CSE211: Compiler Design

Oct. 16, 2023

* 6, (re), where re is:
* Topic: Parsing with derivatives

® Iepps . I
8. (rems) - reps |

if e inre, then 6 (rey,) else {}

* Questions:
 How is Homework 1 going?

Announcements

* Homework 1 is out!

* |f you don’t have a partner by today it is 20% off and you have to do it by
yourself. Please update the google sheet.

* Use Piazza to ask about any language clarification questions
* By the end of today you should be able to do the whole homework

e Office hours on Thursday if you need help (only office hour before homework
is duel)

* Paper review: paper needs to be approved by me by 1 week
(preferably earlier!)

Announcements

* End of Module 1 today, next time starting module 2: analysis and
optimization

* | will be gone Monday and Wednesday next week to attend a khronos
group meeting.
* The schedule is still in flux:
 either | will hold class synchronously on Zoom

* Or provide asynchronous lectures
* Maybe a combination, stay tuned

Review

Review

* Scope

a very simple programming language

VARIABLE_NAME = “[a-z]+” int x;
INCREMENT = “\+\+” L

int y;
TYPE - ”int” X++;
LB — u{u y-|--|-;
RB — ((}II }
SEMI = “;”

statements are either a declaration or an increment

How to track scope?

* Symbol table

 four methods:
* lookup(id) : lookup an id in the symbol table.
Returns None 1f the 1d 1s not 1n the symbol table.

* insert(id,info) : insert a new 1d into the symbol
table along with a set of information about the id.

* push scope() : push a new scope to the symbol table

* pop_scope() : pop a scope from the symbol table

How to track scope?

e SymbolTable ST;

statement : LB statement_list RB

start a new scope S remove the scope S

Think about how to solve with production rules

How to implement a symbol table?

* Example

int x
int y
{
y++;
int y
X++;
y++;

HTO

Stack of hash tables

Next

* Parsing with derivatives!

Language Derivatives
* The Derivative of language L with respect to character ¢ (noted 6 (L)) is:

forall sin L, if s begins with ¢, then s[1:]isin § (L)

* We’ll go over some examples in the next slides

Language Derivatives Examples
o L={"1", “1+1", “1+1+1", “1+1+1+1", ...}
*0,(L)=1{}

° 51 (L) - {I/I; //+1I; /I+1+1ll...}

° 51+(L)=L

Language Derivatives Examples
o | = {”aaa’ﬁ ”(Jb’: ”ba’j ”bba”}

* 50 (L) = {??}
* 5aa (L) = {??}

* 9, (L) ={7?}

* 5ba (L) = {??}

AST for a regular expression

input: a.b |c*

abstract syntax tree

<|>
re
<> <*>
re,,,/ ws
restarred
o ”n
<“9”s <“b’>
a <IICII>

*re=

U

)

a (single character)
r€hs | s
(€hs - MCrhs

£
resta rred

AST for a regular expression

input: a.b |c*

*re=

abstract syntax tree

U

)

a (single character)
(€hs | Mrhs
I€starred re|hs . rerhs

£
resta rred

each node is
also a regular expression!

AST for a regular expression

input: a.b |c* .
* In your homework you will

need to generate an RE AST
using production rules

abstract syntax tree

e given a regular expression
AST how check if a string is
in the language?

* parsing with derivatives!

each node is
also a regular expression!

Regular expressions are closed under derivatives

* Given a regular language L, any derivative of L is also a regular
language.

e Let’s try some!

Regular expressions are closed under derivatives
‘re=a

L= {a")

* 84(L)={""}

+ 8,re) =

* d(re) = {}

Regular expressions are closed under derivatives
re=a /b

o L={"a" “b"}

+ 8,re) =

° 5b(re) - an

Regular expressions are closed under derivatives
*re=a.a [a.b

+ L = {“aa’, “ab”}

+ 8,(re)=a b

* d(re) = {}

Regular expressions are closed under derivatives
re=(a.b.c)*
o | ={"” “abc”, “abcabc”’, ...}

* 0, (L)={"bc”, “bcabc”, “bcabc’, ...}
d,(re) =b.c.(a.b.c)

What is a method for computing the derivative?

Consider the base cases

*re=

* §. (re) = match re with: 0
- -
return {} a (single character)
rhs | s
(€hs - MCrhs
return {} €starred *

g (single character)
if a ==cthenreturn ¢
else return {}

Derivative Recursive Cases

Consider the recursive cases:

* §. (re) = match re with:

* reps [réps

return ? ?

*
°r estarred
return ? ?

*r elhs T erhs
return ?77?

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred

Regular expressions are closed under derivatives
*re=a.a [a.b

+ L = {“aa’, “ab”}

* O4(re)={a, b}=a [b

* d(re) = {}

Derivative Recursive Cases

Consider the recursive cases:

* §. (re) = match re with:

* reps [réps

return ??

*
°r estarred
return ??

*r elhs T erhs
return ?77?

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred

Derivative Recursive Cases

Consider the recursive cases:

* 0. (re) = match re with:

* reps [réps

return 6 (rey) | 8. (req)

*
°r estarred
return ? ?

*r elhs T erhs
return ?77?

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred

Regular expressions are closed under derivatives
re=(a.b.c)*
e [={"" "abc” “abcabc”, “abcabcabc” ...}

* d,(re) = {“bc”, “bcabc”, “bcabcabc’, ...}

Derivative Recursive Cases

Consider the recursive cases:

* 0. (re) = match re with:

* reps [réps

return 6 (rey) | 8. (req)

*
°r estarred
return ? ?

*r elhs T erhs
return ?77?

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred

Derivative Recursive Cases

Consider the recursive cases:
°re =
* §. (re) = match re with: {}
€
a (single character)

r€hs | rerns
return 5c(relhs) | 5c (rerhs) r.elhs : rer‘hs

* reps [réps

k
. r.esta rred
°r estarred

x
return 0 (réqigrreq) - M€starred

*r elhs T erhs
return ?77?

Some properties/optimizations

How do certain regular expressions combine?
*al{l=a

.a‘(lllza

*a.{}=1}

° “wJi x _ «un

{H =1

Derivative Recursive Cases

Let’s look at concatenation:

* §. (re) = match re with:

*r elhs . r erhs
Example:
return ? ? p

re=a.b

O,(re)="7?

Derivative Recursive Cases

Let’s look at concatenation:

* §. (re) = match re with:

* rey . re
lhs rhs 5 Exam p le:
return o (rey) . re,.

re=a.b

o,re)=b

Derivative Recursive Cases

Let’s look at concatenation:

* §. (re) = match re with:

* rey . re
lhs rhs 5 Exam p le:
return o.rey.) . re,.

re=a.b

O,re)=b

Derivative Recursive Cases

Let’s look at concatenation:

* 0. (re) = match re with: What about?

* rey . re
lhs rhs 5 Exam p le:
return O.rey.) . re,,

re=c*.a

O,re)="7?

Derivative Recursive Cases

Let’s look at concatenation:

* 0. (re) = match re with:

*r elhs T erhs

return o(rey;) - req s |

if “” in re, then 6_(re,) else {}

Example:
re=c*.a

50(’.8) - (44

Derivative Recursive Cases

Consider the recursive cases:

* 0, (re) = match re with:

*r elhs / r erhs

return o (rey,) | 0. (re,)

*
*r estarred

x
return 0 (re rreq) - €starred

*r elhs T erhs

return o rey,) . re.. |

if “”in re, then 6 (re,,.) else {}

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred

Nullable operator

* NULL(re) =
if “” € re then:
else: {}

Nullable operator

* NULL(re) =
if “” € re then:
else: {}
°re =
implement over a RE abstract syntax tree {}
o))
<|>
T a (single character)
/<'>\ <> r€hs | M€hs
. . re
< an> <”b”> n |hS th
<c > €starred

What is a method for computing NULL?

Consider the base cases

* NULL(re) = match re with:

* {}

return {}

return “”

g (single character)
return {}

*re=

U

)

a (single character)
rhs | s
(€hs - MCrhs

£
r.esta rred

What is a method for computing NULL?

Consider the recursive cases:

°* re =
* NULL(re) = match re with: {
e
* Teps | rerms a (single character)
return ?? repns | remme
F€ihs - MC€rhs
* reurred” MCstarred *

return ??

*r elhs T erhs

return ??

What is a method for computing NULL?

Consider the recursive cases:

[re =
* NULL(re) = match re with: {}
E
* reps | rep a (single character)
return NULL(re;,,) | NULL(re,p) M€ ns | r€hs
F€ihs - MC€rhs
o« reg it r€ctarred *

on”»n

return

*r elhs T erhs

return NULL(re;,) . NULL(re,;)

Derivative Recursive Cases

Consider the recursive cases:

* 0, (re) = match re with:

*r elhs / r erhs

return o (rey,) | 0. (re,)

*
*r estarred

x
return 0 (re rreq) - €starred

*r elhs T erhs

return o rey,) . re.. |

if € in re, then o (re,,.) else {}

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred

Derivative Recursive Cases

Consider the recursive cases:

_ ° re =
* 0, (re) = match re with: 0
*r elhs / r erhs €]
return 8 (re,,.) | 8. (re.,.) a (single character)
rejns | réms
re,..re
r estarred t 5 () * Ihs ;;hs
return C r estarred T estarred resta rred

*r elhs T erhs

return o rey,) . re.. |

NULL(I'e/hS) . Sc(rerhs)

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

Lire)={..s..}

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

5c1 (I’E’)
Lire)={..s..}

L(6. (re)) ={..s[1:]..}

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

5c1 (I’E’) 6c2 (5c1 (re)) = 5c1,c2 (I’E)

Lire)={..s..}

L(5C1 (re)) = { 5[1] } L(5C1,C2 (re)) = { 5[2] }

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

5c1 (I’E’) 6c2 (5c1 (re)) = 5c1,c2 (I’E) 55(I’€)

Lire)={..s..}

L(6. (re)) ={.s[1:]..} L(6c1,co (re)) ={.. s[2:] ..} L(8(re)) ={.. € ..}

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

Lire)={..s..}

5c1 (I’ E’)

L(6. (re)) ={..s[1:]..}

6c2 (5c1 (re)) = 5c1,c2 (I’E)

L(5c1,c2 (re)) = { 5[2-'] }

dy(re)

L(8.(re)) = {..“” ..}

If this is true,
Then re matches s

NULL(6(re)) == "

Homework discussion

* Part 2:

* Create RE AST node classes
* Base class: RE_AST node

* Derive leaf node classes from base class:
* Character node
* Empty string node
* Empty set node

e Derive RE operator nodes:
* Unary operators; has one child
e Star
e Optional
* Binary operators:
* Union
* Concat

Homework discussion

* Part 2:
* Create RE AST when parsing:

Example using arithmetic input: 1+5%6

Example: executing a mathematical expression during parsing

Children values are passed in as an array C, indexed from left to right expr

W“ N
expr <PLUS> term

expr :expr PLUS term {ret C C[2]}

| expr MINUS term {ret C [01 C[]} /|\

| (BT tret S0l term term <TIMES> factor
*,/ term :term TIMES factor {ret C[0] * C[2]} ‘ ’

: term DIV factor {ret C[0] / C[2]}

| factor {ret C[O]} factor fac’tor <NUM, 6>
() factor :LPAR expr RPAR {ret C[1]}

| NUM {ret int(C[O0])} <NUM, 1> <NUM, 5>

We have just implemented a simple arithmetic interpreter!

Homework discussion

* Implement the derivative and NULLABLE functions

What is a method for computing the derivative?

Consider the base cases

*re=

* §. (re) = match re with: 0
- -
return {} a (single character)
rhs | s
(€hs - MCrhs
return {} €starred *

g (single character)
if a == cthenreturn ¢
else return {}

Derivative Recursive Cases

Consider the recursive cases:

_ ° re =
* 0, (re) = match re with: 0
*r elhs / r erhs €]
return 8 (re,,.) | 8. (re.,.) a (single character)
rejns | réms
re,..re
r estarred t 5 () * Ihs ;;hs
return C r estarred T estarred resta rred

*r elhs T erhs

return o rey,) . re.. |

NULL(I'e/hS) . Sc(rerhs)

Homework discussion

* To match a string:
* Take the derivative with the first character, then the second, then the third...
e At the end of the string, check if the resulting RE is nullable

* Consider some tricks to help improve efficiency of your matcher:

How do certain regular expressions combine?
*al{l=a

.a‘(lllza

*a.{}=1}

° “wJi x _ «un

{H =1

Part 1

* Difference between Statement and Expression?
e Expression returns a value
* Statement modifies the state of the program
e Statement production rules are at the top
e Should the parser accept an empty program?

