
CSE211: Compiler Design
Oct. 16, 2023

• Topic: Parsing with derivatives

• Questions:
• How is Homework 1 going?

Announcements

• Homework 1 is out!
• If you don’t have a partner by today it is 20% off and you have to do it by

yourself. Please update the google sheet.
• Use Piazza to ask about any language clarification questions
• By the end of today you should be able to do the whole homework
• Office hours on Thursday if you need help (only office hour before homework

is due!)

• Paper review: paper needs to be approved by me by 1 week
(preferably earlier!)

Announcements

• End of Module 1 today, next time starting module 2: analysis and
optimization

• I will be gone Monday and Wednesday next week to attend a khronos
group meeting.
• The schedule is still in flux:

• either I will hold class synchronously on Zoom
• Or provide asynchronous lectures
• Maybe a combination, stay tuned

Review

Review

• Scope

a very simple programming language

VARIABLE_NAME = “[a-z]+”
INCREMENT = “\+\+”
TYPE = “int”
LB = “{“
RB = “}”
SEMI = “;”

statements are either a declaration or an increment

int x;
{
 int y;
x++;

 y++;
}
y++;

How to track scope?

• Symbol table
• four methods:
• lookup(id) : lookup an id in the symbol table.
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id into the symbol
table along with a set of information about the id.

• push_scope() : push a new scope to the symbol table

• pop_scope() : pop a scope from the symbol table

How to track scope?

• SymbolTable ST;

statement : LB statement_list RB

start a new scope S remove the scope S

Think about how to solve with production rules

How to implement a symbol table?

• Example

HT 0

int x = 0;
int y = 0;
{
 y++;
 int y = 0;
 x++;
 y++;
}
{
 {
 y++;
 }
}
x++;
y++;

Stack of hash tables

Next

• Parsing with derivatives!

Language Derivatives

• The Derivative of language L with respect to character c (noted 𝛿c(L)) is:

• We’ll go over some examples in the next slides

for all s in L, if s begins with c, then s[1:] is in 𝛿c(L)

Language Derivatives Examples

• L = {“1”, “1+1”, “1+1+1”, “1+1+1+1”, …}

• 𝛿+ (L) = {}

• 𝛿1 (L) = {“”, “+1”, “+1+1” ...}

• 𝛿1+ (L) = L

Language Derivatives Examples

• L = {“aaa”, “ab”, “ba”, “bba”}

• 𝛿a (L) = {??}

• 𝛿aa (L) = {??}

• 𝛿b (L) = {??}

• 𝛿ba (L) = {??}

AST for a regular expression

abstract syntax tree

<|>

<.>

<“a”> <“b”>

<*>

<“c”>

relhs

relhs rerhs

rerhs

restarred

• re =
 |{}
 | “”
 | a (single character)
 | relhs | rerhs
 | relhs . rerhs
 | restarred *

input: a.b |c*

AST for a regular expression

abstract syntax tree

<|>

<.>

<“a”> <“b”>

<*>

<“c”>

relhs

relhs rerhs

rerhs

restarred

each node is
also a regular expression!

• re =
 |{}
 | “”
 | a (single character)
 | relhs | rerhs
 | relhs . rerhs
 | restarred *

input: a.b |c*

AST for a regular expression

abstract syntax tree

• In your homework you will
need to generate an RE AST
using production rules

• given a regular expression
AST, how check if a string is
in the language?

• parsing with derivatives!

<|>

<.>

<“a”> <“b”>

<*>

<“c”>

relhs

relhs rerhs

rerhs

restarred

each node is
also a regular expression!

input: a.b |c*

Regular expressions are closed under derivatives

• Given a regular language L, any derivative of L is also a regular
language.

• Let’s try some!

Regular expressions are closed under derivatives

• re = a

• L = {“a”}

• 𝛿a(L) = {“”}

• 𝛿a(re) = “”

• 𝛿b(re) = {}

Regular expressions are closed under derivatives

• re = a | b

• L = {“a”, “b”}

• 𝛿a(re) = “”

• 𝛿b(re) = “”

Regular expressions are closed under derivatives

• re = a.a | a.b

• L = {“aa”, “ab”}

• 𝛿a(re) = a | b

• 𝛿b(re) = {}

Regular expressions are closed under derivatives

• re = (a.b.c)*

• L = {“”, “abc”, “abcabc”, ...}
• 𝛿a (L)=	{“bc”, “bcabc”, “bcabc”, ...}
• 𝛿a(re) = b.c.(a.b.c)*

What is a method for computing the derivative?

Consider the base cases

• 𝛿c (re) = match re with:

• {}
 return {}

• “”

 return {}

• a (single character)
 if a == c then return 𝜀
 else return {}

• re =
|{}
| ε
| a (single character)

 | relhs | rerhs
 | relhs . rerhs
 | restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

 return	? ?

• restarred*
 return ? ?

• relhs . rerhs

 return ? ?

• re =
 |{}
 | ε
 | a (single character)

| relhs | rerhs
| relhs . rerhs
| restarred *

Regular expressions are closed under derivatives

• re = a.a | a.b

• L = {“aa”, “ab”}

• 𝛿a(re) = {a, b} = a | b

• 𝛿b(re) = {}

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

 return ??

• restarred*
 return ??

• relhs . rerhs

 return ? ?

• re =
 |{}
 | ε
 | a (single character)

| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

 return	𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
 return ? ?

• relhs . rerhs

 return ? ?

• re =
 |{}
 | ε
 | a (single character)

| relhs | rerhs
| relhs . rerhs
| restarred *

Regular expressions are closed under derivatives

• re = (a.b.c)*

• L = {“”, ”abc”, “abcabc”, “abcabcabc” …}

• 𝛿a(re) = {“bc”, “bcabc”, “bcabcabc”, ...}

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

 return	𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
 return ? ?

• relhs . rerhs

 return ? ?

• re =
 |{}
 | ε
 | a (single character)

| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

 return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
 return	𝛿c(restarred) . restarred*

• relhs . rerhs

 return ? ?

• re =
 |{}
 | ε
 | a (single character)

| relhs | rerhs
| relhs . rerhs
| restarred *

Some properties/optimizations

How do certain regular expressions combine?

• a | {} = a

• a . “” = a
• a . {} = {}

• “” * = “”
• {} * = {}

Derivative Recursive Cases

Let’s look at concatenation:

• 𝛿c (re) = match re with:

• relhs . rerhs
 return ? ? Example:

re = a.b

𝛿a(re) = ?

Derivative Recursive Cases

Let’s look at concatenation:

• 𝛿c (re) = match re with:

• relhs . rerhs
 return 𝛿c(relhs) . rerhs

Example:

re = a.b

𝛿a(re) = b

Derivative Recursive Cases

Let’s look at concatenation:

• 𝛿c (re) = match re with:

• relhs . rerhs
 return 𝛿c(relhs) . rerhs

Example:

re = a.b

𝛿a(re) = b

Derivative Recursive Cases

Let’s look at concatenation:

• 𝛿c (re) = match re with:

• relhs . rerhs
 return 𝛿c(relhs) . rerhs

Example:

re = c*.a

𝛿a(re) = ?

What about?

Derivative Recursive Cases

Let’s look at concatenation:

• 𝛿c (re) = match re with:

• relhs . rerhs
 return 𝛿c(relhs) . rerhs |

 if “” in relhs then 𝛿c(rerhs) else {}

Example:

re = c*.a

𝛿a(re) = “”

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

 return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
 return 𝛿c(restarred) . restarred*

• relhs . rerhs

 return 𝛿c(relhs) . rerhs |

 if “” in relhs then 𝛿c(rerhs) else {}

• re =
 |{}
 | ε
 | a (single character)

| relhs | rerhs
| relhs . rerhs
| restarred *

Nullable operator

• NULL(re) =
																									if “” ∈ 𝑟𝑒 then: “”
 else: {}

Nullable operator

• NULL(re) =
																									if “” ∈ 𝑟𝑒 then: “”
 else: {}

implement over a RE abstract syntax tree

<|>

<.>

<“a”> <“b”>

<*>

< “c”	>

• re =
 |{}
 | “”
 | a (single character)
 | relhs | rerhs
 | relhs . rerhs
 | restarred *

What is a method for computing NULL?

Consider the base cases

• NULL(re) = match re with:

• {}
 return {}

• “”

 return “”

• a (single character)
 return {}

• re =
|{}
| “”
| a (single character)

 | relhs | rerhs
 | relhs . rerhs
 | restarred *

What is a method for computing NULL?

Consider the recursive cases:

• NULL(re) = match re with:

• relhs | rerhs

 return ??

• restarred*
 return ??

• relhs . rerhs

 return ??

• re =
 |{}
 | ε
 | a (single character)

| relhs | rerhs
| relhs . rerhs
| restarred *

What is a method for computing NULL?

Consider the recursive cases:

• NULL(re) = match re with:

• relhs | rerhs

 return NULL(relhs) | NULL(rerhs)

• restarred*
 return “”

• relhs . rerhs

 return NULL(relhs) . NULL(rerhs)

• re =
 |{}
 | ε
 | a (single character)

| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

 return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
 return 𝛿c(restarred) . restarred*

• relhs . rerhs

 return 𝛿c(relhs) . rerhs |

 if 𝜀 in relhs then 𝛿c(rerhs) else {}

• re =
 |{}
 | ε
 | a (single character)

| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

 return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
 return 𝛿c(restarred) . restarred*

• relhs . rerhs

 return 𝛿c(relhs) . rerhs |

 NULL(relhs) . 𝛿c(rerhs)

• re =
 |{}
 | ε
 | a (single character)

| relhs | rerhs
| relhs . rerhs
| restarred *

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

L(re) = {.. s ..}

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

𝛿c1 (re)

L(𝛿c1 (re)) = {.. s[1:] ..}

L(re) = {.. s ..}

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

𝛿c1 (re) 𝛿c2 (𝛿c1 (re)) = 𝛿c1,c2 (re)

L(𝛿c1 (re)) = {.. s[1:] ..}

L(re) = {.. s ..}

L(𝛿c1,c2 (re)) = {.. s[2:] ..}

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

𝛿c1 (re) 𝛿c2 (𝛿c1 (re)) = 𝛿c1,c2 (re) 𝛿s(re)

L(𝛿c1 (re)) = {.. s[1:] ..} L(𝛿s(re)) = {.. 𝜀 ..}

L(re) = {.. s ..}

L(𝛿c1,c2 (re)) = {.. s[2:] ..}

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

𝛿c1 (re) 𝛿c2 (𝛿c1 (re)) = 𝛿c1,c2 (re)

NULL(𝛿s(re)) == “”

L(𝛿c1 (re)) = {.. s[1:] ..} L(𝛿s(re)) = {.. “” ..}

L(re) = {.. s ..}

L(𝛿c1,c2 (re)) = {.. s[2:] ..}

If this is true,
Then re matches s

𝛿s(re)

Homework discussion

• Part 2:
• Create RE AST node classes
• Base class: RE_AST_node
• Derive leaf node classes from base class:

• Character node
• Empty string node
• Empty set node

• Derive RE operator nodes:
• Unary operators; has one child

• Star
• Optional

• Binary operators:
• Union
• Concat

Homework discussion

• Part 2:
• Create RE AST when parsing:

Example using arithmetic

Operator Name Productions Actions

+,- expr : expr PLUS term
| expr MINUS term
| term

{ret C[0] + C[2]}
{ret C[0] - C[2]}
{ret C[0]}

*,/ term : term TIMES factor
: term DIV factor
| factor

{ret C[0] * C[2]}
{ret C[0] / C[2]}
{ret C[0]}

() factor : LPAR expr RPAR
| NUM

{ret C[1]}
{ret int(C[0])}

Example: executing a mathematical expression during parsing

Children values are passed in as an array C, indexed from left to right expr

expr <PLUS>

<NUM, 1>

<TIMES>termterm

factor

input: 1+5*6

term

<NUM, 5>

factor <NUM, 6>

factor

We have just implemented a simple arithmetic interpreter!

Homework discussion

• Implement the derivative and NULLABLE functions

What is a method for computing the derivative?

Consider the base cases

• 𝛿c (re) = match re with:

• {}
 return {}

• “”

 return {}

• a (single character)
 if a == c then return 𝜀
 else return {}

• re =
|{}
| ε
| a (single character)

 | relhs | rerhs
 | relhs . rerhs
 | restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

 return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
 return 𝛿c(restarred) . restarred*

• relhs . rerhs

 return 𝛿c(relhs) . rerhs |

 NULL(relhs) . 𝛿c(rerhs)

• re =
 |{}
 | ε
 | a (single character)

| relhs | rerhs
| relhs . rerhs
| restarred *

Homework discussion

• To match a string:
• Take the derivative with the first character, then the second, then the third…
• At the end of the string, check if the resulting RE is nullable

• Consider some tricks to help improve efficiency of your matcher:

How do certain regular expressions combine?

• a | {} = a

• a . “” = a
• a . {} = {}

• “” * = “”
• {} * = {}

Part 1

• Difference between Statement and Expression?
• Expression returns a value
• Statement modifies the state of the program
• Statement production rules are at the top
• Should the parser accept an empty program?

