CSE211: Compiler Design Oct. 20, 2021

- Topic: Local optimizations (Local Value Numbering)
- Questions:
- How can you optimize arithmetic expressions?

Announcements

- Homework 1 is out
- Due on the $25^{\text {th }}$
- No extensions
- Get your paper reading approved by me by Monday
- No extensions, 5% of your grade
- Ask questions on Piazza if you have questions

Announcements

- IF I AM FEELING WELL ENOUGH: I will be gone Monday and Wednesday next week to attend a khronos group meeting.
- The schedule is still in flux:
- either I will hold class synchronously on Zoom
- Or provide asynchronous lectures
- Maybe a combination, stay tuned

Review

A string

Language
Recognizer for language L

Where most optimizations and flow analysis happens!

Different IRs

Many different IRs, each have different purposes

- Trees
- Abstract syntax trees
- Data-dependency trees
- Good for instruction scheduling
- Textual
- 3 address code
- Good for removing redundant expressions
- Graphs
- Control flow graphs
- Good for data flow analysis (finding uninitialized variables)

Abstract Syntax Trees

- Easier to see bigger trees, e.g. quadratic formula:

$$
\begin{array}{r}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\left(-b-\operatorname{sqrt}\left(b^{*} b-4^{*} a^{*} c\right)\right) /\left(2^{*} a\right)
\end{array}
$$

Convert this code to 3 address code
post-order traversal, creating virtual registers for each node

$$
\begin{aligned}
& r 0=\text { neg }(b) ; \\
& r 1=b * b ; \\
& r 2=4 * a ; \\
& r 3=r 2 * c ; \\
& r 4=r 1-r 3 ; \\
& r 5=\operatorname{sqrt}(r 4) ; \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ; \\
& r 8=r 6 / r 7 ; \\
& x
\end{aligned}
$$

What about control flow?

- 3 address code typically contains a conditional branch:
br <reg>, <label0>, <label1>
if the value in <reg> is true, branch to <label0>, else branch to <label1>
br <label0>
unconditional branch

What about control flow?

```
if (expr) {
    // conditional statements
}
// after if statements
r0 = <expression>;
br r0, conditional_stmts, after_if;
conditional stmts:
<conditional_statements>;
```



```
after_if:
```

after_if:
<after_if_statements>;

```
<after_if_statements>;
```


What about control flow?

```
    while (expr) {
        // inside_loop_statements
    }
    // after_loop_statements
beginning_label:
r0 = <expr>
br r0, inside_loop, after_loop;
inside_loop:
<inside_loop_statements>
br beginning_label;
after_loop:
<after_loop_statements>
```

New material

IR Program structure

- A sequence of 3 address instructions
- Programs can be split into Basic Blocks:
- A sequence of 3 address instructions such that:
- There is a single entry, single exit
- Important property: an instruction in a basic block can assume that all preceding instructions will execute

Single Basic Block

```
Label_x:
op1;
op2;
op3;
br label_z;
```


IR Program structure

- A sequence of 3 address instructions
- Programs can be split into Basic Blocks:
- A sequence of 3 address instructions such that:
- There is a single entry, single exit
- Important property: an instruction in a basic block can assume that all preceding instructions will execute

Single Basic Block

```
Label x:
op1;
op2;
op3;
br label_z;
```

Two Basic Blocks
Label_x:
op1;
op2;
op3;

Label
op4;
op5;

How might they appear in a
high-level language? What are some examples?

- A sequence of 3 address instructions
- Programs can be split into Basic Blocks:
- A sequence of 3 address instructions such that:
- There is a single entry, single exit

Two Basic Blocks
Single Basic Block

```
Label_x:
op1;
op2;
op3;
br label_z;
```

Label_x:
op1;
op2;
op3;

Label_y:
op4;
op5;

IR Program structure

- A sequence of 3 address instructions
- Programs can be split into Basic Blocks:
- A sequence of 3 address instructions such that:
- There is a single entry, single exit
- Important property: an instruction in a basic block can assume that all preceding instructions will execute

How might they appear in a high-level language?

Four Basic Blocks

Two Basic Blocks

Single Basic Block

```
Label_x:
op1;
op2;
op3;
br label_z;
```

Label_x:
op1;
op2;
op3;

Label_y:
op4;
op5;

Optimization levels

- Local optimizations:
- Optimizes an individual basic block
- Regional optimizations:
- Combines several basic blocks
- Global optimizations:
- operates across an entire procedure
- what about across procedures?

Optimization levels

- Local optimizations:

```
Label_0:
x = a + b;
y = a + b;
```

- Optimizes an individual basic block
- Regional optimizations:
- Combines several basic blocks
- Global optimizations:
- operates across an entire procedure
- what about across procedures?

Optimization levels

- Local optimizations:

- Optimizes an individual basic block
- Regional optimizations:
- Combines several basic blocks
- Global optimizations:
- operates across an entire procedure
- what about across procedures?

Optimization levels

- Local optimizations:
- Optimizes an individual basic block
- Regional optimizations:
- Combines several basic blocks

| Label_0:
 $\mathrm{x}=\mathrm{a}+\mathrm{b} ;$
 Label_1:
 $\mathrm{y}=\mathrm{a}+\mathrm{b} ;$ |
| :--- | :--- |
| CANNOT
 always optimized
 to | | Label_0: |
| :--- |
| $\mathrm{x}=\mathrm{a}+\mathrm{b} ;$ |
| Label_1: |
| $\mathrm{y}=\mathrm{x} ;$ |

CANNOT
always optimized
to
to
\longrightarrow

- Global optimizations:
- operates across an entire procedure
- what about across procedures?

$$
\begin{array}{|l|}
\hline \begin{array}{l}
\text { Label_0: } \\
\mathrm{x}=\mathrm{a}+\mathrm{b} ; \\
\mathrm{Y}=\mathrm{a}+\mathrm{b} ;
\end{array} \\
\end{array} \begin{aligned}
& \text { optimized } \\
& \text { to }
\end{aligned} \quad \begin{aligned}
& \text { Label_0: } \\
& \mathrm{x}=\mathrm{a}+\mathrm{b} ; \\
& \mathrm{y}=\mathrm{x} ;
\end{aligned}
$$

Optimization levels

- Local optimizations:
- Optimizes an individual basic block
- Regional optimizations:
- Combines several basic blocks

Label_0:
$\mathrm{x}=\mathrm{a}+\mathrm{b} ;$
Labe1_1:
$\mathrm{y}=\mathrm{a}+\mathrm{b} ;$

$$
\begin{array}{|l|}
\hline \begin{array}{l}
\text { Label_0: } \\
\mathrm{x}=\mathrm{a}+\mathrm{b} ; \\
\mathrm{y}=\mathrm{a}+\mathrm{b} ;
\end{array} \\
\end{array} \xrightarrow{\text { optimized }} \text { to } ~\left(\begin{array}{l}
\text { Label_0: } \\
\mathrm{x}=\mathrm{a}+\mathrm{b} ; \\
\mathrm{y}=\mathrm{x} ;
\end{array}\right.
$$

Combines several basic blocks

- Global optimizations:
- operates across an entire procedure
- what about across procedures?
code could skip Label_0, leaving x undefined!

```
br Label_1;
Label_0:
x = a + b;
Label_1:
y = a + b;
```


Regional Optimization

Regional Optimization

at a higher-level,
we cannot replace:
$y=a+b$.
with
$y=x ;$

$$
\begin{aligned}
& \begin{array}{l}
x=a+b ; \\
\text { if } \quad(x)\{ \\
\quad \ldots \\
\} \\
\text { else }\{ \\
\ldots \\
\} \\
y=a+b ;
\end{array}
\end{aligned}
$$

But if a and b are not redefined, then

$$
y=a+b
$$

can be replaced with

$$
y=x
$$

Today's lecture: A local optimization

Local value numbering

- A local optimization over 3 address code
- Attempts to replace arithmetic operations (expensive) with copy instructions (cheap)
- Can be extended to a regional optimization using flow analysis
- We will cover in later lectures.

Local value numbering

- A local optimization over 3 address code
- Attempts to replace arithmetic operations (expensive) with copy instructions (cheap)
- Can be extended to a regional optimization using flow analysis
- We will cover in later lectures.

```
a = b + c;
b = a - d;
c = b + c;
d = a - d;
```


Local value numbering

- A local optimization over 3 address code
- Attempts to replace arithmetic operations (expensive) with copy instructions (cheap)
- Can be extended to a regional optimization using flow analysis
- We will cover in later lectures.

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{a}=\mathrm{b}+\mathrm{c} ; \\
\mathrm{b}=\mathrm{a}-\mathrm{d} ; \\
\mathrm{c}=\mathrm{b}+\mathrm{c} ; \\
\mathrm{d}=\mathrm{a}-\mathrm{d} ;
\end{array}
\end{aligned} \xrightarrow{\text { valid? }} \begin{aligned}
& \mathrm{a}=\mathrm{b}+\mathrm{c} ; \\
& \mathrm{b}=\mathrm{a}-\mathrm{d} ; \\
& \mathrm{c}=\mathrm{a} ; \\
& \mathrm{d}=\mathrm{a}-\mathrm{d} ;
\end{aligned}
$$

Local value numbering

- A local optimization over 3 address code
- Attempts to replace arithmetic operations (expensive) with copy instructions (cheap)
- Can be extended to a regional optimization using flow analysis
- We will cover in later lectures.

```
| \begin{array}{l}{\textrm{a}=\textrm{b}+\textrm{c};}\\{\textrm{b}=\textrm{a}-\textrm{d};}\\{\textrm{c}=\textrm{b}+\textrm{c};}\\{\textrm{d}=\textrm{a}-\textrm{d};}\end{array}}\xrightarrow{}{\mathrm{ valid? }}\quad\begin{array}{l}{\textrm{a}=\textrm{b}+\textrm{c};}\\{\textrm{b}=\textrm{a}-\textrm{d};}\\{\textrm{c}=\textrm{a};}\\{\textrm{d}=\textrm{a}-\textrm{d};}\end{array}\quad\mathrm{ No! Because b is redefined
```


Local value numbering

- A local optimization over 3 address code
- Attempts to replace arithmetic operations (expensive) with copy instructions (cheap)
- Can be extended to a regional optimization using flow analysis
- We will cover in later lectures.

$\left.$| $\mathrm{a}=\mathrm{b}+\mathrm{c} ;$ |
| :--- |
| $\mathrm{b}=\mathrm{a}-\mathrm{d} ;$ |
| $\mathrm{c}=\mathrm{b}+\mathrm{c} ;$ |
| $\mathrm{d}=\mathrm{a}-\mathrm{d} ;$ |$\quad \xrightarrow{\text { valid? }} \right\rvert\,$| $\mathrm{a}=\mathrm{b}+\mathrm{c} ;$ |
| :--- |
| $\mathrm{b}=\mathrm{a}-\mathrm{d} ;$ |
| $\mathrm{c}=\mathrm{b}+\mathrm{c} ;$ |
| $\mathrm{d}=\mathrm{b} ;$ |

Local value numbering

- A local optimization over 3 address code
- Attempts to replace arithmetic operations (expensive) with copy instructions (cheap)
- Can be extended to a regional optimization using flow analysis
- We will cover in later lectures.
$\mathrm{a}=\mathrm{b}+\mathrm{c} ;$
$\mathrm{b}=\mathrm{a}-\mathrm{d} ;$
$\mathrm{c}=\mathrm{b}+\mathrm{c} ;$

$\mathrm{d}=\mathrm{a}-\mathrm{d} ;$$\xrightarrow{\text { valid? }}$| $\mathrm{a}=\mathrm{b}+\mathrm{c} ;$ |
| :--- |
| $\mathrm{b}=\mathrm{a}-\mathrm{d} ;$ |
| $\mathrm{c}=\mathrm{b}+\mathrm{c} ;$ |
| $\mathrm{d}=\mathrm{b} ;$ |

Local value numbering

Algorithm:

- Provide a number to each variable. Update the number each time the variable is updated.
- Keep a global counter; increment with new variables or assignments

```
a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;
```


Local value numbering

Algorithm:

- Provide a number to each variable. Update the number each time the variable is updated.
- Keep a global counter; increment with new variables or assignments

```
a2 = b0 + C1; Global_counter = 7
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;
```


Local value numbering

Algorithm: Now that variables are numbered

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

```
a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;
```


Local value numbering

Algorithm: Now that variables are numbered

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\begin{array}{r}
\mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 \\
\mathrm{~b} 4=\mathrm{a} 2-\mathrm{d} 3 \\
\mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 \\
\mathrm{~d} 6=\mathrm{a} 2-\mathrm{d} 3
\end{array}
$$

Local value numbering

Algorithm: Now that variables are numbered

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 \\
& \mathrm{~b} 4=\mathrm{a} 2-\mathrm{d} 3 \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 \\
& \mathrm{~d} 6=\mathrm{a} 2-\mathrm{d} 3
\end{aligned}
$$

Local value numbering

Algorithm: Now that variables are numbered

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\begin{aligned}
\mathrm{a} 2 & =\mathrm{b} 0+\mathrm{c} 1 ; \\
\mathrm{b} 4 & =\mathrm{a} 2-\mathrm{d} 3 ; \\
\mathrm{c} 5 & =\mathrm{b} 4+\mathrm{c} 1 ; \\
\mathrm{d} 6 & =\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned}
$$

Local value numbering

Algorithm: Now that variables are numbered

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned}
$$

Local value numbering

Algorithm: Now that variables are numbered

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\begin{align*}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 \\
& \mathrm{~b} 4=\mathrm{a} 2-\mathrm{d} 3 \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 \\
& \mathrm{~d} 6=\mathrm{a} 2-\mathrm{d}
\end{align*}
$$

$\mathrm{H}=\{$
"b0 + c1" : "a2",
"a2 - d3" : "b4",

Local value numbering

Algorithm: Now that variables are numbered

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned}
$$

$H=\{$

mismatch due to numberings!

Local value numbering

Algorithm: Now that variables are numbered

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { H }=\text { \{ } \\
& \text { "b0 + c1" : "a2", } \\
& \text { "a2 - d3" : "b4", } \\
& \text { "b4 + c1" : "c5", } \\
& \text { \} }
\end{aligned}
$$

Local value numbering

Algorithm: Now that variables are numbered

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2-\mathrm{d} 3 ;
\end{aligned}
$$

$$
\begin{aligned}
H=\{ & " b 0+c 1 ": ~ " a 2 ", \\
& " a 2-d 3 ": ~ " b 4 ", \\
& " b 4+c 1 ": ~ " c 5 ",
\end{aligned}
$$

Local value numbering

Algorithm: Now that variables are numbered

- Iterate sequentially through instructions. Keep a hash table of the rhs (numbered variables and operation) mapped to their Ihs.
- At each step, check to see if the rhs has already been computed.

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{b} 0+\mathrm{c} 1 ; \\
& \mathrm{b} 4=\mathrm{a} 2-\mathrm{d} 3 ; \\
& \mathrm{c} 5=\mathrm{b} 4+\mathrm{c} 1 ; \\
& \mathrm{b} 44=4 ; \\
& \mathrm{d} 6=\mathrm{b} 4 ;
\end{aligned}
$$

What else can we do?

What else can we do?

Consider this snippet:

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{c} 1-\mathrm{b} 0 ; \\
& \mathrm{f} 4=\mathrm{d} 3 * \mathrm{a} 2 ; \\
& \mathrm{c} 5=\mathrm{b} 0-\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{f} 4 ;
\end{aligned}
$$

Commutative operations

What is the definition of commutative?

Commutative operations

What is the definition of commutative?
x OP $y==y$ OP x

What operators are commutative? Which ones are not?

Adding commutativity to local value numbering

- For commutative operators (e.g. + *), the analysis should consider a deterministic order of operands.
- You can use variable numbers or lexigraphical order

Local value numbering: commutative operations

Algorithm optimization:

- for commutative operations, re-order operands into a deterministic order

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{c} 1-\mathrm{b} 0 ; \\
& \mathrm{f} 4=\mathrm{d} 3 * \mathrm{a} 2 ; \\
& \mathrm{c} 5=\mathrm{b} 0-\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2 * \mathrm{~d} 3 ;
\end{aligned}
$$

Local value numbering: commutative operations

Algorithm optimization:

- for commutative operations, re-order operands into a deterministic order

$$
\longrightarrow \begin{aligned}
& \mathrm{a} 2=\mathrm{c} 1-\mathrm{b} 0 ; \\
& \mathrm{f} 4=\mathrm{d} 3 * \mathrm{a} 2 ; \\
& \mathrm{c} 5=\mathrm{b} 0-\mathrm{c} 1 \\
& \mathrm{~d} 6=\mathrm{a} 2 * \mathrm{~d} 3
\end{aligned}
$$

$\mathrm{H}=\{$
"c1 - b0" : "a2",

$$
\text { \} }
$$

Local value numbering: commutative operations

Algorithm optimization:

- for commutative operations, re-order operands into a deterministic order

$$
\begin{aligned}
& \text { a2 }=c 1-b 0 ; \\
& \text { f4 } 4=\text { d3 * a2; } \\
& c 5=b 0-c 1 ; \\
& d 6=a 2 \text { * d3; }
\end{aligned}
$$

```
H = {
    "c1 - b0" : "a2",
}
```


Local value numbering: commutative operations

Algorithm optimization:

- for commutative operations, re-order operands into a deterministic order

$$
\longrightarrow \begin{aligned}
& \mathrm{a} 2=\mathrm{c} 1-\mathrm{b} 0 ; \\
& \mathrm{f} 4=\mathrm{d} 3 * \mathrm{a} 2 ; \\
& \mathrm{c} 5=\mathrm{b} 0-\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2 * \mathrm{~d} 3 ;
\end{aligned}
$$

$H=\{$

$$
\begin{aligned}
& \text { "c1 - b0" : "a2", } \\
& \text { "a2 * d3" : "f4", }
\end{aligned}
$$

$$
\}
$$

Local value numbering: commutative operations

Algorithm optimization:

- for commutative operations, re-order operands into a deterministic order

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{c} 1-\mathrm{b} 0 \\
& \mathrm{f} 4=\mathrm{d} 3 * \mathrm{a} 2 \\
& \mathrm{c} 5=\mathrm{b} 0-\mathrm{c} 1 \\
& \mathrm{~d} 6=\mathrm{a} 2 * \mathrm{~d} 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { "c1 - b0" : "a2", } \\
& \text { "a2 * d3" : "f4", }
\end{aligned}
$$

Local value numbering: commutative operations

Algorithm optimization:

- for commutative operations, re-order operands into a deterministic order

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{c} 1-\mathrm{b} 0 ; \\
& \mathrm{f} 4=\mathrm{d} 3 * \mathrm{a} 2 ; \\
& \mathrm{c} 5=\mathrm{b} 0-\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{a} 2 * \mathrm{~d} ;
\end{aligned}
$$

```
H = {
    "c1 - b0" : "a2",
    "a2 * d3" : "f4",
    "b0 - c1" : "c5",
}
```


Local value numbering: commutative operations

Algorithm optimization:

- for commutative operations, re-order operands into a deterministic order

```
a2 = c1 - b0;
f4 = d3 * a2;
c5 = b0 - c1;
d6 = a2 * d3;
```

```
H = {
"c1 - b0" : "a2",
"a2 * d3" : "f4",
    "b0 - c1" : "c5",
}
```


Local value numbering: commutative operations

Algorithm optimization:

- for commutative operations, re-order operands into a deterministic order

$$
\begin{aligned}
& \mathrm{a} 2=\mathrm{c} 1-\mathrm{b} 0 ; \\
& \mathrm{f} 4=\mathrm{d} 3 * \mathrm{a} 2 ; \\
& \mathrm{c} 5=\mathrm{b} 0-\mathrm{c} 1 ; \\
& \mathrm{d} 6=\mathrm{f} 4 ;
\end{aligned}
$$

H = \{

$$
\begin{aligned}
& \text { "c1 - b0" : "a2", } \\
& \text { "a2 * d3" : "f4", } \\
& \text { "b0 - c1" : "c5", }
\end{aligned}
$$

$$
\}
$$

Other considerations?

Local value numbering w/out adding registers

- We've assumed we have access to an unlimited number of virtual registers.
- In some cases we may not be able to add virtual registers
- If an expensive register allocation pass has already occurred.
- New constraint:
- We need to produce a program such that variables without the numbers is still valid.

Local value numbering w/out adding registers

- Example:

Local value numbering w/out adding registers

- Solutions?

$$
\begin{array}{|l|l|}
\hline \mathrm{a}=\mathrm{x}+\mathrm{yi} \\
\mathrm{a}=\mathrm{zi} \\
\mathrm{~b}=\mathrm{x}+\mathrm{yi}
\end{array} \xrightarrow{\text { numbering }} \xrightarrow{\mathrm{a} 3=\mathrm{x} 1+\mathrm{y} 2 ;} \begin{aligned}
& \mathrm{a} 5=\mathrm{z} 4 ; \\
& \mathrm{b} 6=\mathrm{x} 1+\mathrm{y} 2 ;
\end{aligned}
$$

Local value numbering w/out adding registers

- Keep another hash table to keep the current variable number

$$
\begin{aligned}
& \mathrm{a}=\mathrm{x}+\mathrm{y} ; \\
& \mathrm{a}=\mathrm{z} ; \\
& \mathrm{b}=\mathrm{x}+\mathrm{y} ; \\
& \mathrm{c}=\mathrm{x}+\mathrm{y} ;
\end{aligned}
$$

Local value numbering w/out adding registers

- Keep another hash table to keep the current variable number

```
a=x + y;
a=z;
b=x+y;
We cannot optimize the first line, but we can optimize the second
```


Local value numbering w/out adding registers

- Keep another hash table to keep the current variable number

$$
\begin{aligned}
& \mathrm{a}=\mathrm{x}+\mathrm{y} ; \\
& \mathrm{a}=\mathrm{z} ; \\
& \mathrm{b}=\mathrm{x}+\mathrm{y} ; \\
& \mathrm{c}=\mathrm{x}+\mathrm{y} ;
\end{aligned}
$$

Local value numbering w/out adding registers

- Keep another hash table to keep the current variable number

$$
\begin{aligned}
& \mathrm{a}=\mathrm{x}+\mathrm{y} ; \\
& \mathrm{a}=\mathrm{z} ; \\
& \mathrm{b}=\mathrm{x}+\mathrm{y} ; \\
& \mathrm{c}=\mathrm{x}+\mathrm{y} ;
\end{aligned}
$$

Local value numbering w/out adding registers

- Keep another hash table to keep the current variable number

$$
\begin{aligned}
\mathrm{a} 3 & =\mathrm{x} 1+\mathrm{y} 2 ; \\
\mathrm{a} 5 & =\mathrm{z} 4 ; \\
\mathrm{b} 6 & =\mathrm{x} 1+\mathrm{y} 2 ; \\
\mathrm{c} 7 & =\mathrm{x} 1+\mathrm{y} 2 ;
\end{aligned}
$$

Local value numbering w/out adding registers

- Keep another hash table to keep the current variable number

$$
\longrightarrow \quad \begin{aligned}
& \mathrm{a} 3=\mathrm{x} 1+\mathrm{y} 2 ; \\
& \mathrm{a} 5=\mathrm{z} 4 ; \\
& \mathrm{b} 6=\mathrm{x}=\mathrm{y}+ \\
& \mathrm{c} 7=\mathrm{x}=\mathrm{y}+ \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \text { Current_val = \{ } \\
& \} \\
& \begin{array}{l}
H=\{ \\
\}
\end{array}
\end{aligned}
$$

Local value numbering w/out adding registers

- Keep another hash table to keep the current variable number

$$
\begin{aligned}
& \text { Current_val = \{ "a" : 3, } \\
& \} \\
& H=\{" x 1+y 2 ": " a 3 ", \\
& \}
\end{aligned}
$$

Local value numbering w/out adding registers

- Keep another hash table to keep the current variable number

$$
\begin{aligned}
& \text { Current_val = \{ "a" : 3, } \\
& \} \\
& H=\{" x 1+y 2 ": " a 3 ", \\
& \}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a} 3=\mathrm{x} 1+\mathrm{y} 2 ; \\
& \mathrm{a} 5=\mathrm{z} 4 ; \\
& \mathrm{b} 6=\mathrm{x} 1+\mathrm{y} 2 ; \\
& \mathrm{c} 7=\mathrm{x} 1+\mathrm{y} 2 ;
\end{aligned}
$$

Local value numbering w/out adding registers

- Keep another hash table to keep the current variable number

$$
\begin{aligned}
& \text { Current_val = \{ "a" : 5, } \\
& \} \\
& \mathrm{H}=\left\{{ }^{\prime} \mathrm{x} 1+\mathrm{y} 2\right. \text { " : "a3", } \\
& \}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a} 3=\mathrm{x} 1+\mathrm{y} 2 ; \\
& \mathrm{a} 5=\mathrm{z} 4 ; \\
& \mathrm{b} 6=\mathrm{x} 1+\mathrm{y} 2 ; \\
& \mathrm{c} 7=\mathrm{x} 1+\mathrm{y} 2 ;
\end{aligned}
$$

Local value numbering w/out adding registers

- Keep another hash table to keep the current variable number

$$
\begin{aligned}
& \mathrm{a} 3=\mathrm{x} 1+\mathrm{y} 2 ; \\
& \mathrm{a} 5=\mathrm{z} 4 ; \\
& \mathrm{b} 6=\mathrm{x}=\mathrm{y}+ \\
& \mathrm{c} 7=\mathrm{x} 1+\mathrm{y} 2 ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { Current_val = \{ "a" : 5, } \\
& \} \\
& \text { H = \{ "x1 + y2" : "a3", } \\
& \} \quad \text { " }
\end{aligned}
$$

Local value numbering w/out adding registers

- Keep another hash table to keep the current variable number

$$
\begin{aligned}
& \mathrm{a} 3=\mathrm{x} 1+\mathrm{y} 2 ; \\
& \mathrm{a} 5=\mathrm{z} 4 ; \\
& \mathrm{b} 6=\mathrm{x}=\mathrm{y}+ \\
& \mathrm{c} 7=\mathrm{x} 1+\mathrm{y} 2 ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { Current_val = \{ "a" : 5, } \\
& \} \\
& \text { H = \{ "x1 + y2" : "a3", } \\
& \}
\end{aligned}
$$

Local value numbering w/out adding registers

- Keep another hash table to keep the current variable number

$$
\longrightarrow \quad \begin{aligned}
& \mathrm{a} 3=\mathrm{x} 1+\mathrm{y} 2 ; \\
& \mathrm{a} 5=\mathrm{z} 4 ; \\
& \mathrm{b} 6=\mathrm{x} 1+\mathrm{y} 2 ; \\
& \mathrm{c} 7=\mathrm{x} 1+\mathrm{y} 2 ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { \} } \\
& \mathrm{H}=\{ \\
& \text { "x1 + y2" : "b6", } \\
& \text { \} }
\end{aligned}
$$

Local value numbering w/out adding registers

- Keep another hash table to keep the current variable number

$$
\begin{aligned}
& \mathrm{a} 3=\mathrm{x} 1+\mathrm{y} 2 ; \\
& \mathrm{a} 5=\mathrm{z} 4 ; \\
& \mathrm{b} 6=\mathrm{x}=\mathrm{y} 2 ; \\
& \mathrm{c} 7=\mathrm{x} 1+\mathrm{y} 2 ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { \} } \\
& \mathrm{H}=\{ \\
& \text { "x1 + y2" : "b6", } \\
& \text { \} }
\end{aligned}
$$

Local value numbering w/out adding registers

- Keep another hash table to keep the current variable number

$$
\begin{aligned}
& \mathrm{a} 3=\mathrm{x} 1+\mathrm{y}^{2} ; \\
& \mathrm{a} 5=\mathrm{z} 4 ; \\
& \mathrm{b} 6=\mathrm{x}= \\
& \mathrm{c} 7=\mathrm{y}=\mathrm{y} 2 \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \text { \} } \\
& H=\{ \\
& \text { "x1 + y2" : "b6", } \\
& \text { \} }
\end{aligned}
$$

Local value numbering w/out adding registers

- Keep another hash table to keep the current variable number

$$
\begin{aligned}
& \mathrm{a} 3=\mathrm{x} 1+\mathrm{y} 2 ; \\
& \mathrm{a} 5=\mathrm{z} 4 ; \\
& \mathrm{b} 6=\mathrm{x}=\mathrm{y}+ \\
& \mathrm{c} 7=\mathrm{b} 6 ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { \} } \\
& \mathrm{H}=\{ \\
& \text { "x1 + y2" : "b6", } \\
& \text { \} }
\end{aligned}
$$

Anything else we can add to local value numbering?

Anything else we can add to local value numbering?

- Final heuristic: keep sets of possible values

Local value numbering: value sets

- Final heuristic: keep sets of possible values

$$
\begin{aligned}
& \text { Current_val = \{ } \\
& \text { \} }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a}=\mathrm{x}+\mathrm{y} ; \\
& \mathrm{b}=\mathrm{x}+\mathrm{y} ; \\
& \mathrm{a}=\mathrm{z} ; \\
& \mathrm{c}=\mathrm{x}+\mathrm{y} ;
\end{aligned}
$$

$$
\begin{aligned}
& H=\{ \\
& \}
\end{aligned}
$$

Local value numbering: value sets

- Final heuristic: keep sets of possible values

```
Current_val = {
}
```

$$
\begin{aligned}
& \mathrm{a} 3=x 1+y 2 ; \\
& \mathrm{b} 4=x 1+y 2 ; \\
& \mathrm{a} 6=\mathrm{z} 5 ; \\
& \mathrm{c} 7=\mathrm{x} 1+\mathrm{y} 2
\end{aligned}
$$

$$
\begin{aligned}
& H=\{ \\
& \}
\end{aligned}
$$

Local value numbering: value sets

- Final heuristic: keep sets of possible values

$$
\begin{aligned}
\text { Current_val = \{ "a" : 6, } \\
\qquad \text { "b" : 4 }
\end{aligned}
$$

\}

$$
\begin{aligned}
& \mathrm{a} 3=\mathrm{x} 1+\mathrm{y} 2 ; \\
& \mathrm{b} 4=\mathrm{a} 3 ; \\
& \mathrm{a} 6=\mathrm{z} 5 ; \\
& \mathrm{c} 7=\mathrm{x} 1+\mathrm{y} 2 ;
\end{aligned}
$$

$$
\begin{aligned}
& H=\{ \\
& \}
\end{aligned}
$$

Local value numbering: value sets

- Final heuristic: keep sets of possible values

$$
\begin{aligned}
\text { Current_val }=\left\{\begin{array}{l}
\text { "a" }: 6,
\end{array}\right. \\
\qquad " \mathrm{b"}: 4
\end{aligned}
$$

\}

$$
\begin{aligned}
& \mathrm{a} 3=\mathrm{x} 1+\mathrm{y} 2 ; \\
& \mathrm{b} 4=\mathrm{a} 3 ; \\
& \mathrm{a} 6=\mathrm{z} 5 ; \\
& \mathrm{c} 7=\mathrm{x}= \\
&
\end{aligned}
$$

$$
\begin{aligned}
& H=\{ \\
& \}
\end{aligned}
$$

Local value numbering: value sets

- Final heuristic: keep sets of possible values

$$
\begin{aligned}
& \text { Current_val = \{ } \\
& \text { "a" : 6, } \\
& " b ": 4
\end{aligned}
$$

\}

$$
\begin{aligned}
& \mathrm{a} 3=\mathrm{x} 1+\mathrm{y} 2 ; \\
& \mathrm{b} 4=\mathrm{a} 3 ; \\
& \mathrm{a} 6=\mathrm{z} 5 ; \\
& \mathrm{c} 7=\mathrm{x} 1+\mathrm{y} 2
\end{aligned}
$$

but we could have replaced it with b4!

Local value numbering: value sets

- Final heuristic: keep sets of possible values

$$
\xrightarrow{\begin{array}{l}
\text { rewind to } \\
\text { this point }
\end{array}} \begin{aligned}
& \mathrm{a} 3=\mathrm{x} 1+\mathrm{y} 2 ; \\
& \mathrm{b} 4=\mathrm{x} 1+\mathrm{y} 2 ; \\
& \mathrm{a} 6=\mathrm{z} 5 ; \\
& \mathrm{c} 7=\mathrm{x} 1+\mathrm{y} 2 ;
\end{aligned}
$$

$$
\begin{aligned}
& H=\{ \\
& \}
\end{aligned}
$$

Local value numbering: value sets

- Final heuristic: keep sets of possible values

```
Current_val = {
\[
\begin{aligned}
& \text { "a" : 3, } \\
& " b ": ~ 4
\end{aligned}
\]
\}
```

$$
\longrightarrow \begin{aligned}
& \mathrm{a} 3=x 1+y 2 ; \\
& \mathrm{b} 4=\mathrm{x} 4 ; \\
& \mathrm{a} 6=\mathrm{z} 5 ; \\
& \mathrm{c} 7=\mathrm{x}=\mathrm{y}+\mathrm{y} ;
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}=\{ \\
& \} \\
& \}
\end{aligned}
$$

Local value numbering: value sets

- Final heuristic: keep sets of possible values
Current_val = {
Current_val = {
"a" : 6,
"a" : 6,
\}
H = {
H = {
}
}
fast forward
again
$\mathrm{a} 3=\mathrm{x} 1+\mathrm{y} 2 ;$
$\mathrm{b} 4=\mathrm{a} 3 ;$
$\mathrm{a} 6=\mathrm{z}=$
$\mathrm{c} 7=\mathrm{x}=$

Local value numbering: value sets

- Final heuristic: keep sets of possible values

$$
\begin{aligned}
& \text { Current_val = \{ } \\
& \qquad \begin{array}{l}
\text { "a" }: 6, \\
\\
\\
\text { "b" }: 4
\end{array}
\end{aligned}
$$

Local value numbering: Memory

- Consider a 3 address code that allows memory accesses

```
a[i] = x[j] + y[k];
b[i] = x[j] + y[k];
```

is this transformation allowed? No!

```
a[i] = x[j] + y[k];
b[i] = a[i];
```

only if the compiler can prove that a does not alias x and y

In the worst case, every time a memory location is updated, the compiler must update the value for all pointers.

Local value numbering: Memory

- How to number:
- Number each pointer/index pair

$$
\begin{aligned}
& (\mathrm{a}[\mathrm{i}], 3)=(\mathrm{x}[j], 1)+(\mathrm{y}[\mathrm{k}], 2) ; \\
& \mathrm{b}[\mathrm{i}]=\mathrm{x}[j]+\mathrm{y}[\mathrm{k}] ;
\end{aligned}
$$

Local value numbering: Memory

- How to number:
- Number each pointer/index pair
- Any pointer/index pair that might alias must be incremented at each instruction

```
(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);
```


Local value numbering: Memory

- How to number:
- Number each pointer/index pair
- Any pointer/index pair that might alias must be incremented at each instruction

```
(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);
```

compiler analysis:
can we trace $\mathrm{a}, \mathrm{x}, \mathrm{y}$ to
a = malloc (...);
$\mathrm{x}=$ malloc (...);
y = malloc (...);
// a, x, y are never overwritten

Local value numbering: Memory

- How to number:
- Number each pointer/index pair
- Any pointer/index pair that might alias must be incremented at each instruction

$$
\begin{aligned}
& (a[i], 3)=(x[j], 1)+(y[k], 2) ; \\
& (b[i], 6)=(x[j], 1)+(y[k], 2) ;
\end{aligned}
$$

in this case we do not have to update the number
compiler analysis:
can we trace $\mathrm{a}, \mathrm{x}, \mathrm{y}$ to
$\mathrm{a}=\operatorname{malloc}(\ldots)$;
$\mathrm{x}=$ malloc (...);
y = malloc (...);
// a, x, y are never overwritten

Local value numbering: Memory

- How to number:
- Number each pointer/index pair
- Any pointer/index pair that might alias must be incremented at each instruction

```
(a[i],3) = (x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);
```

programmer annotations can also tell the compiler that no other pointer can access the memory pointed to by a

Local value numbering: Memory

- How to number:
- Number each pointer/index pair
- Any pointer/index pair that might alias must be incremented at each instruction

```
(a[i],3)=(x[j],1) + (y[k],2);
(b[i],6) = (x[j],4) + (y[k],5);
```

in this case we do not have to update the number

restrict a

programmer annotations can also tell the compiler that no other pointer can access the memory pointed to by a

Local value numbering: Memory

- How to number:
- Number each pointer/index pair
- Any pointer/index pair that might alias must be incremented at each instruction

```
(a[i],3) = (x[j],1) + (y[k], 2);
(b[i],6) = (a[i], 3);
```


Optimizing over wider regions

- Local value numbering operated over just one basic block.
- We want optimizations that operate over several basic blocks (a region), or across an entire procedure (global)
- For this, we need Control Flow Graphs and Flow Analysis

