CSE211: Compiler Design

Oct. 20, 2021

* Topic: Local optimizations (Local Value
Numbering)

 Questions:

* How can you optimize arithmetic
expressions?

Announcements

* Homework 1 is out
* Due on the 25th
* No extensions

* Get your paper reading approved by me by Monday

* No extensions, 5% of your grade

* Ask questions on Piazza if you have questions

Announcements

* IF 1 AM FEELING WELL ENOUGH: | will be gone Monday and
Wednesday next week to attend a khronos group meeting.
* The schedule is still in flux:
 either | will hold class synchronously on Zoom

* Or provide asynchronous lectures
* Maybe a combination, stay tuned

Review

On to Module 2!
Optimizations and

analysis

Input

A string

Accept

continue to the rest
of compilation

=)

Language

Reject

Recognizer for
language L

=

structured data
(e.g. AST)

Where most
optimizations
and flow analysis
happens!

Different IRs

Many different IRs, each have different purposes

* Trees
* Abstract syntax trees
e Data-dependency trees
* Good for instruction scheduling

e Textual

* 3 address code
* Good for removing redundant expressions

* Graphs
e Control flow graphs
e Good for data flow analysis (finding uninitialized variables)

Abstract Syntax Trees

 Easier to see bigger trees, e.g. quadratic formula:

_ 2 __
T — b__\/2b dac
a

X =(-b-sqrt(b*b-4 *a*c))/(2*%a)

Thanks to Sreepathi Pai for the example!

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0
rl
r2
r3
r4
rb5
ro
r’/
r8
X

neg (b) ;

b * b;

4 * 3;

r2 * c;
rl - r3;
sqrt(r4d);
rO0 — rb5;
2 * a;

ro / r7;
r8;

What about control flow?

* 3 address code typically contains a conditional branch:

br <reg>, <label0>, <labell>

if the value in <reg> is true, branch to <label0>, else branch to <labell>
br <labelO>

unconditional branch

What about control flow?

1f (expr) {
// conditional statements

}

// after if statements

r0 = <expression>; IF

br r0, conditional stmts, after 1if;

conditional stmts:

<conditional statements>; <expression> <conditional_statements> <after_if statements>
after if:

<after 1f statements>;

What about control flow?

while (expr) {
// inside loop statements

}

// after loop statements WHILE

beginning label:
r0 = <expr> o
<expr> <inside loop_statements> <after_loop_ statements>

br r0, inside loop, after loop;

inside loop:
<inside loop statements>
br beginning label;

after loop:
<after loop statements>

New material

IR Program structure

* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:
* There is a single entry, single exit

Single Basic Block

. . Label x:
* Important property: an instruction opl;
in a basic block can assume that all op2;
op3;

preceding instructions will execute br label z;

IR Program structure

* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:

* There is a single entry, single exit
Two Basic Blocks

Single Basic Block Label x:
opl;
. . Label x:)
* Important property: an instruction opl; Zig j
in a basic block can assume that all op2; '
' I I I op3; Label y:
preceding instructions will execute br label z; 034;@ Y
opS;

How might they appearin a

| R P rog ra m St |" u Ct u re Z)i(gaf;lsl\;esl?language? What are some
* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:

* There is a single entry, single exit
Two Basic Blocks

Single Basic Block Label x:
opl;
. . Label x:)
* Important property: an instruction opl; Zig j
in a basic block can assume that all op2; '
' I I I op3; Label y:
preceding instructions will execute br label z; 034;@ Y
opS;

IR Program structure

* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:

* A sequence of 3 address instructions such that:

* There is a single entry, single exit

* Important property: an instruction
in a basic block can assume that all
preceding instructions will execute

How might they appearin a
high-level language?

Four Basic Blocks

Single Basic Block

Label x:
opl;

op2;

op3;

br label z;

Two Basic Blocks

Label x:
opl;
op2;
op3;

Label y:
op4;
opS;

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label 0:

[
o

o O

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

optimized

to
—

Label O0:
X = a + b;
Y = Xy

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O:
X = a + b;

Label 1:

y = a + b;

optimized

to
—

CANNOT
always optimized
to
—_

Label O0:
X = a + b;

Label O:
X = a + b;

Label 1:
Yy = Xy

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O:
X = a + b;
y = a + b;

Label O:
X = a + b;

Label 1:

y = a + b;

code could skip Label O,
leaving x undefined!

optimized
to
L

CANNOT
always optimized
to
—_

Label O0:
X = a + b;

y = Xj

Label O:
X = a + b;

Label 1:
Yy = Xy

br Label I1;

Label O:

X = a + b;

Label 1:

y = a + b;

Regional Optimization

at a higher-level,
we cannot replace:
y=a+b.
with
y=X

Regional Optimization

at a higher-level,
we cannot replace:
y=a+b.
with
y=X

But if a and b are
not redefined, then
y=a+b;
can be replaced with
y=X

Today’s lecture: A local optimization

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.

I+ 1+
0 0 Q0

O O 9 O

O Q O w

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.

a =>b + c; a =>b + c;
b =a - d; valid? b =a - d;
c =b +c;,| —* |c = a;

d =a - d; d = a - d;

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.

valid? b =a-d; No! Because b is redefined

00 oo
R

v TN T
I+ 1 +

SHE G
Q

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.

a=Db + c; a =Db + c;
b =a - d; valid? b =a - d;
c=b+c;| " |c=Db+ c;
d =a - d; d = b;

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.

a=Db + c; a =Db + c;

b =a - d; valid? b =a - d;

c=b +c;| — " c = b + c; yes!
d=a - d; d = b;

Local value numbering

Algorithm:

* Provide a number to each variable. Update the number each time the
variable is updated.

* Keep a global counter; increment with new variables or assighnments

az b0 + cl; Global_counter = 6
bd = a2 - d3;
cb = bd + cl;
do = a2 - d3;

Local value numbering

Algorithm:

* Provide a number to each variable. Update the number each time the
variable is updated.

* Keep a global counter; increment with new variables or assighnments

a2z b0 + cl; Global_counter = 7
bd = a2z - d3;
cb = bd + cl;
do = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl;
bd = a2 - d3;
cb = bd + cl;
do = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

—~ a2 = b0 + cl; b
bd = a2z - d3;
cbhb = bd + cl;
do = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

— |az2 = b0 + cl; b0 + cl” : “a2”,
bd = a2 - d3; }
cHS = bd + cl;
do = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

az = b0 + cl; “bO + cl” : “a2”,
— |4 = a2 - d3; }

ch = bd + cl;

do = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a.2 — bO + Cl; \\bO + c1” - \\a2//,
— |bd = a2 - d3; “az2 - d3” : “b4”,
cb = bd + cl; J

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a.2 — bO + Cl; \\bO 1+ Cl” . \\a2//,
bd = a2 - d3; “az2 - d3” : "b4”,

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; “bO + cl” : “a2”, mismatch due to
b4 = a2 —_ d3; \\a2 _ d3// . ”b4”, numberings.l

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl;

\\bO + Cl” . “8.2”,
b4 = a2 —_ d3; \\a2 _ d3// . ”b4”,
—— |c5 = bd + c1; Thd Hel” o Tes”,

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; {

\\bO + Cl” . \\a2 //,
b4 = a2 —_ d3; \\a2 _ d3// . ”b4”,
C5 — b4 + Cl; “b4 + Cl” . “C5”,

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl;

b4 = a2 — d3; “HO) + ¢c1” - “8.2”,
C5 — b4 + Cl; w32 — 437 - ”b4”,
bdd = 4; tbd o+ oel” o Teo”, match!

— |do = b4,

What else can we do?

What else can we do?

Consider this snippet:

a2z = cl - b0;
f4 = d3 * a2;
cH = b0 - cl;
do = f£4;

Commutative operations

What is the definition of commutative?

Commutative operations

What is the definition of commutative?
X OP yv == vy OP X

What operators are commutative? Which ones are not?

Adding commutativity to local value
numbering

* For commutative operators (e.g. + *), the analysis should consider a
deterministic order of operands.

* You can use variable numbers or lexigraphical order

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

—~— o
|

f4 = d3 * aZ2;
ch = b0 - cl;
do = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

cannot re-order because - is not commutative

— |az = cl - b0; “cl - b0” i “a2”
f4 = d3 * a2z; }
ch = b0 - cl;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; “cl - b0” : “a2”,
— | £4 = d3 * az2; }

cb = b0 - cl;
do = a2 * d3;

Local value numbering: commutative

operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic

order

a’

cH
do

= cl
:d3*
= b0
= aZz

b0;
az;
cl;

* d3;

re-ordered because a2 < d3 lexigraphically

\\Cl _ bO// : \\a2/I,
//a2 * d3// : \\f4/I,

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; “el - b0” : “a2”,

f4 = d3 * aZ2; "a2 * d3” : “f47,
— % |ch = b0 - cl;)

do = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

_ _ H = {
az cl p0; “cl - b0” : “a2”,
f4 p— d3 * a2; /Ia2 * d3// : \\f4//,
C5 bO _ C]_’ //bO _ Cl// \\C5//,
d6 = a2 * d3; }

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

_ _ H = {
az cl p0; “cl - b0” : “a2”,
f4 pr— d3 * a2; /Ia2 * d3// : \\f4//,
C5 = bO —_ Cl; ”bO — Cl// . “C5”,
——1d6 = a2 * d3; }

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; o “cl - b0” : “a2”

f4 = d3 * a2; a2 * d3” “f4”:

c5 = b0 - cl; "0 - cl” : “c¢57,
——|d6 = f4; }

Other considerations?

Local value numbering w/out adding registers

e We've assumed we have access to an unlimited number of virtual
registers.

* In some cases we may not be able to add virtual registers
* |f an expensive register allocation pass has already occurred.

e New constraint:

* We need to produce a program such that variables without the numbers is
still valid.

Local value numbering w/out adding registers

* Example:

O
I

X + vy

numbering

local value
numbering with
unlimited virtual

registers
a3 = x1 + vy2;
as = z4;
b6 = x1 + y2;

a3 = x1 + vy2;
ab = z4;
bo = a3;
a X + vy
a Z;
b a

if we drop the
numbers, the
optimization is
invalid.

Local value numbering w/out adding registers

e Solutions?

O

numbering

il
N
e

al
ab
bo

x1 + y2;

x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Q O 9 W
| | |
XX NOX

+ +
<

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

a = z; We cannot optimize the first

line, but we can optimize the
e

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Q O 9 W
| | |
XX NOX

+ +
<

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

a = X t vy
a = Z;

b =x + vy,
C = X + vy

First we number

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

a3 = x1 + y2
as> = z4;

b6 = x1 + y2;
c/ = x1 + y2

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current_val = {

}

— a3 = x1 + yZ2 H o= {
as> = z4; }
b6 = x1 + y2;
c/ = x1 + y2

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current_val = {

— a3 = x1 + vy2; H = {

b6 = x1 + y2;
c/ = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current_val = {

a3 = x1 + vy2; H o= {

b6 = x1 + y2;
c/ = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current_val = {

a3 = x1 + vy2; H o= {

b6 = x1 + y2;
c/ = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current_val = {

a3 = x1 + vy2; H o= {

— |bo = x1 + y2;
c/ = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current_val = {

a3 = x1 + vy2; H o= {

— |bo = x1 + y2;
c/ = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current_val = {
//all : 5,
//bll : 6

0 —
I

a3 = x1 + y2;
. //Xl _I_ y2// : //b6//,

— |bo = x1 + y2;
c/ = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current_val = {
//all : 5,
//bll : 6

0 —
I

a3 = x1 + y2;
. //Xl _I_ y2// : //b6//,

b6 = x1 + y2;
— |Cc7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current_val = {
//all : 5,
//bll : 6

0 —
I

a3 = x1 + y2;
. //Xl + y2// : //b6//,

b6 = x1 + y2;
— |Cc7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current_val = {
//all : 5,
//bll : 6

0 —
I

a3 = x1 + y2;
. //Xl _I_ y2// : //b6//,

b6 = x1 + y2;

Anything else we can add to local value
numbering?

Anything else we can add to local value
numbering?

* Final heuristic: keep sets of possible values

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current_val = {

}

a = X t vy

H = {
b =x + vy, }
a = Zjy
C = X + vy

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current_val = {

}

a3 = x1 + y2;
bd = x1 + y2;
ab = zb;

c/ = x1 + y2;

— T
|

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current_val = {

\\b//
}
a3 = x1 + y2; {
H =
bd = a3; “x1 + y2” a3
a6 = z5; }
— |Cc7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current_val = {

\\b//
}
a3 = x1 + y2; {
H =
bd = a3; “x1 + y2” a3
a6 = z5; }
— |Cc7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
\\a// 6,
\\b// 4
}
a3 = x1 + y2;
H = { b Id h
bd = a3: “ . o ut we cou ave
’ xl + y2” @ a3 replaced it with b4!
aoc = z5; }
— |Cc7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
\\all
}
rewind to
this point a3 = x1 + y2; H = {
— |bd = x1 + vy2; Skl + y2” 23

ao = z5; }
cl7 = x1 + vy2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
\\a// 3,
//b// 4
}
a3 = x1 + y2;
o _ H = {
b4 a3, “1 4+ y2// [a3 , b4],
ao = z5; }
c/ = x1 + y2; hash a list of possible values

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
\\all 6,
\\b// 4
}
a3 = x1 + y2;
_ H = {
fast forward bd = as3; “x1 + y2” [“a3”, b4

again aoc = z5; }
— |Cc7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
\\all 6,
\\b// 4
}
a3 = x1 + y2;
_ H = {
fast forward bd = as3; “x1 + y2” [“a3”, b4

again aoc = z5; }

Local value numbering: Memory

* Consider a 3 address code that allows memory accesses

is this transformation allowed? only if the compiler can prove that a does not alias x and y
No!

ali] = x[7J] + vyvlk];

b[i] = ali]l; In the worst case, every time a memory location is updated,

the compiler must update the value for all pointers.

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

compiler analysis:

. can we trace a, x, y to
(Y[k] 15) ’ a malloc(..);

X malloc (..);
Y% malloc(..);

// a,x,y arenever overwritten

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

compiler analysis:

(af1],3) = (x[31,1) + (ylkl],2);
(b[1]1,6) = (x[j1,1) + (y[k]l,2); can we trace a, x, y to

a = malloc(..);
in this case we do not have to update the number x = malloc(..);
y = malloc(..);

// a,x,y arenever overwritten

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(ylLk]l,5); programmer annotations can also tell

the compiler that no other pointer
can access the memory pointed to by a

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

— (X[j]rl) + (Y[k]IZ);
— (X[j]/4) + (Y[k]IS);

in this case we do not have to update the number

restrict a

programmer annotations can also tell
the compiler that no other pointer
can access the memory pointed to by a

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

Optimizing over wider regions
* Local value numbering operated over just one basic block.

* We want optimizations that operate over several basic blocks (a
region), or across an entire procedure (global)

* For this, we need Control Flow Graphs and Flow Analysis

