CSE211: Compiler Design

 Oct. 23, 2023- Topic: Regional optimizations, intro to global optimizations

Announcements

- In Montreal
- Doing this lecture synchronously.
- Plan on Wednesdays synchronously too
- Homework 1:
- Due on Wednesday by midnight
- Help will be sparse in evenings and weekends!
- Homework 2:
- Aim is to release on Wednesday by midnight
- 2 weeks to complete
- Local Value Numbering
- Live variable analysis

Announcements

- Midterm:
- Oct 30 (1 week from today)
- In person during class time
- 3 pages of notes (not required, only if you need them)
- Material is inclusive of what we cover up to on Friday
- Office hours
- I'm on the plane all day Thursday so I will need to cancel
- Rithik has office hours
- Ask on Piazza

Announcements

- Get your paper approved by me by midnight tonight, otherwise you cannot turn in the assignment! (5\% of grade)
- Report is due on the same day as the midterm (Oct 30)

Review

Review local value numbering

First step?

$$
\begin{aligned}
& \mathrm{a}=\mathrm{b}+\mathrm{c} ; \\
& \mathrm{b}=\mathrm{a}-\mathrm{d} ; \\
& \mathrm{c}=\mathrm{b}+\mathrm{c} ; \\
& \mathrm{d}=\mathrm{a}-\mathrm{d} ;
\end{aligned}
$$

global_counter: 0

Review local value numbering

$$
\longrightarrow \quad \begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{H}=\{ \\
\}
\end{gathered}
$$

Review local value numbering

$$
\longrightarrow \quad \begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}=\{\text { "b0 }+c 1 ": ~ " a 2 ", ~ \\
& \}
\end{aligned}
$$

Review local value numbering

$$
\longrightarrow \begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned}
$$

$$
\mathrm{H}=\{
$$

"b0 + c1" : "a2",
"a2 - d3" : "b4",

$$
\}
$$

Review local value numbering

$$
\longrightarrow \begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 4-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3
\end{aligned}
$$

$$
\begin{aligned}
H=\{ & " b 0+c 1 ": ~ " a 2 ",
\end{aligned} \quad \begin{aligned}
& \text { "a2-ch" : "b4", }
\end{aligned}
$$

Review local value numbering

\longrightarrow| $\mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ;$ |
| :--- |
| $\mathrm{b} 4=\mathrm{a} 2-\mathrm{d} ;$ |
| $\mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ;$ |
| $\mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3 ;$ |

$$
H=\{
$$

$$
\begin{aligned}
& " b 0+c 1 ": ~ " a 2 ", \\
& " a 2-d 3 ": ~ " b 4 ",
\end{aligned}
$$

Review local value numbering

$$
\longrightarrow \begin{array}{|l|}
\mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
\mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
\mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
\mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3 ;
\end{array}
$$

$$
\begin{aligned}
& \text { H = \{ } \\
& \text { "b0 + c1" : "a2", } \\
& \text { "a2 - d3" : "b4", } \\
& \text { "b4 + c1" : "c5", }
\end{aligned}
$$

Review local value numbering

$$
\begin{array}{r}
\mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
\mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
\mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
\mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3 ;
\end{array}
$$

$$
\begin{aligned}
H=\{ & " b 0+c 1 ": ~ " a 2 ", \\
& " a 2-c 3 ": ~ " b 4 ", \\
& " b 4+c 1 ": ~ " c 5 ",
\end{aligned}
$$

Review local value numbering

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{b} 4 ;
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{H}=\{ & \\
& " \mathrm{~b} 0+\mathrm{c} 1 ": ~ " \mathrm{a} 2 ", \\
& " \mathrm{a} 2-\mathrm{d} 3 ": ~ " \mathrm{~b} 4 ", \\
& " \mathrm{~b} 4+\mathrm{c} 1 ": ~ " \mathrm{c} 5 ",
\end{aligned}
$$

Other LVN considerations?

Other LVN considerations?

Can this block be optimized?

$$
\begin{aligned}
& \mathrm{a}=\mathrm{b}+\mathrm{c} ; \\
& \mathrm{f}=\mathrm{a}-\mathrm{d} ; \\
& \mathrm{c}=\mathrm{c}+\mathrm{b} ; \\
& \mathrm{d}=\mathrm{d}-\mathrm{a} ;
\end{aligned}
$$

Local value numbering: Memory

- Consider a 3 address code that allows memory accesses

```
a[i] = x[j] + y[k];
b[i] = x[j] + y[k];
```

is this transformation allowed?
$a[i]=x[j]+y[k] ;$
$b[i]=a[i] ;$
b[i] =a[i];

Local value numbering: Memory

- Consider a 3 address code that allows memory accesses

```
a[i] = x[j] + y[k];
b[i] = x[j] + y[k];
```

is this transformation allowed? No!

```
a[i] = x[j] + y[k];
b[i] = a[i];
```

only if the compiler can prove that a does not alias x and y

In the worst case, every time a memory location is updated, the compiler must update the value for all pointers.

Local value numbering: Memory

- How to number:
- Number each pointer/index pair

$$
\begin{aligned}
& (\mathrm{a}[\mathrm{i}], 3)=(\mathrm{x}[j], 1)+(\mathrm{y}[\mathrm{k}], 2) ; \\
& \mathrm{b}[\mathrm{i}]=\mathrm{x}[j]+\mathrm{y}[\mathrm{k}] ;
\end{aligned}
$$

Local value numbering: Memory

- How to number:
- Number each pointer/index pair
- Any pointer/index pair that might alias must be incremented at each instruction

```
(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);
```


Local value numbering: Memory

- How to number:
- Number each pointer/index pair
- Any pointer/index pair that might alias must be incremented at each instruction

```
(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],1) + (y[k], 2);
```

compiler analysis:
can we trace $\mathrm{a}, \mathrm{x}, \mathrm{y}$ to
a = malloc (...);
$\mathrm{x}=$ malloc (...);
$\mathrm{y}=$ malloc (...);
// a, x, y are never overwritten

Local value numbering: Memory

- How to number:
- Number each pointer/index pair
- Any pointer/index pair that might alias must be incremented at each instruction

$$
\begin{aligned}
& (a[i], 3)=(x[j], 1)+(y[k], 2) ; \\
& (b[i], 6)=(x[j], 1)+(y[k], 2) ;
\end{aligned}
$$

in this case we do not have to update the number
compiler analysis:
can we trace $\mathrm{a}, \mathrm{x}, \mathrm{y}$ to
$\mathrm{a}=\operatorname{malloc}(\ldots)$;
$\mathrm{x}=$ malloc (...);
y = malloc (...);
// a, x, y are never overwritten

Local value numbering: Memory

- How to number:
- Number each pointer/index pair
- Any pointer/index pair that might alias must be incremented at each instruction

```
(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);
```

programmer annotations can also tell the compiler that no other pointer can access the memory pointed to by a

Local value numbering: Memory

- How to number:
- Number each pointer/index pair
- Any pointer/index pair that might alias must be incremented at each instruction

```
(a[i],3)=(x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);
```

in this case we do not have to update the number

restrict a

programmer annotations can also tell the compiler that no other pointer can access the memory pointed to by a

Local value numbering: Memory

- How to number:
- Number each pointer/index pair
- Any pointer/index pair that might alias must be incremented at each instruction

```
(a[i],3) = (x[j],1) + (y[k], 2);
(b[i],6) = (a[i], 3);
```

What other local optimizations can you think of?

New material

Optimizing over wider regions

- Local value numbering operated over just one basic block.
- We want optimizations that operate over:
- several basic blocks (regional)
- across an entire procedure (global)
- For this, we need Control Flow Graphs

Control flow graphs

A graph where:

```
start:
r0 = ...;
rl = ...;
br r0, if, else;
```

- nodes are basic blocks
- edges mean that it is possible for one block to branch to another

```
else:
r3 = ...;
br end_if;
end_if:
r4 = ...;
```


Control flow graphs

A graph where:

```
start:
r0 = ...;
r1 = ...;
br r0, if, else;
```

- nodes are basic blocks
- edges mean that it is possible for one block to branch to another

```
|if:
```

```
else:
```

else:
r3 = ...;
r3 = ...;
br end_if;

```
br end_if;
```


Interesting CFGs

What are some you can think of?

Interesting CFGs

What are some you can think of?
switch(x):
case 1:
break;
case 2:
break
case 3 :
break
end_switch

Interesting CFGs

- Exceptions
- Break in a loop
- Switch statement (consider break, no break)
- first class branches (or functions)

Regional optimizations

- Usually constrained to a "common" subset of the CFG:
- For example: if/else statements

```
start:
r0 = ...;
r1 = ...;
br r0, if, else;
```

if:
$r 2=.$. ;
br end_if;
else:
r3 = ...;
end_if:
$r 4=\ldots$.

Regional optimizations

- Usually constrained to a "common" subset of the CFG:

Super local value numbering

- Usually constrained to a "common" subset of the CFG:
- For example: if/else statements

Super local value numbering

- Usually constrained to a "common" subset of the CFG:

Super local value numbering

- Usually constrained to a "common" subset of the CFG:
- For example: if/else statements
breadth first traversal, creating hash tables for each block

$$
\begin{aligned}
& \text { b0_H }=\text { \{ } \\
& \text { "..." : "r0", } \\
& \text { "..." : "r1", }
\end{aligned}
$$

start:
start:
start:
r0 = ...;
r0 = ...;
r0 = ...;
r1 = ...;
r1 = ...;
r1 = ...;
br r0, if, else;
br r0, if, else;
br r0, if, else;

What are the implications of doing local value numbering in each of the basic blocks?

Super local value numbering

- Usually constrained to a "common" subset of the CFG:
- For example: if/else statements

Do local value numbering, but start off with a non-empty hash table!

Which blocks can use which hash tables?

```
b0_H = {
    "..." : "r0",
    "..." : "r1",
```

\}

Super local value numbering

- Usually constrained to a "common" subset of the CFG:
- For example: if/else statements
breadth first traversal, creating hash tables for each block

$$
\begin{aligned}
& \text { b0_H }=\text { \{ } \\
& \text { "..." : "r0", } \\
& \text { "..." : "r1", }
\end{aligned}
$$

Super local value numbering

- Usually constrained to a "common" subset of the CFG:
- For example: if/else statements

Is it possible to re-write so that b3 can use expressions from b1 and b2? Duplicate blocks and merge!

Pros? Cons?

$$
\begin{aligned}
& \text { b0_H = \{ } \\
& \text { "..." : "r0", } \\
& \text { "..." : "r1", }
\end{aligned}
$$

\}

Loop unrolling:


```
for (int i = 0; i < 100; i++) {
//inside loop
}
// after loop
```


If all of these are basic blocks then the CFG looks like:

Loop unrolling:

What could change this CFG?

Loop unrolling:

Assume we
know that the loop will iterate an even number of times:

Loop unrolling:

Loop unrolling:

Assume we

know that the loop will iterate an even number of times:

What have we saved here?

Loop unrolling:

Assume we

know that the loop will iterate an even number of times:

What have we saved here?

Code placement:

- Back to if/else

Code placement:

- Back to if/else
- Eventually we will straight line the code:

Code placement:

- Back to if/else
- Eventually we will straight line the code:

```
start:
r0 = ...;
r1 = ...;
br r0, if, else;
```

```
if:
r2 = ...;
br end_if;
```

```
else:
r3 = ...;
br end_if;
```

end_if:
$r 4=$...;

Code placement:

- Back to if/else
- Eventually we will straight line the code:


```
if:
r2 = ...;
br end_if;
```

```
else:
r3 = ...;
br end_if;
```

```
end_if:
r4 = ...;
```

```
start:
r0 = ...;
r1 = ...;
br r0, if, else;
```

```
else:
r3 = ...;
br end_if;
```

if:
r2 = ...;
br end_if;

```
end_if:
r4 = ...;
```

Performance impact between the two?
one option, what else?

Code placement:

- Back to if/else
- Eventually we will straight line the code:

```
start:
r0 = ...;
r1 = ...;
br r0, if, else;
```

```
if:
r2 = ...;
br end_if;
```

```
else:
r3 = ...;
br end_if;
```

```
end_if:
r4 = ...;
```

```
start:
r0 = ...;
r1 = ...;
br r0, if, else;
```

```
else:
r3 = ...;
br end_if;
```

```
if:
r2 = ...;
br end_if;
```

```
end_if:
r4 = ...;
```

If we know that one branch is taken more often than the other...
say the branch is true most often

Code placement:

- Back to if/else
- Eventually we will straight line the code:

```
start:
r0 = ...;
r1 = ...;
br r0, if, else;
```

```
if:
r2 = ...;
br end_if;
```

```
else:
r3 = ...;
br end_if;
```

```
end_if:
r4 = ...;
```

If we know that one branch is taken more often than the other...
say the branch is true most often

Code placement:

- Back to if/else
- Eventually we will straight line the code:

```
start:
r0 = ...;
r1 = ...;
br r0, if, else;
```

```
if:
r2 = ...;
br end_if;
```

```
else:
r3 = ...;
br end_if;
```

```
end_if:
r4 = ...;
br next_lbl
```

If we know that one branch is taken more often than the other...
say the branch is true most often

Code placement:

- Back to if/else
- Eventually we will straight line the code:


```
|if:
```

```
else:
r3 = ...;
br end_if;
```

```
end_if:
r4 = ...;
br next_lbl
```

```
start:
r0 = ...;
r1 = ...;
br r0, if, else;
```

```
if:
r2 = ...;
```

```
end_if:
r4 = ...;
br next lbl
```

```
else:
r3 = ...;
br end_if;
```

If we know that one branch is taken more often than the other...
say the branch is true most often

Global optimizations

- Difference between regional:
- handle arbitrary CFGs, cannot rely on structure!
- Algorithms become more general
- Potential for more optimizations!
- Highly suggest reading for this part of the class
- Chapter 9 of EAC

First concept:

- Dominance in a CFG
- Builds up a framework for reasoning
- Building block for many algorithms
- global local value numbering when unlimited registers
- Conversion to SSA

Dominance

- a block b_{x} dominates block b_{y} if every path from the start to block b_{y} goes through b_{x}
- definition:
- domination (includes itself)
- strict domination (does not include itself)

Dominance

- a block b_{x} dominates block b_{y} if every path from the start to block b_{y} goes through b_{x}
- definition:
- domination (includes itself)
- strict domination (does not include itself)

- Can we use this notion to extend local value numbering?

Node	Dominators
B0	
B1	
B2	
B3	
B4	
B5	
B6	
B7	
B8	

Node	Dominators
BO	B0
B1	BO, B1
B2	$B 0, B 1, B 2$
B3	$B 0, B 1, B 3$
B4	$B 0, B 1, B 3, B 4$
B5	$B 0, B 1, B 5$
B6	$B 0, B 1, B 5, B 6$
B7	$B 0, B 1, B 5, B 7$
B8	$B 0, B 1, B 5, B 8$

Computing dominance

- Iterative fixed point algorithm
- Initial state, all nodes start with all other nodes are dominators:
- $\operatorname{Dom}(n)=N$
- Dom(start) $=\{$ start $\}$
iteratively compute:

$$
\operatorname{Dom}(n)=\{n\} \cup\left(\cap_{m \text { in preds }(n)} \operatorname{Dom}(m)\right)
$$

Building intuition behind the math

- This algorithm is vertex centric
- local computations consider only a target node and its immediate neighbors
- At least one node is instantiated with ground truth:
- starting node dominator is itself
- Information flows through the graph as nodes are updated

For example: Bellman Ford Shortest path

- Root node is initialized to 0
- Every node determines new distances based on incoming distances.
- When distances stop updating, the algorithm is converged

Now lets think about dominance

- Root node is initialized to itself
- Every node determines new dominators based on parent dominators

Now lets think about dominance

- Root node is initialized to itself
- Every node determines new dominators based on parent dominators
$D=\{x, y\}$

$$
D=\{a, x, y\}
$$

Now lets think about dominance

- Root node is initialized to itself
- Every node determines new dominators based on parent dominators
update:
intersection of parent values
$D=\{x, y\}$

$$
D=\{a, x, y\}
$$

$$
\operatorname{Dom}(n)=\{n\} \cup\left(\bigcap_{p \text { in } \operatorname{preds}(n)} \operatorname{Dom}(p)\right)
$$

Now lets think about dominance

- Root node is initialized to itself
- Every node determines new dominators based on parent dominators
update:
intersection of parent values
$D=\{x, y\}$

$$
D=\{x, y, z\}
$$

$$
\operatorname{Dom}(n)=\{n\} \cup\left(\bigcap_{p \text { in } p r e d s}(n) \operatorname{Dom}(p)\right)
$$ parents to children.

Lets try it

Node	Initial	Iteration 1
B0	B0	
B1	N	
B2	N	
B3	N	
B4	N	
B5	N	
B6	N	
B7	N	
B8	N	

How can we optimize the algorithm?

Node	Initial	Iteration 1	Iteration 2	Iteration 3
B0	B0	B0
B1	N	B0, B1
B2	N	B0,B1,B2
B3	N	B0,B1, B2,B3	B0,B1, B3	...
B4	N	B0,B1,B2,B3, B4	B0,B1,B3,B4	...
B5	N	B0,B1,B5
B6	N	B0,B1, B5, B6
B7	N	B0,B1,B5,B6,B7	B0,B1,B5, B7	...
B8	N	B0,B1,B5,B8	...	\cdots

How can we optimize the algorithm?

Node	Initial	Iteration 1	Iteration 2	Iteration 3
B0	B0	B0
B1	N	B0, 1 1
B2	N	B0,B1,B2
B3	N	B0,B1, B2, B3	B0, B1, B3	...
B4	N	B0,B1, B2, B3, B4	B0,B1, B3, B4	...
B5	N	B0,B1,B5
B6	N	B0,B1, B5, B6	\ldots	...
B7	N	B0,B1,B5,B6,B7	B0,B1,B5, B7	...
B8	N	B0,B1,B5, B8

This can be any order...
How can we optimize the order?

Given this intuition, what ordering would be best?

- Root node is initialized to itself
- Every node determines new dominators based on parent dominators
update:
intersection of parent values
$D=\{x, y\}$

$$
D=\{x, y, z\}
$$

$$
D=\{a, x, y\}
$$

Forward flow, as updates flow from parents to children.

$$
\operatorname{Dom}(n)=\{n\} \cup\left(\bigcap_{p \text { in } \operatorname{preds}(n)} \operatorname{Dom}(p)\right)
$$

How can we optimize the algorithm?

Node	New Order
B0	
B1	
B2	
B3	
B4	
B5	
B6	
B7	
B8	

Reverse
post-order (rpo),
where parents are visited first

How can we optimize the algorithm?

Node	Initial	Iteration 1	Iteration 2	Iteration 3
B0	B0			
B1	N			
B2	N			
B5	N			
B6	N			
B8	N			
B7	N			
B3	N			
B4	N			

How can we optimize the algorithm?

Node	Initial	Iteration 1	Iteration 2	Iteration 3
B0	B0	B0		
B1	N	BO,B1		
B2	N	B0,B1,B2		
B5	N	B0,B1,B5		
B6	N	B0,B1,B5,B6		
B8	N	B0,B1,B5,B8		
B7	N	B0,B1,B5,B7		
B3	N	$B 0, B 1, B 3$		
B4	N	$B 0, B 1, B 4$		

How can we optimize the algorithm?

Node	Initial	Iteration 1	Iteration 2	Iteration 3
B0	B0	B0	\ldots	
B1	N	B0,B1	\ldots	
B2	N	B0,B1,B2	\ldots	
B5	N	B0,B1,B5	\ldots	
B6	N	B0,B1,B5,B6	\ldots	
B8	N	B0,B1,B5,B8	\ldots	
B7	N	$B 0, B 1, B 5, B 7$	\ldots	
B3	N	$B 0, B 1, B 3$	\ldots	
B4	N	$B 0, B 1, B 4$	\ldots	

A quick aside about graph algorithms:

- Does node ordering matter in SSSP?
- Yes! Dijkstra's algorithm uses a priority queue
- Prioritize nodes with the lowest value

Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

```
x = 5
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```


Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

```
x = 5 & Live variables: z,w
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```


Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

```
x = 5 p Live variables:?
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```


Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

```
x=5 p Live variables: x,w
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```

```
x = 5
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```


Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

```
x=5 p Live variables: x,w
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```

```
x = 5
if (z):
    y = 6 p Live variables:?
    y = x
print(y)
print(w)
```


Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

```
x=5 p Live variables: x,w
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```

```
x = 5
if (z):
    Y = 6 p Live variables: y,w
    y = x
print(y)
print(w)
```


Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

```
x=5
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```

```
//start & p}\mathrm{ Live variables: ?
x = 5
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```


Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

```
x=5
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```

```
//start & p}\mathrm{ Live variables: w
x = 5
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```


Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

```
x=5 p Live variables: x,w
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```

Accessing an uninitialized variable!

```
//start & p
x = 5
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```


Live variable analysis in the CFG:

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is satisfies these two conditions

- it is not written to and it is read
- it is read before it is written to

Block	VarKill	UEVar
B0		
B1		
B2		
B3		
B4		

Live variable analysis in the CFG:

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is satisfies these two conditions

- it is not written to and it is read
- it is read before it is written to

Block	VarKill	UEVar
B0	i	
B1	$\}$	
B2	s	
B3	s,i	
B4	$\}$	

Live variable analysis in the CFG:

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is satisfies these two conditions

- it is not written to and it is read
- it is read before it is written to

Block	Varkill	UEVar
B0	i	$\}$
B1	$\}$	i
B2	s	$\}$
B3	s, i	s, i
B4	$\}$	s

Live variable analysis in the CFG:

- Initial condition: LiveOut(n) = \{\} for all nodes
- Ground truth, no variables are live at the exit of the program, i.e. end node $\mathrm{n}_{\text {end }}$ has LiveOut $\left(\mathrm{n}_{\text {end }}\right)=\{ \}$

Live variable analysis in the CFG:

- Initial condition: LiveOut(n) = $\}$ for all nodes
- Ground truth, no variables are live at the exit of the program, i.e. end node $\mathrm{n}_{\mathrm{end}}$ has LiveOut $\left(\mathrm{n}_{\mathrm{end}}\right)=\{ \}$

Now we can perform the iterative fixed point computation:

$$
\operatorname{LiveOut}(n)=U_{s \text { in succ(n) }}(\operatorname{UEVar}(s) \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)}))
$$

Live variable analysis in the CFG:

$$
\operatorname{LiveOut}(n)=U_{s \text { in succ(n) }}(\text { UEVar(s) } \cup(\operatorname{LiveOut(s)} \cap \overline{\operatorname{VarKill(s)})})
$$

Backwards flow analysis because values flow from successors

Live variable analysis in the CFG:

$$
\operatorname{LiveOut}(n)=U_{s \text { in } \operatorname{succ}(n)}(\operatorname{UEVar(s)} \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)}))
$$

any variable in UEVar(s) is live at n

Live variable analysis in the CFG:

$$
\operatorname{LiveOut}(n)=U_{s \text { in succ(n) }}(\operatorname{UEVar}(s) \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)}))
$$

variables that are not overwritten in s

Live variable analysis in the CFG:

$$
\operatorname{LiveOut}(n)=U_{s \text { in succ(n) }}(\operatorname{UEVar}(s) \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)}))
$$

variables that are live at the end of s

Live variable analysis in the CFG:

$$
\operatorname{LiveOut}(n)=U_{s \text { in succ(n) }}(\text { UEVar(s) } \cup(\operatorname{LiveOut(s)} \cap \overline{\operatorname{VarKill}(s)}))
$$

variables that are live at the end of s, and not overwritten by s

Live variable analysis in the CFG:

$$
\operatorname{LiveOut}(n)=U_{s \text { in succ(n) }}(\text { UEVar(s) } \cup(\operatorname{LiveOut(s)} \cap \overline{\operatorname{VarKill(s)})})
$$

LiveOut is a union
rather than an intersection

$$
\operatorname{Dom}(n)=\{n\} \cup\left(\bigcap_{p \text { in } \operatorname{preds}(n)} \operatorname{Dom}(p)\right)
$$

Consider the language we use for each:

- Dominance of node b_{x} contains b_{y} if:
- every path from the start to b_{x} goes through b_{y}
- LiveOut of node b_{x} contains variable y if:
- some path from b_{x} contains a usage of y

$$
\begin{aligned}
\operatorname{LiveOut}(n)=U_{\text {sinsucc(} n)}(& \operatorname{UEVar}(s) \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)})) \\
\operatorname{Dom}(n) & =\{n\} \cup\left(\bigcap_{\text {pin preds }(n)} \operatorname{Dom}(p)\right)
\end{aligned}
$$

Consider the language we use for each:

- Dominance of node b_{x} contains b_{y} if:
- every path from the start to b_{x} goes through b_{y}
- LiveOut of node b_{x} contains variable y if:
- some path from b_{x} contains a usage of y
- Some vs. Every

$$
\begin{aligned}
\operatorname{LiveOut}(n)=U_{\text {sin succ(n) }}(& \operatorname{UEVar}(s) \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)})) \\
\operatorname{Dom}(n) & =\{n\} \cup\left(\bigcap_{\text {pin preds(n) }} \operatorname{Dom}(p)\right)
\end{aligned}
$$

Have a nice weekend!

- We will discuss other flow algorithms
- Remember, homework 1 is due on Tuesday

