: x,w
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...
if (z):
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Live variables: ?
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• examples:
   

//start
x = 5
...
if (z):
   y = 6
else:
   y = x
print(y)
print(w)

Live variables: w
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x = 5
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   y = 6
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   y = x
print(y)
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Live variables: x,w



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:
   

//start
x = 5
...
if (z):
   y = 6
else:
   y = x
print(y)
print(w)

Live variables: w
p

Accessing an uninitialized 
variable!

x = 5
...
if (z):
   y = 6
else:
   y = x
print(y)
print(w)

p
Live variables: x,w



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

For each block Bx : we want to compute LiveOut:
The set of variables that are live at the end of Bx



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Live variables: ?

Live variables: ?

Live variables: ?

Live variables: {}

Live variables: ?



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Live variables: i, s

Live variables: i,s

Live variables: i,s

Live variables: {}

Live variables: i,s
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Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3
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Live variables: i, s



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Block VarKill UEVar

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b 
is any variable in b that is satisfies these two conditions
• it is not written to and it is read
• it is read before it is written to



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Block VarKill UEVar

B0 i

B1 {}

B2 s

B3 s,i

B4 {}

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b 
is any variable in b that is satisfies these two conditions
• it is not written to and it is read
• it is read before it is written to



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b 
is any variable in b that is satisfies these two conditions
• it is not written to and it is read
• it is read before it is written to

Block VarKill UEVar

B0 i {}

B1 {} i

B2 s {}

B3 s,i s,i

B4 {} s



Live variable analysis in the CFG:

• Initial condition: LiveOut(n) = {} for all nodes
• Ground truth, no variables are live at the exit of the program, i.e. end node 

nend has LiveOut(nend)= {}



Live variable analysis in the CFG:

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

• Initial condition: LiveOut(n) = {} for all nodes
• Ground truth, no variables are live at the exit of the program, i.e. end node 

nend has LiveOut(nend)= {}



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

n

s0 s1 s2

Backwards flow analysis
because values flow from
successors



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

n

s0 s1 s2 any variable in UEVar(s)
is live at n



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

n

s0 s1 s2 variables that are not
overwritten in s



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

n

s0 s1 s2 variables that are live
at the end of s



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

n

s0 s1 s2 variables that are live
at the end of s, and not
overwritten by s



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   

n

s0 s1 s2

LiveOut is a union
rather than an intersection

Dom(n) = {n} ∪ ( ⋂p in preds(n) Dom(p) )   



Consider the language we use for each:

• Dominance of node bx contains by if: 
• every path from the start to bx goes through by

• LiveOut of node bx contains variable y if:
•  some path from bx contains a usage of y

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   
Dom(n) = {n} ∪ ( ⋂p in preds(n) Dom(p) )   



Consider the language we use for each:

• Dominance of node bx contains by if: 
• every path from the start to bx goes through by

• LiveOut of node bx contains variable y if:
•  some path from bx contains a usage of y

• Some vs. Every

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))   
Dom(n) = {n} ∪ ( ⋂p in preds(n) Dom(p) )   



Have a nice weekend!

• We will discuss other flow algorithms

• Remember, homework 1 is due on Tuesday


