CSE211: Compiler Design

 Oct. 18, 2021- Topic: Introduction to Module 2: analysis and optimizations!
- Questions:
- What sort of compiler optimizations do you know about?
- What sort of intermediate representations do you know about?

Announcements

- Homework 1 is out
- Due on the $25^{\text {th }}$
- One week!
- No extensions
- Get your paper reading approved by me by Monday
- No extensions, 5% of your grade
- One more office hour:
- Thursday 3 - 5 PM

Announcements

- I will be gone Monday and Wednesday next week to attend a khronos group meeting.
- The schedule is still in flux:
- either I will hold class synchronously on Zoom
- Or provide asynchronous lectures
- Maybe a combination, stay tuned analysis

A string

A string

Language
Recognizer for language L

Where most optimizations and flow analysis happens!

Intermediate representations (IRs)

- Intermediate step between human-accessible programming languages and horrible machine ISAs
- Ideal for analysis because:
- More regularity than high-level languages (simple instructions)
- Less constraints than ISA languages (virtual registers)
- Machine-agnostic optimizations
- See Godbolt example

$$
\begin{aligned}
& \mathrm{X}=\mathrm{Y}+\mathrm{zi} \quad \square \\
& \mathrm{~W}=\mathrm{y}+\mathrm{z} ;
\end{aligned} \quad \begin{aligned}
& \mathrm{X}=\mathrm{y}+\mathrm{z} ; \\
& \mathrm{W}=\mathrm{x} ;
\end{aligned}
$$

Different IRs

Many different IRs, each have different purposes

- Trees
- Abstract syntax trees
- Data-dependency trees
- Good for instruction scheduling
- Textual
- 3 address code
- Good for removing redundant expressions
- Graphs
- Control flow graphs
- Good for data flow analysis (finding uninitialized variables)

Different IRs

Many different IRs, each have different purposes

- Trees
- Abstract syntax trees
- Data-dependency trees
- Good for instruction scheduling
- Textual
- 3 address code
- Good for removing redundant expressions
- Graphs
- Control flow graphs
- Good for data flow analysis (finding uninitialized variables)

What are some examples of a modern compiler pipeline?

GPUs often have many
IRs... why?

Abstract Syntax Trees

- Remember the expression parse tree
input: 2-3-4

Operator	Name	Productions
,+-	expr	: expr PLUS term \| expr MINUS term \| term
$*, /$	term	: term TIMES pow \| term DIV pow \| Pow
^	pow	: factor CARROT pow \| factor
()	factor	LPAR expr RPAR I NUM

Abstract Syntax Trees

- Convert into an AST

Much more compact!

```
                                    input: 2-3-4
```


Abstract Syntax Trees

- Convert into an AST

Much more compact!
input: 2-3-4

Abstract Syntax Trees

- Easier to see bigger trees, e.g. quadratic formula:

$$
\begin{array}{r}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\left(-b-\operatorname{sqrt}\left(b^{*} b-4^{*} a^{*} c\right)\right) /\left(2^{*} a\right)
\end{array}
$$

$$
x=\left(-b-\operatorname{sqrt}\left(b^{*} b-4^{*} a * c\right)\right) /\left(2^{*} a\right)
$$

3 address code IR

- Each instruction consists of 3 "addresses"
- Address here means a virtual register or value
- unlimited virtual registers
- represented many ways:

```
rx = ry OP rz;
r5 =r3 +r6;
r6 =r0*r7;
```


3 address code IR

- Each instruction consists of 3 "addresses"
- Address here means a virtual register or value
- unlimited virtual registers
- represented many ways:

```
rx\leftarrowry op rz;
r5\leftarrowr3 + r6;
r6\leftarrowr0 * r7;
```


3 address code IR

- Each instruction consists of 3 "addresses"
- Address here means a virtual register or value
- unlimited virtual registers
- represented many ways:

```
rx = OP ry, rz;
r5 = add r3, r6;
r6 = mult r0, r7;
```


3 address code IR

- Each instruction consists of 3 "addresses"
- Address here means a virtual register or value
- unlimited virtual registers
- some instructions don't fit the pattern:

```
store ry, rz;
r5 = copy r3;
r6 = call(r0, r1, r2, r3...);
```


3 address code IR

- Each instruction consists of 3 "addresses"
- Address here means a virtual register or value
- unlimited virtual registers
- Other information:
- Annotated
- Typed
- Alignment

```
r5 = r3 + r6; !dbg !22
r6 = r0 *(int32) 67;
store(r1,r2), aligned 8
```

Convert this code to 3 address code
post-order traversal, creating virtual registers for each node

Convert this code to 3 address code post-order traversal, creating virtual registers for each node
r0 = neg (b);

Convert this code to 3 address code
post-order traversal, creating virtual registers for each node

$$
\begin{aligned}
& r 0=\text { neg }(b) ; \\
& r 1=b * b ;
\end{aligned}
$$

Convert this code to 3 address code
post-order traversal, creating virtual registers for each node

$$
\begin{aligned}
& r 0=\text { neg (b) } \\
& \text { r1 }=\mathrm{b} \star \mathrm{~b} ; \\
& \mathrm{r} 2=4 \star \mathrm{a} ;
\end{aligned}
$$

Convert this code to 3 address code
post-order traversal, creating virtual registers for each node

$$
\begin{aligned}
& r 0=\text { neg }(b) ; \\
& r 1=b * b ; \\
& r 2=4 * a ; \\
& r 3=r 2 * c ;
\end{aligned}
$$

Convert this code to 3 address code
post-order traversal, creating virtual registers for each node

$$
\begin{aligned}
& r 0=\operatorname{neg}(\mathrm{b}) ; \\
& \mathrm{r} 1=\mathrm{b} \star \mathrm{~b} ; \\
& \mathrm{r} 2=4 \star \mathrm{a} ; \\
& \mathrm{r} 3=r 2 * \mathrm{c} ; \\
& \mathrm{r} 4=r 1-r 3 ;
\end{aligned}
$$

Convert this code to 3 address code
post-order traversal, creating virtual registers for each node

$$
\begin{aligned}
& r 0=\operatorname{neg}(b) ; \\
& r 1=b * b ; \\
& r 2=4 * a ; \\
& r 3=r 2 * \mathrm{c} ; \\
& r 4=r 1-r 3 ; \\
& r 5=\operatorname{sqrt}(r 4) ;
\end{aligned}
$$

Convert this code to 3 address code
post-order traversal, creating virtual registers for each node

$$
\begin{aligned}
& r 0=\text { neg }(b) ; \\
& r 1=b * b ; \\
& r 2=4 * a ; \\
& r 3=r 2 * c ; \\
& r 4=r 1-r 3 ; \\
& r 5=\operatorname{sqrt}(r 4) ; \\
& r 6=r 0-r 5 ;
\end{aligned}
$$

Convert this code to 3 address code
post-order traversal, creating virtual registers for each node

$$
\begin{aligned}
& r 0=\text { neg }(b) ; \\
& r 1=b * b ; \\
& r 2=4 * a ; \\
& r 3=r 2 * c ; \\
& r 4=r 1-r 3 ; \\
& r 5=\operatorname{sqrt}(r 4) ; \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ;
\end{aligned}
$$

Convert this code to 3 address code
post-order traversal, creating virtual registers for each node

$$
\begin{aligned}
& r 0=\text { neg }(b) ; \\
& r 1=b * b ; \\
& r 2=4 * a ; \\
& r 3=r 2 * \mathrm{c} ; \\
& r 4=r 1-r 3 ; \\
& r 5=\operatorname{sqrt}(r 4) ; \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ; \\
& r 8=r 6 / r 7 ;
\end{aligned}
$$

Convert this code to 3 address code
post-order traversal, creating virtual registers for each node

$$
\begin{aligned}
& r 0=\text { neg }(b) ; \\
& r 1=b * b ; \\
& r 2=4 * a ; \\
& r 3=r 2 * c ; \\
& r 4=r 1-r 3 ; \\
& r 5=\operatorname{sqrt}(r 4) ; \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ; \\
& r 8=r 6 / r 7 ; \\
& x
\end{aligned}
$$

Convert this code to 3 address code

post-order traversal, creating virtual registers for each node

$$
\begin{aligned}
& r 0=\text { neg }(b) ; \\
& r 1=b * b ; \\
& r 2=4 * a ; \\
& r 3=r 2 * c ; \\
& r 4=r 1-r 3 ; \\
& r 5=\operatorname{sqrt}(r 4) ; \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ; \\
& r 8=r 6 / r 7 ; \\
& x=r 8 ;
\end{aligned}
$$

What now?

We can more easily compile to machine code OR

```
r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 - r3;
r5 = sqrt(r4);
r6 = r0 - r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;
```


What now?

We can perform more optimizations, example: by making a data-dependency graph (DDG)

```
r0 = neg(b);
rl = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 - r3;
r5 = sqrt(r4);
r6 = r0 - r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;
```

We can perform more optimizations, example: by making a data-dependency graph (DDG)

```
r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 - r3;
r5 = sqrt(r4);
r6 = r0 - r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;
```

We can perform more optimizations, example: by making a data-dependency graph (DDG)

$$
\begin{aligned}
& \text { r0 = neg (b) ; } \\
& r 1=\mathrm{b} * \mathrm{~b} \text {; } \\
& r 2=4 * a ; \\
& r 3=r 2 * c ; \\
& r 4=r 1-r 3 ; \\
& \text { r5 = sqrt(r4); } \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ; \\
& \text { r8 = r6 / r7; } \\
& \mathrm{x}=\mathrm{r} 8 \text {; }
\end{aligned}
$$

We can perform more optimizations, example: by making a data-dependency graph (DDG)

$$
\begin{aligned}
& \text { r0 = neg (b) ; } \\
& r 1=\mathrm{b} * \mathrm{~b} \text {; } \\
& r 2=4 * a ; \\
& r 3=r 2 * c ; \\
& r 4=r 1-r 3 ; \\
& \text { r5 = sqrt(r4); } \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ; \\
& r 8=r 6 / r 7 ; \\
& \mathrm{x}=\mathrm{r} 8 \text {; }
\end{aligned}
$$

We can perform more optimizations, example: by making a data-dependency graph (DDG)

$$
\begin{aligned}
& \text { r0 = neg (b) ; } \\
& r 1=\mathrm{b} * \mathrm{~b} \text {; } \\
& r 2=4 * a ; \\
& r 3=r 2 * c ; \\
& r 4=r 1-r 3 ; \\
& \text { r5 = sqrt(r4); } \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ; \\
& \text { r8 = r6 / r7; } \\
& \mathrm{x}=\mathrm{r} 8 \text {; }
\end{aligned}
$$

We can perform more optimizations, example: by making a data-dependency graph (DDG)

$$
\begin{aligned}
& \text { r0 = neg (b); } \\
& r 1=b * b ; \\
& r 2=4 * a ; \\
& r 3=r 2 * c ; \\
& r 4=r 1-r 3 ; \\
& \text { r5 = sqrt(r4); } \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ; \\
& \text { r8 = r6 / r7; } \\
& \mathrm{x}=r 8 \text {; }
\end{aligned}
$$

We can perform more optimizations, example: by making a data-dependency graph (DDG)

$$
\begin{aligned}
& \text { r0 = neg (b); } \\
& r 1=b * b ; \\
& r 2=4 * a ; \\
& r 3=r 2 * c ; \\
& r 4=r 1-r 3 ; \\
& \text { r5 = sqrt(r4); } \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ; \\
& r 8=r 6 / r 7 ; \\
& \mathrm{x}=r 8 \text {; }
\end{aligned}
$$

We can perform more optimizations, example: by making a data-dependency graph (DDG)

$$
\begin{aligned}
& r 0=\text { neg }(b) ; \\
& r 1=b * b ; \\
& r 2=4 * a ; \\
& r 3=r 2 * \mathrm{c} ; \\
& r 4=r 1-r 3 ; \\
& r 5=\operatorname{sqrt}(r 4) ; \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ; \\
& r 8=r 6 / r 7 ; \\
& x=r 8 ;
\end{aligned}
$$

We can perform more optimizations, example: by making a data-dependency graph (DDG)

$$
\begin{aligned}
& \text { r0 = neg (b); } \\
& r 1=b * b ; \\
& r 2=4 \text { * } a ; \\
& r 3=r 2 * c ; \\
& r 4=r 1-r 3 ; \\
& \text { r5 = sqrt(r4); } \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ; \\
& r 8=r 6 / r 7 ; \\
& \mathrm{x}=r 8 \text {; }
\end{aligned}
$$

We can perform more optimizations, example: by making a data-dependency graph (DDG)

$$
\begin{aligned}
& \text { r0 = neg (b); } \\
& r 1=b * b ; \\
& r 2=4 \text { * } a ; \\
& r 3=r 2 * c ; \\
& r 4=r 1-r 3 ; \\
& \text { r5 = sqrt(r4); } \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ; \\
& \text { r8 = r6 / r7; } \\
& \mathrm{x}=r 8 \text {; }
\end{aligned}
$$

We can perform more optimizations, example: by making a data-dependency graph (DDG)

$$
\begin{aligned}
& r 0=n e g(b) ; \\
& r 1=b * b ; \\
& r 2=4 * a ; \\
& r 3=r 2 * c ; \\
& r 4=r 1-r 3 ; \\
& r 5=r q r t(r 4) ; \\
& r 6=r 0-r 5 ; \\
& r 7=2 * a ; \\
& r 8=r 6 / r 7 ; \\
& x
\end{aligned}
$$

can be done in paralle!!
Can be hoisted!

We can perform more optimizations, example: by making a data-dependency graph (DDG)

```
r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c; should we hoist this one?
r4 = r1 - r3;
r5 = sqrt(r4);
r6 = r0 - r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;
```


Lots of considerations in optimizing

- More on instruction scheduling later
- Processor agnostic?
- Back to 3-address code
- We looked at expressions, but how about conditionals?

What about control flow?

- 3 address code typically contains a conditional branch:
br <reg>, <label0>, <label1>
if the value in <reg> is true, branch to <label0>, else branch to <label1>
br <label0>
unconditional branch

What about control flow?

```
if (expr) {
    // conditional statements
}
// after if statements
```

First, produce an AST

What about control flow?

```
if (expr) {
    // conditional statements
}
// after if statements
```

Next lower to 3 address code

What about control flow?

```
if (expr) {
    // conditional statements
}
// after if statements
r0 = <expression>;
br r0, conditional_stmts, after_if;
conditional stmts:
<conditional_statements>;
```



```
after_if:
```

after_if:
<after_if_statements>;

```
<after_if_statements>;
```


What about control flow?

```
while (expr)
    // inside_loop_statements
}
// after_loop_statements
```


What about control flow?

```
while (expr)
    // inside_loop_statements
}
// after_loop_statements
```


What about control flow?

```
while (expr)
    // inside_loop_statements
}
// after_loop_statements
```


What about control flow?

```
    while (expr) {
        // inside_loop_statements
    }
    // after_loop_statements
beginning_label:
r0 = <expr>
br r0, inside_loop, after_loop;
inside_loop:
<inside_loop_statements>
br beginning_label;
after_loop:
<after_loop_statements>
```


For loop

```
for (assignment; cond_expr; update_expr) {
    // inside_loop_statements
}
// after_loop_statements
```


For loop

```
for (assignment; cond_expr; update_expr) {
    // inside_loop_statements
}
// after_loop_statements
```


For loop

<assignment> <cond_expr> <update_expr> <after_loop_statements> \quad <inside_loop_statement

Can be de-sugared into a while loop:

For loop

Can be de-sugared into a while loop:

IR Program structure

- A sequence of 3 address instructions
- Programs can be split into Basic Blocks:
- A sequence of 3 address instructions such that:
- There is a single entry, single exit
- Important property: an instruction in a basic block can assume that all preceding instructions will execute

Single Basic Block

```
Label_x:
op1;
op2;
op3;
br label_z;
```


IR Program structure

- A sequence of 3 address instructions
- Programs can be split into Basic Blocks:
- A sequence of 3 address instructions such that:
- There is a single entry, single exit
- Important property: an instruction in a basic block can assume that all preceding instructions will execute

Single Basic Block

```
Label x:
op1;
op2;
op3;
br label_z;
```

Two Basic Blocks
Label_x:
op1;
op2;
op3;

Label
op4;
op5;

How might they appear in a
high-level language? What are some examples?

- A sequence of 3 address instructions
- Programs can be split into Basic Blocks:
- A sequence of 3 address instructions such that:
- There is a single entry, single exit

Two Basic Blocks
Single Basic Block

```
Label_x:
op1;
op2;
op3;
br label_z;
```

Label_x:
op1;
op2;
op3;

Label_y:
op4;
op5;

IR Program structure

- A sequence of 3 address instructions
- Programs can be split into Basic Blocks:
- A sequence of 3 address instructions such that:
- There is a single entry, single exit
- Important property: an instruction in a basic block can assume that all preceding instructions will execute

How might they appear in a high-level language?

Four Basic Blocks

Two Basic Blocks

Single Basic Block

```
Label_x:
op1;
op2;
op3;
br label_z;
```

Label_x:
op1;
op2;
op3;

Label_y:
op4;
op5;

Optimization levels

- Local optimizations:
- Optimizes an individual basic block
- Regional optimizations:
- Combines several basic blocks
- Global optimizations:
- operates across an entire procedure
- what about across procedures?

Optimization levels

- Local optimizations:

```
Label_0:
x = a + b;
y = a + b;
```

- Optimizes an individual basic block
- Regional optimizations:
- Combines several basic blocks
- Global optimizations:
- operates across an entire procedure
- what about across procedures?

Optimization levels

- Local optimizations:

- Optimizes an individual basic block
- Regional optimizations:
- Combines several basic blocks
- Global optimizations:
- operates across an entire procedure
- what about across procedures?

Optimization levels

- Local optimizations:
- Optimizes an individual basic block
- Regional optimizations:
- Combines several basic blocks

| Label_0:
 $\mathrm{x}=\mathrm{a}+\mathrm{b} ;$
 Label_1:
 $\mathrm{y}=\mathrm{a}+\mathrm{b} ;$ |
| :--- | :--- |
| CANNOT
 always optimized
 to | | Label_0: |
| :--- |
| $\mathrm{x}=\mathrm{a}+\mathrm{b} ;$ |
| Label_1: |
| $\mathrm{y}=\mathrm{x} ;$ |

CANNOT
always optimized
to
to
\longrightarrow

- Global optimizations:
- operates across an entire procedure
- what about across procedures?

$$
\begin{array}{|l|}
\hline \begin{array}{l}
\text { Label_0: } \\
\mathrm{x}=\mathrm{a}+\mathrm{b} ; \\
\mathrm{Y}=\mathrm{a}+\mathrm{b} ;
\end{array} \\
\end{array} \begin{aligned}
& \text { optimized } \\
& \text { to }
\end{aligned} \quad \begin{aligned}
& \text { Label_0: } \\
& \mathrm{x}=\mathrm{a}+\mathrm{b} ; \\
& \mathrm{y}=\mathrm{x} ;
\end{aligned}
$$

Optimization levels

- Local optimizations:
- Optimizes an individual basic block
- Regional optimizations:
- Combines several basic blocks

Label_0:
$\mathrm{x}=\mathrm{a}+\mathrm{b} ;$
Labe1_1:
$\mathrm{y}=\mathrm{a}+\mathrm{b} ;$

$$
\begin{array}{|l|}
\hline \begin{array}{l}
\text { Label_0: } \\
\mathrm{x}=\mathrm{a}+\mathrm{b} ; \\
\mathrm{y}=\mathrm{a}+\mathrm{b} ;
\end{array} \\
\end{array} \xrightarrow{\text { optimized }} \text { to } ~\left(\begin{array}{l}
\text { Label_0: } \\
\mathrm{x}=\mathrm{a}+\mathrm{b} ; \\
\mathrm{y}=\mathrm{x} ;
\end{array}\right.
$$

Combines several basic blocks

- Global optimizations:
- operates across an entire procedure
- what about across procedures?
code could skip Label_0, leaving x undefined!

```
br Label_1;
Label_0:
x = a + b;
Label_1:
y = a + b;
```


Regional Optimization

Regional Optimization

at a higher-level,
we cannot replace:
$y=a+b$.
with
$y=x ;$

$$
\begin{aligned}
& \begin{array}{l}
x=a+b ; \\
\text { if } \quad(x)\{ \\
\quad \ldots \\
\} \\
\text { else }\{ \\
\ldots \\
\} \\
y=a+b ;
\end{array}
\end{aligned}
$$

But if a and b are not redefined, then

$$
y=a+b
$$

can be replaced with

$$
y=x
$$

Next Class

- A basic-block local optimization
- local value numbering
- Friday: Control flow graphs and intra-block analysis

