CSE211: Compiler Design

 Oct. 16, 2023- Topic: Parsing with derivatives
- Questions:
- $\delta_{c}(r e)$, where re is:

$$
\cdot r e_{r h s} \cdot r e_{\text {lhs }}
$$

$$
\begin{aligned}
& \delta_{c}\left(r e_{r s s}\right) \cdot r e_{\text {hss }} / \\
& \text { if } \varepsilon \text { in } r e_{r h s} \text { then } \delta_{c}\left(r e_{\mid h s}\right) \text { else }\}
\end{aligned}
$$

- How is Homework 1 going?

Announcements

- Homework 1 is out!
- If you don't have a partner by today it is 20% off and you have to do it by yourself. Please update the google sheet.
- Use Piazza to ask about any language clarification questions
- By the end of today you should be able to do the whole homework
- Office hours on Thursday if you need help (only office hour before homework is due!)
- Paper review: paper needs to be approved by me by 1 week (preferably earlier!)

Announcements

- End of Module 1 today, next time starting module 2: analysis and optimization
- I will be gone Monday and Wednesday next week to attend a khronos group meeting.
- The schedule is still in flux:
- either I will hold class synchronously on Zoom
- Or provide asynchronous lectures
- Maybe a combination, stay tuned

Review

Review

- Scope

a very simple programming language

VARIABLE_NAME = "[a-z]+"
INCREMENT = " $\backslash+\backslash+"$
TYPE = "int"
LB = "\{"
$R B="\} "$
int x ;

SEMI = ";"
statements are either a declaration or an increment

How to track scope?

- Symbol table
- four methods:
- lookup(id) : lookup an id in the symbol table. Returns None if the id is not in the symbol table.
- insert(id,info) : insert a new id into the symbol table along with a set of information about the id.
- push_scope() : push a new scope to the symbol table
- pop_scope() : pop a scope from the symbol table

How to track scope?

- SymbolTable ST;
statement : LB statement_list RB
start a new scope S
remove the scope S

Think about how to solve with production rules

How to implement a symbol table?

- Example

```
int x = 0;
int Y = 0;
{
    Y++;
    int y = 0;
    x++;
    y++;
}
    {
        y++;
    }
}
x++;
Y++;
```

Next

- Parsing with derivatives!

Language Derivatives

- The Derivative of language L with respect to character $c\left(\right.$ noted $\left.\delta_{c}(\mathrm{~L})\right)$ is:
for all s in L, if s begins with c, then $s\left[1\right.$:] is in $\delta_{c}(L)$
- We'll go over some examples in the next slides

Language Derivatives Examples

- $L=\{" 1$ ", " $1+1$ ", " $1+1+1$ ", " $1+1+1+1$ ", ... $\}$
- $\delta_{+}(L)=\{ \}$
- $\delta_{1}(L)=\left\{{ }^{\prime \prime \prime}, "+1 ", "+1+1 " \ldots\right\}$
- $\delta_{1+}(L)=L$

Language Derivatives Examples

- $L=\left\{" a a a{ }^{\prime \prime}, ~ " a b ", ~ " b a ", ~ " b b a "\right\}$
- $\delta_{a}(L)=\{? ?\}$
- $\delta_{a a}(L)=\{? ?\}$
- $\delta_{b}(L)=\{? ?\}$
- $\delta_{b a}(L)=\{? ?\}$

AST for a regular expression

```
input: a.b |c*
```

abstract syntax tree

- re =
|\{\}
a (single character)
$\left|\mathrm{re}_{\mathrm{lhs}}\right| \mathrm{re}_{\mathrm{rhs}}$
$\mid \mathrm{re}_{\mathrm{hs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mid \mathrm{re}_{\text {starred }}$ *

AST for a regular expression

input: a.b |c*

- re =

each node is
also a regular expression!

AST for a regular expression

```
input: a.b |c*
```

abstract syntax tree

- In your homework you will need to generate an RE AST using production rules
- given a regular expression AST, how check if a string is in the language?
- parsing with derivatives!
each node is
also a regular expression!

Regular expressions are closed under derivatives

- Given a regular language L, any derivative of L is also a regular language.
- Let's try some!

Regular expressions are closed under derivatives

- $r e=a$
- $L=\left\{{ }^{\prime \prime} a^{\prime \prime}\right\}$
- $\delta_{a}(L)=\left\{{ }^{\text {"U }}\right\}$
- $\delta_{a}(r e)={ }^{\text {" }}$
- $\delta_{b}(r e)=\{ \}$

Regular expressions are closed under derivatives

- $r e=a \mid b$
- $L=\left\{{ }^{\prime \prime} a^{\prime \prime}, " b\right.$ " $\}$
- $\delta_{a}(r e)={ }^{\prime \prime \prime}$
- $\delta_{b}(r e)={ }^{\prime \prime \prime}$

Regular expressions are closed under derivatives

- $r e=a . a \mid a . b$
- $L=\{" a a ", " a b$ " $\}$
- $\delta_{a}(r e)=a \mid b$
- $\delta_{b}(r e)=\{ \}$

Regular expressions are closed under derivatives

- $r e=(a . b . c)^{*}$
- $L=\{$ "", " "abc", "abcabc", ...\}
- $\delta_{a}(L)=\{" b c$ ", "bcabc", "bcabc", ...\}
- $\delta_{a}(r e)=$ b.c.(a.b.c)*

What is a method for computing the derivative?

Consider the base cases

- $\delta_{c}(r e)=$ match re with:
- $\}$
return $\}$
-""
return $\}$
- a (single character)
if a $==c$ then return ε else return $\}$
- re =
|\{\}
| ε
| a (single character)
$\mathrm{re}_{\text {lhs }} \mid \mathrm{re}_{\text {rhs }}$
$\mathrm{re}_{\mathrm{lhs}} . \mathrm{re}_{\mathrm{rhs}}$
re starred

Derivative Recursive Cases

Consider the recursive cases:

- re =
- $\delta_{c}(r e)=$ match re with:
- re $e_{\text {lhs }} / r e_{r h s}$
return ??
|\{\}
| ε
| a (single character)
$\left|\mathrm{re}_{\mathrm{lhs}}\right| \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {lhs }}$. $\mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- $r e_{\text {starred }}{ }^{*}$
return??
- re $e_{\text {lhs }} . r e_{r h s}$
return

Regular expressions are closed under derivatives

- re = a.a | a.b
- $L=\{" a a ", " a b$ " $\}$
- $\delta_{a}(r e)=\{a, b\}=a \mid b$
- $\delta_{b}(r e)=\{ \}$

Derivative Recursive Cases

Consider the recursive cases:

- re =
- $\delta_{c}(r e)=$ match re with:
- re $e_{\text {lhs }} / r e_{r h s}$
return ??
|\{\}
| ε
| a (single character)
$\left|\mathrm{re}_{\mathrm{lhs}}\right| \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {lhs }}$. $\mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- $r e_{\text {starred }}{ }^{*}$
return ??
- re $e_{\text {lhs }} . r e_{r h s}$
return

Derivative Recursive Cases

Consider the recursive cases:

- re =
|\{\}
| ε
| a (single character)
$\mathrm{re}_{\mathrm{lhs}} \mid \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- $\mathrm{re}_{\text {starred }}{ }^{*}$
return ??
- re ${ }_{l h s} \cdot r e_{r h s}$
return

Regular expressions are closed under derivatives

- $r e=(a . b . c)^{*}$
- $L=\{$ "", " "abc", "abcabc", "abcabcabc" ...\}
- $\delta_{a}(r e)=\{" b c ", " b c a b c ", " b c a b c a b c ", \ldots\}$

Derivative Recursive Cases

Consider the recursive cases:

- re =
|\{\}
| ε
| a (single character)
$\mathrm{re}_{\mathrm{lhs}} \mid \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- $\mathrm{re}_{\text {starred }}{ }^{*}$
return ??
- re ${ }_{l h s} \cdot r e_{r h s}$
return

Derivative Recursive Cases

Consider the recursive cases:

- re =
|\{\}
| ε
| a (single character)
$\mathrm{re}_{\mathrm{lhs}} \mid \mathrm{re}_{\mathrm{rhs}}$
$r \mathrm{e}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
re starred *
- $r e_{\text {starred }}{ }^{*}$
- $\delta_{c}(r e)=$ match re with:
- $r e_{\text {lhs }} / r e_{\text {rhs }}$

$$
\text { return } \delta_{c}\left(r e_{l h s}\right) \mid \delta_{c}\left(r e_{r h s}\right)
$$

return $\delta_{c}\left(r e_{\text {starred }}\right) \cdot r e_{\text {starred }} *$

- re ${ }_{l h s} \cdot r e_{r h s}$

Some properties/optimizations

How do certain regular expressions combine?

- $\mathrm{a} \mid\{ \}=\mathrm{a}$
- $a^{\prime \prime \prime \prime}=a$
- a. $\}=\{ \}$
-"" * = ""
- $\left\}^{*}=\{ \}\right.$

Derivative Recursive Cases

Let's look at concatenation:

- $\delta_{c}(r e)=$ match re with:
- re $e_{l h s} \cdot r e_{r h s}$
return??

$$
\begin{aligned}
& \text { Example: } \\
& r e=a . b \\
& \delta_{a}(r e)=?
\end{aligned}
$$

Derivative Recursive Cases

Let's look at concatenation:

- $\delta_{c}(r e)=$ match re with:
- $r e_{l h s} \cdot r e_{r h s}$
return $\delta_{c}\left(r e_{l h s}\right) \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { Example: } \\
& r e=a . b \\
& \delta_{a}(r e)=b
\end{aligned}
$$

Derivative Recursive Cases

Let's look at concatenation:

- $\delta_{c}(r e)=$ match re with:
- $r e_{l h s} \cdot r e_{r h s}$
return $\quad \delta_{c}\left(r e_{l h s}\right) \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { Example: } \\
& r e=a . b \\
& \delta_{a}(r e)=b
\end{aligned}
$$

Derivative Recursive Cases

Let's look at concatenation:

- $\delta_{c}(r e)=$ match re with:

What about?

- re ${ }_{l h s} \cdot r e_{r h s}$
return $\quad \delta_{c}\left(r e_{l h s}\right) \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { Example: } \\
& r e=c^{*} \cdot a \\
& \delta_{a}(r e)=?
\end{aligned}
$$

Derivative Recursive Cases

Let's look at concatenation:

- $\delta_{c}(r e)=$ match re with:
- re $e_{l h s} \cdot r e_{r h s}$

$$
\text { return } \quad \delta_{c}\left(r e_{l h s}\right) \cdot r e_{r h s} /
$$

if "" in re ${ }_{\text {hs }}$ then $\delta_{c}\left(r e_{r \text { rs }}\right)$ else $\}$

Example:
$r e=c^{*} \cdot a$
$\delta_{a}(r e)={ }^{\prime \prime \prime}$

Derivative Recursive Cases

Consider the recursive cases:

- $\delta_{c}(r e)=$ match re with:
- re ${ }_{\text {lhs }} / r e_{r h s}$

$$
\text { return } \delta_{c}\left(r e_{l h s}\right) \mid \delta_{c}\left(r e_{r h s}\right)
$$

- $\mathrm{re}_{\text {starred }}{ }^{*}$

$$
\text { return } \delta_{c}\left(r e_{\text {starred }}\right) \cdot r e_{\text {starred }} *
$$

- re =
|\{\}
| ε
a (single character)
$\mathrm{re}_{\text {lhs }} \mid \mathrm{re}_{\text {rhs }}$
$r \mathrm{e}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- re ${ }_{\text {lhs }} \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { return } \delta_{c}\left(r e_{\text {lhs }}\right) \cdot r e_{\text {rhs }} / \\
& \quad \text { if ""' }^{\prime \prime} \text { in } r e_{\text {lhs }} \text { then } \delta_{c}\left(r e_{r h s}\right) \text { else }\}
\end{aligned}
$$

Nullable operator

- $\mathrm{NULL}(\mathrm{re})=$

$$
\text { if "" } \in r e \text { then: }
$$

else: \{\}

Nullable operator

- $\mathrm{NULL}(\mathrm{re})=$

if """ $\in r e$ then: "" else: \{\}

- re =
implement over a RE abstract syntax tree

What is a method for computing NULL?

Consider the base cases

- $\operatorname{NULL}(r e)=$ match re with:
- $\}$
return $\}$
-""
return ""
- $\mathrm{re}=$
| a (single character)
$\left|\mathrm{re}_{\text {lhs }}\right| \mathrm{re}_{\text {rhs }}$
$\mid \mathrm{re}_{\text {lhs }} . \mathrm{re}_{\text {rhs }}$
$\mid \mathrm{re}_{\text {starred }} *$
- a (single character)
return \{\}

What is a method for computing NULL?

Consider the recursive cases:

- $\operatorname{NULL}(r e)=$ match re with:
- re $e_{\text {lhs }} / r e_{\text {rhs }}$
return ??
- $r e_{\text {starred }}{ }^{*}$
return ??
- re =
$\mid\{ \}$
$\mid \varepsilon$
\mid
| a (single character)
$\left|\mathrm{re}_{\mathrm{lhs}}\right| \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\mathrm{lhs}}$. $\mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$
- re $e_{h s} \cdot r e_{r h s}$
return ??

What is a method for computing NULL?

Consider the recursive cases:

- re =
|\{\}
| ε
| a (single character)
$\mathrm{re}_{\text {lhs }} \mid \mathrm{re}_{\text {rhs }}$
$\mathrm{re}_{\mathrm{lh}}$. $\mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$
- $r e_{\text {starred }}{ }^{*}$
return ""
- re ${ }_{l h s} \cdot r e_{r h s}$

$$
\text { return NULL(re } \left.\left.{ }_{\text {lhs }}\right) \text {. NULL(re }{ }_{r h s}\right)
$$

Derivative Recursive Cases

Consider the recursive cases:

- $\delta_{c}(r e)=$ match re with:
- re ${ }_{\text {lhs }} / r e_{r h s}$

$$
\text { return } \delta_{c}\left(r e_{l h s}\right) \mid \delta_{c}\left(r e_{r h s}\right)
$$

- re starred *

$$
\text { return } \delta_{c}\left(r e_{\text {starred }}\right) \cdot r e_{\text {starred }} *
$$

- re =
|\{\}
| ε
a (single character)
$\mathrm{re}_{\text {lhs }} \mid \mathrm{re}_{\text {rhs }}$
$r \mathrm{e}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- re ${ }_{\text {lhs }} \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { return } \delta_{c}\left(r e_{\text {lhs }}\right) \cdot r e_{r h s} l \\
& \quad \text { if } \varepsilon \text { in } r e_{l h s} \text { then } \delta_{c}\left(r e_{r h s}\right) \text { else }\}
\end{aligned}
$$

Derivative Recursive Cases

Consider the recursive cases:

- $\delta_{c}(r e)=$ match re with:
- re ${ }_{\text {lhs }} / r e_{r h s}$

$$
\text { return } \delta_{c}\left(r e_{l h s}\right) \mid \delta_{c}\left(r e_{r h s}\right)
$$

- re starred *

$$
\text { return } \delta_{c}\left(r e_{\text {starred }}\right) \cdot r e_{\text {starred }} *
$$

- re =
|\{\}
| ε
a (single character)
$\mathrm{re}_{\text {lhs }} \mid \mathrm{re}_{\text {rhs }}$
$r \mathrm{e}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- re ${ }_{l h s} \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { return } \quad \delta_{c}\left(r e_{l h s}\right) \cdot r e_{r h s} / \\
& \quad \operatorname{NULL}\left(r e_{\mid h s}\right) \cdot \delta_{c}\left(r e_{r h s}\right)
\end{aligned}
$$

Parsing REs with derivative

given a function δ_{c} to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if re matches s ?

Parsing REs with derivative

given a function δ_{c} to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if re matches s ?

$$
L(r e)=\{. . s . .\}
$$

Parsing REs with derivative

given a function δ_{c} to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if re matches s ?

$$
\begin{aligned}
& \delta_{c 1}(r e) \\
& L\left(\delta_{c 1}(r e)\right)=\{. . s[1:] . .\}
\end{aligned}
$$

Parsing REs with derivative

given a function δ_{c} to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if $r e$ matches s ?

Parsing REs with derivative

given a function δ_{c} to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if $r e$ matches s ?

Parsing REs with derivative

given a function δ_{c} to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if $r e$ matches s ?

$L(r e)=\{. . s .$.	$\delta_{c 1}(r e)$	$\delta_{c 2}\left(\delta_{c 1}(\mathrm{re})\right)=\delta_{c 1, c 2}(\mathrm{re})$	$\delta_{s}(r e)$	Then re matches s
				$N U L L\left(\delta_{s}(r e)\right)={ }^{\prime \prime \prime}$
	$L\left(\delta_{c 1}(\mathrm{re})\right)=\{. . s[1:] ~ .$.	$L\left(\delta_{c 1, c 2}(\mathrm{re})\right)=\{. . s[2:] ~ .$.	$\mathrm{L}\left(\delta_{s}(r e)\right)=\left\{. .{ }^{\text {c" }}\right.$.. $\}$	

Homework discussion

- Part 2:
- Create RE AST node classes
- Base class: RE_AST_node
- Derive leaf node classes from base class:
- Character node
- Empty string node
- Empty set node
- Derive RE operator nodes:
- Unary operators; has one child
- Star
- Optional
- Binary operators:
- Union
- Concat

Homework discussion

- Part 2:
- Create RE AST when parsing:

Example using arithmetic

Example: executing a mathematical expression during parsing
Children values are passed in as an array C, indexed from left to right

Operator	Name	Productions	Actions	
+,-	expr	: expr PLUS term \| expr MINUS term	term	```{ret C[0] + C[2]} {ret C[0] - C[2]} {ret C[0]}```
*,/	term	: term TIMES factor : term DIV factor \| factor	```{ret C[0] * C[2]} {ret C[0] / C[2]} {ret C[0]}```	
()	factor	: LPAR expr RPAR \| NUM	$\begin{aligned} & \{\text { ret C[1] }\} \\ & \{\text { ret int }(C[0])\} \end{aligned}$	

We have just implemented a simple arithmetic interpreter!

Homework discussion

- Implement the derivative and NULLABLE functions

What is a method for computing the derivative?

Consider the base cases

- $\delta_{c}(r e)=$ match re with:
- $\}$
return $\}$
-""
return $\}$
- a (single character)
if a $==c$ then return ε else return $\}$
- re =
|\{\}
| ε
| a (single character)
$\mathrm{re}_{\text {lhs }} \mid \mathrm{re}_{\text {rhs }}$
$\mathrm{re}_{\mathrm{lhs}} . \mathrm{re}_{\mathrm{rhs}}$
re starred

Derivative Recursive Cases

Consider the recursive cases:

- $\delta_{c}(r e)=$ match re with:
- re ${ }_{\text {lhs }} / r e_{r h s}$

$$
\text { return } \delta_{c}\left(r e_{l h s}\right) \mid \delta_{c}\left(r e_{r h s}\right)
$$

- re starred *

$$
\text { return } \delta_{c}\left(r e_{\text {starred }}\right) \cdot r e_{\text {starred }} *
$$

- re =
|\{\}
| ε
a (single character)
$\mathrm{re}_{\text {lhs }} \mid \mathrm{re}_{\text {rhs }}$
$r \mathrm{e}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- re ${ }_{l h s} \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { return } \quad \delta_{c}\left(r e_{l h s}\right) \cdot r e_{r h s} / \\
& \quad \operatorname{NULL}\left(r e_{\mid h s}\right) \cdot \delta_{c}\left(r e_{r h s}\right)
\end{aligned}
$$

Homework discussion

- To match a string:
- Take the derivative with the first character, then the second, then the third...
- At the end of the string, check if the resulting RE is nullable
- Consider some tricks to help improve efficiency of your matcher:

How do certain regular expressions combine?

- $\mathrm{a} \mid\{ \}=\mathrm{a}$
- $a^{\prime \prime \prime \prime}=a$
- a. $\}=\{ \}$
-"" * = ""
- $\left\}^{*}=\{ \}\right.$

Part 1

- Difference between Statement and Expression?
- Expression returns a value
- Statement modifies the state of the program
- Statement production rules are at the top
- Should the parser accept an empty program?

