CSE211: Compiler Design

Oct. 13, 2023

- Topic: Symbol tables and parsing with derivatives
- $\delta_{c}(r e)$, where re is:
- re $e_{r h s} \cdot r e_{\text {hs }}$

$$
\begin{aligned}
& \delta_{c}\left(r e_{r h s}\right) \cdot r e_{\mid h s} / \\
& \text { if } \varepsilon \text { in } r e_{r h s} \text { then } \delta_{c}\left(r e_{\mid h s}\right) \text { else }\}
\end{aligned}
$$

- Questions:
- What is "scope"
- How do you parse a regular expression?
- How do you parse a context free grammar?

Announcements

- Homework 1 is out!
- Please partner up if you haven't. If you don't have a partner you can make a private post on Piazza. Please do that in the next few days.
- Failing to find a partner by Monday or else it will be a 20% deduction AND you will have to do the homework assignment by yourself.
- Please record your partners in the shared spreadsheet. If you do not record, I will assume that you don't have a partner and you will get the deduction.
- Please help keep up with organization
- Use Piazza to find a partner

Announcements

- Homework 1 is out!
- Where we are at now:
- The homework has you using PLY to parse 2 languages
- A calculator language
- A regular expression language
- You should be able to parse both languages now
- By the end of today you should be able to do all of part 1
- By the end of Monday you should be able to do all of part 2

Review

Review

- What is a parser generator?
- How do you use a parser generator?
- What features do parser generators have that can make your life easier?
- As a compiler writer?
- As a compiler user?

New material

First topic of today: Scope

- What is scope?
- Can it be determined at compile time? Can it be determined at runtime?
- C vs. Python
- Anyone have any interesting scoping rules they know of?

One consideration: Scope

- Lexical scope example

```
int x = 0;
int y = 0;
{
    int y = 0;
    x+=1;
    y+=1;
}
x+=1;
y+=1;
```

What are the final values in x and y ?

How to track scope during parsing?

- Symbol table
- Global object, accessible (and mutable) by all production actions
- two methods:
- lookup(id) : lookup an id in the symbol table. Returns None if the id is not in the symbol table.
- insert(id,info) : insert a new id (or overwrite an existing id) into the symbol table along with a set of information about the id.

a very simple programming language

VARIABLE_NAME = "[a-z]+"
INCREMENT = " $\backslash+\backslash+"$
TYPE = "int"

$$
\begin{aligned}
& \text { int } x ; \\
& x++; \\
& \text { int } y ; \\
& y++;
\end{aligned}
$$

LB = "\{"
$R B="\} "$
SEMI = ";"
statements are either a declaration or an increment

a very simple programming language

```
VARIABLE_NAME = "[a-z]+"
INCREMENT = " \(\backslash+\backslash+"\)
TYPE = "int"
LB = "\{"
\(R B="\} "\)
int \(x\);
\{
    int \(y\);
\}
y++;
SEMI = ";"
```

statements are either a declaration or an increment

a very simple programming language

VARIABLE_NAME = "[a-z]+"
INCREMENT = " $\backslash+\backslash+"$
TYPE = "int"
LB = "\{"
$R B="\} "$
int x ;

SEMI = ";"
statements are either a declaration or an increment

How to track scope?

- SymbolTable ST;
declare_variable: TYPE VARIABLE_NAME SEMI \{ \}

Say we are matched string: int x;

```
lookup(id) : lookup an id in the symbol table. Returns None if the
id is not in the symbol table.
insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.
```


How to track scope?

- SymbolTable ST;
declare_variable: TYPE VARIABLE_NAME SEMI \{ST.insert (C[1],C[0]) \}

Say we are matched string: int x;

In this example we are storing a type

How to track scope?

- SymbolTable ST;

Say we are matched string:
x++;

```
variable_inc: VARIABLE_NAME INCREMENT SEMI
{ }
lookup(id) : lookup an id in the symbol table. Returns None if the
id is not in the symbol table.
insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.
```


How to track scope?

- SymbolTable ST;

Say we are matched string:
x++;

```
variable_inc: VARIABLE_NAME INCREMENT SEMI
{if not ST.lookup(x):
    raise SymbolTableException;
    else:
    ... // continue}
```


How to track scope?

- SymbolTable ST;
statement : variable_inc
declare_variable
statement_list : statement statement_list
statement

How to track scope?

- SymbolTable ST;
statement : variable_inc
| declare_variable
| LB statement_list RB
statement_list : statement statement_list
| statement

How to track scope?

- SymbolTable ST;
statement : LB statement_list RB
start a new scope S
remove the scope S

How to track scope?

- Symbol table
- four methods:
- lookup(id) : lookup an id in the symbol table. Returns None if the id is not in the symbol table.
- insert(id,info) : insert a new id into the symbol table along with a set of information about the id.
- push_scope() : push a new scope to the symbol table
- pop_scope() : pop a scope from the symbol table

How to track scope?

- SymbolTable ST;
statement : LB statement_list RB
start a new scope S
remove the scope S

Think about how to solve with production rules

How to implement a symbol table?

- Thoughts? What data structures are good at mapping strings?
- Symbol table
- four methods:
- lookup(id) : lookup an id in the symbol table. Returns None if the id is not in the symbol table.
- insert(id,info) : insert a new id into the symbol table along with a set of information about the id.
- push_scope() : push a new scope to the symbol table
- pop_scope() : pop a scope from the symbol table

How to implement a symbol table?

- Many ways to implement:
- A good way is a stack of hash tables:

How to implement a symbol table?

- Many ways to implement:
- A good way is a stack of hash tables:

How to implement a symbol table?

- Many ways to implement:
- A good way is a stack of hash tables:

How to implement a symbol table?

- Many ways to implement:
- A good way is a stack of hash tables:

```
insert(id,data)
```

HT 1

HT 0

How to implement a symbol table?

- Many ways to implement:
- A good way is a stack of hash tables:

How to implement a symbol table?

- Many ways to implement:
- A good way is a stack of hash tables:

lookup (id)

HT 1

HT 0

How to implement a symbol table?

- Many ways to implement:
- A good way is a stack of hash tables:

How to implement a symbol table?

- Many ways to implement:
- A good way is a stack of hash tables:

How to implement a symbol table?

- Many ways to implement:
- A good way is a stack of hash tables:

HT 1

How to implement a symbol table?

- Many ways to implement:
- A good way is a stack of hash tables:

How to implement a symbol table?

- Example

```
int x = 0;
int Y = 0;
{
    Y++;
    int y = 0;
    x++;
    y++;
}
    {
        y++;
    }
}
x++;
Y++;
```


Stack of hash tables

Moving on

- Parsing with derivatives!

Matching RE's with Derivatives

- A simple regular expression matcher implementation
- Given an RE AST, you can check matches with very few lines of code
- Think recursively!

Language Derivatives

- A language is a (potentially infinite) set of strings $\left\{s_{1}, s_{2}, s_{3}, s_{4} \ldots\right\}$
- A language is regular if it can be captured using a regular expression
- Examples of regular languages:
- \{"a"\}, \{"+"\}, \{"+", "-"," "*", "1"\}
- \{"1", " $1+1$ ", " $1+1+1$ "\}
- $\left\{{ }^{\prime \prime \prime}\right\}$, also called $\{\varepsilon\}$

Subtle distinction between $\}$ and $\{\varepsilon\}$

- $\}$

Language Derivatives

- The Derivative of language L with respect to character $c\left(\right.$ noted $\left.\delta_{c}(\mathrm{~L})\right)$ is:
for all s in L, if s begins with c, then $s\left[1\right.$:] is in $\delta_{c}(L)$
- We'll go over some examples in the next slides

Language Derivatives Examples

- $L=\left\{{ }^{\prime \prime} a{ }^{\prime \prime}\right\}$
- $\delta_{a}(L)=\left\{{ }^{\prime \prime \prime}\right\}$
- $\delta_{b}(L)=\{ \}$

Language Derivatives Examples

- $L=\{$ " + ", "-", "*", "/" $\}$
- $\delta_{+}(L)=\left\{{ }^{\prime \prime \prime}\right\}$
- $\delta_{\wedge}(L)=\{ \}$
- $\delta_{*}(L)=\left\{{ }^{\prime \prime \prime}\right\}$

Language Derivatives Examples

- $L=\{" 1$ ", " $1+1$ ", " $1+1+1$ ", " $1+1+1+1$ ", ... $\}$
- $\delta_{+}(L)=\{ \}$
- $\delta_{1}(L)=\left\{{ }^{\prime \prime \prime}, "+1 ", "+1+1 " \ldots\right\}$
- $\delta_{1+}(L)=L$

Language Derivatives Examples

- $L=\left\{" a a a{ }^{\prime \prime}, ~ " a b ", ~ " b a ", ~ " b b a "\right\}$
- $\delta_{a}(\mathrm{~L})=\{?\}$
- $\delta_{a a}(\mathrm{~L})=\{?\}$
- $\delta_{b}(L)=\{?\}$
- $\delta_{b a}(L)=\{?\}$

Regular Expressions

Recall we defined regular expressions recursively:

The three base cases: a character literal

- The RE for a character " a " is given by " a ". It matches only the character " a "
- The RE for the empty string is is given by "" or ε
- The RE for the empty set is given by $\}$

Regular Expressions

three recursive definitions

- The concatenation of two REs x and y is given by $x . y$ and matches the strings of RE x concatenated with the strings of RE y
- The union of two REs x and y is given by $x \mid y$ and matches the strings of RE x or the strings of RE y
- The Kleene star of an RE x is given by x^{*} and matches the strings of RE x repeated 0 or more times

Regular expressions recursive definition

```
re =
    |{}
|"
    c (single character)
    re
    re lhs 
    re starred}
```


Regular expressions recursive definition

```
re =
```

 \(\mid\{ \}\)
 |""
|c (single character)
$\left|\mathrm{re}_{\mathrm{lhs}}\right| \mathrm{re}_{\mathrm{rhs}}$
$r \mathrm{e}_{\mathrm{lhs}} \cdot r \mathrm{e}_{\mathrm{rhs}}$
re starred *
$r e=a . b$
$=$
$r e_{l h s} \cdot r e_{r h s}$

parse tree for a regular expression

input: a.b |c*

Operator	Name	Productions
I	union	: union PIPE concat \| concat
.	concat	: concat CONCAT starred I starred
*	starred	: starred STAR I unit
	unit	: CHAR \| "'"

Excluding special cases for $\}$

parse tree for a regular expression

input: a.b |c*

Operator	Name	Productions
I	union	: union PIPE concat \| concat
.	concat	: concat CONCAT starred I starred
*	starred	: starred STAR I unit
	unit	: CHAR \| ""'

Excluding special cases for $\}$

parse tree for a regular expression

input: a.b |c*

parse tree for a regular expression

```
input: a.b |c*
```

abstract syntax tree

- re =

$$
\begin{aligned}
& \mid\{ \} \\
& \mid \text { "" } \\
& \mid \text { a (single character) } \\
& \left|r \mathrm{r}_{\mathrm{lhs}}\right| \mathrm{re}_{\text {rhs }} \\
& \mid \mathrm{re}_{\mathrm{lhs}} \cdot \mathrm{re}_{\text {rhs }} \\
& \mid \mathrm{re}_{\text {starred }} *
\end{aligned}
$$

parse tree for a regular expression

```
input: a.b |c*
```

abstract syntax tree

- re =
|\{\}
|""
| a (single character)
$\left|\mathrm{re}_{\mathrm{lhs}}\right| \mathrm{re}_{\mathrm{rhs}}$
$\mid \mathrm{re}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mid \mathrm{re}_{\text {starred }}$ *

parse tree for a regular expression

```
input: a.b |c*
```

- re =
|\{\}
|""
| a (single character)
$\left|\mathrm{re}_{\mathrm{lhs}}\right| \mathrm{re}_{\mathrm{rhs}}$
$\mid \mathrm{re}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mid \mathrm{re}_{\text {starred }}$ *
each node is
also a regular expression!

parse tree for a regular expression

```
input: a.b |c*
```

abstract syntax tree

- In your homework you will need to generate an RE AST using production rules
- given a regular expression AST, how check if a string is in the language?
- parsing with derivatives!
each node is
also a regular expression!

Regular expressions are closed under derivatives

- Given a regular language L, any derivative of L is also a regular language.
- Let's try some!

Regular expressions are closed under derivatives

- $r e=a$
- $L=\left\{{ }^{\prime \prime} a^{\prime \prime}\right\}$
- $\delta_{a}(L)=\left\{{ }^{\text {"U }}\right\}$
- $\delta_{a}(r e)={ }^{\text {" }}$
- $\delta_{b}(r e)=\{ \}$

Regular expressions are closed under derivatives

- $r e=a \mid b$
- $L=\left\{{ }^{\prime \prime} a^{\prime \prime}, " b\right.$ " $\}$
- $\delta_{a}(r e)={ }^{\prime \prime \prime}$
- $\delta_{b}(r e)={ }^{\prime \prime \prime}$

Regular expressions are closed under derivatives

- $r e=a . a \mid a . b$
- $L=\left\{" a a^{\prime \prime}, " a b\right.$ " $\}$
- $\delta_{a}(r e)=a \mid b$
- $\delta_{b}(r e)=\{ \}$

Regular expressions are closed under derivatives

- $r e=(a . b . c)^{*}$
- $L=\{$ "", " "abc", "abcabc", ...\}
- $\delta_{a}(L)=\{" b c$ ", "bcabc", "bcabc", ...\}
- $\delta_{a}(r e)=$ b.c.(a.b.c)*

What is a method for computing the derivative?

Consider the base cases

- $\delta_{c}(r e)=$ match re with:
- $\}$
return $\}$
-""
return $\}$
- a (single character)
if a $==c$ then return ε else return $\}$
- re =
|\{\}
| ε
| a (single character)
$\mathrm{re}_{\text {lhs }} \mid \mathrm{re}_{\text {rhs }}$
$\mathrm{re}_{\mathrm{lhs}} . \mathrm{re}_{\mathrm{rhs}}$
re starred

Derivative Recursive Cases

Consider the recursive cases:

- re =
- $\delta_{c}(r e)=$ match re with:
- re $e_{\text {lhs }} / r e_{r h s}$
return ??
|\{\}
| ε
| a (single character)
$\left|\mathrm{re}_{\mathrm{lhs}}\right| \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {lhs }}$. $\mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- $r e_{\text {starred }}{ }^{*}$
return??
- re $e_{\text {lhs }} . r e_{r h s}$
return

Regular expressions are closed under derivatives

- re = a.a | a.b
- $L=\left\{" a a^{\prime \prime}, " a b\right.$ " $\}$
- $\delta_{a}(r e)=\{a, b\}=a \mid b$
- $\delta_{b}(r e)=\{ \}$

Derivative Recursive Cases

Consider the recursive cases:

- re =
- $\delta_{c}(r e)=$ match re with:
- re $e_{\text {lhs }} / r e_{r h s}$
return ??
|\{\}
| ε
| a (single character)
$\mathrm{re}_{\text {lhs }} \mid \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {lhs }}$. $\mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- $r e_{\text {starred }}{ }^{*}$
return ??
- re ${ }_{\text {lhs }} \cdot r e_{r h s}$
return

Derivative Recursive Cases

Consider the recursive cases:

- re =
|\{\}
| ε
| a (single character)
$\mathrm{re}_{\mathrm{lhs}} \mid \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- $\mathrm{re}_{\text {starred }}{ }^{*}$
return ??
- re ${ }_{l h s} \cdot r e_{r h s}$
return

Regular expressions are closed under derivatives

- $r e=(a . b . c)^{*}$
- $L=\{$ "", " "abc", "abcabc", "abcabcabc" ...\}
- $\delta_{a}(r e)=\{" b c ", " b c a b c ", " b c a b c a b c ", \ldots\}$

Derivative Recursive Cases

Consider the recursive cases:

- re =
|\{\}
| ε
| a (single character)
$\mathrm{re}_{\mathrm{lhs}} \mid \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- $\mathrm{re}_{\text {starred }}{ }^{*}$
return ??
- re ${ }_{l h s} \cdot r e_{r h s}$
return

Derivative Recursive Cases

Consider the recursive cases:

- re =
|\{\}
| ε
| a (single character)
$\mathrm{re}_{\mathrm{lhs}} \mid \mathrm{re}_{\mathrm{rhs}}$
$r \mathrm{e}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
re starred *
- $r e_{\text {starred }}{ }^{*}$
- $\delta_{c}(r e)=$ match re with:
- $r e_{\text {lhs }} / r e_{\text {rhs }}$

$$
\text { return } \delta_{c}\left(r e_{l h s}\right) \mid \delta_{c}\left(r e_{r h s}\right)
$$

return $\delta_{c}\left(r e_{\text {starred }}\right) \cdot r e_{\text {starred }} *$

- re ${ }_{l h s} \cdot r e_{r h s}$

Some properties/optimizations

How do certain regular expressions combine?

- $\left.\right|^{\text {" }}{ }^{\prime \prime}=\mathrm{a}$
- $a \mid\{ \}=a$
- $a^{\prime \prime \prime \prime}=a$
- a. $\}=\{ \}$
-"" * = ""
- $\left\}^{*}=\{ \}\right.$

Derivative Recursive Cases

Let's look at concatenation:

- $\delta_{c}(r e)=$ match re with:
- re $e_{l h s} \cdot r e_{r h s}$
return??

$$
\begin{aligned}
& \text { Example: } \\
& r e=a . b \\
& \delta_{a}(r e)=?
\end{aligned}
$$

Derivative Recursive Cases

Let's look at concatenation:

- $\delta_{c}(r e)=$ match re with:
- $r e_{l h s} \cdot r e_{r h s}$
return $\delta_{c}\left(r e_{l h s}\right) \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { Example: } \\
& r e=a . b \\
& \delta_{a}(r e)=b
\end{aligned}
$$

Derivative Recursive Cases

Let's look at concatenation:

- $\delta_{c}(r e)=$ match re with:
- $r e_{l h s} \cdot r e_{r h s}$
return $\quad \delta_{c}\left(r e_{l h s}\right) \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { Example: } \\
& r e=a . b \\
& \delta_{a}(r e)=b
\end{aligned}
$$

Derivative Recursive Cases

Let's look at concatenation:

- $\delta_{c}(r e)=$ match re with:

What about?

- re ${ }_{l h s} \cdot r e_{r h s}$
return $\quad \delta_{c}\left(r e_{l h s}\right) \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { Example: } \\
& r e=c^{*} \cdot a \cdot b \\
& \delta_{a}(r e)=?
\end{aligned}
$$

Derivative Recursive Cases

Let's look at concatenation:

- $\delta_{c}(r e)=$ match re with:
- $r e_{\text {lhs }} \cdot r e_{r h s}$

$$
\begin{array}{l|l}
\text { return } \delta_{c}\left(r e_{l h s}\right) \cdot r e_{r h s} / & \text { Example: } \\
\text { if "" in } r e_{\text {lhs }} t h e n ~ & \delta_{c}\left(r e_{r h s}\right) \text { else }\}
\end{array} \begin{aligned}
& \\
& \delta_{a}(r e)=?
\end{aligned}
$$

Derivative Recursive Cases

Consider the recursive cases:

- $\delta_{c}(r e)=$ match re with:
- re ${ }_{\text {lhs }} / r e_{r h s}$

$$
\text { return } \delta_{c}\left(r e_{l h s}\right) \mid \delta_{c}\left(r e_{r h s}\right)
$$

- $\mathrm{re}_{\text {starred }}{ }^{*}$

$$
\text { return } \delta_{c}\left(r e_{\text {starred }}\right) \cdot r e_{\text {starred }} *
$$

- re =
|\{\}
| ε
a (single character)
$\mathrm{re}_{\text {lhs }} \mid \mathrm{re}_{\text {rhs }}$
$\mathrm{re}_{\text {Ihs }} \cdot \mathrm{re}_{\text {rhs }}$
$\mathrm{re}_{\text {starred }}$ *
- re ${ }_{\text {lhs }} \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { return } \delta_{c}\left(r e_{\text {lhs }}\right) \cdot r e_{\text {rhs }} / \\
& \quad \text { if ""' }^{\prime \prime} \text { in } r e_{\text {lhs }} \text { then } \delta_{c}\left(r e_{r h s}\right) \text { else }\}
\end{aligned}
$$

Nullable operator

- $\mathrm{NULL}(\mathrm{re})=$

$$
\text { if "" } \in r e \text { then: }
$$

else: \{\}

Nullable operator

- $\mathrm{NULL}(\mathrm{re})=$

if """ $\in r e$ then: "" else: \{\}

- re =
implement over a RE abstract syntax tree

What is a method for computing NULL?

Consider the base cases

- $\operatorname{NULL}(r e)=$ match re with:
- $\}$
return $\}$
-""
return ""
- re =
| a (single character)
$\left|\mathrm{re}_{\text {lhs }}\right| \mathrm{re}_{\text {rhs }}$
$\mid \mathrm{re}_{\text {lhs }} . \mathrm{re}_{\text {rhs }}$
$\mid \mathrm{re}_{\text {starred }} *$
- a (single character)
return \{\}

What is a method for computing NULL?

Consider the recursive cases:

- $\operatorname{NULL}(r e)=$ match re with:
- re ${ }_{\text {lhs }} / r e_{\text {rhs }}$
return ??
- $r e_{\text {starred }}{ }^{*}$
return ??
- re =
$\mid\{ \}$
$\mid \varepsilon$
\mid
| a (single character)
$\left|\mathrm{re}_{\mathrm{lhs}}\right| \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {Ihs }}$. $\mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$
- re $e_{h s} \cdot r e_{r h s}$
return ??

What is a method for computing NULL?

Consider the recursive cases:

- re =
|\{\}
| ε
| a (single character)
$\mathrm{re}_{\text {lhs }} \mid \mathrm{re}_{\text {rhs }}$
$\mathrm{re}_{\mathrm{lh}}$. $\mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$
- $r e_{\text {starred }}{ }^{*}$
return ""
- re ${ }_{l h s} \cdot r e_{r h s}$

$$
\text { return NULL(re } \left.\left.{ }_{\text {lhs }}\right) \text {. NULL(re }{ }_{r h s}\right)
$$

Derivative Recursive Cases

Consider the recursive cases:

- $\delta_{c}(r e)=$ match re with:
- re ${ }_{\text {lhs }} / r e_{r h s}$

$$
\text { return } \delta_{c}\left(r e_{l h s}\right) \mid \delta_{c}\left(r e_{r h s}\right)
$$

- re starred *

$$
\text { return } \delta_{c}\left(r e_{\text {starred }}\right) \cdot r e_{\text {starred }} *
$$

- re =
|\{\}
| ε
a (single character)
$\mathrm{re}_{\text {lhs }} \mid \mathrm{re}_{\text {rhs }}$
$r \mathrm{e}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- re ${ }_{\text {lhs }} \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { return } \delta_{c}\left(r e_{\text {lhs }}\right) \cdot r e_{r h s} l \\
& \quad \text { if } \varepsilon \text { in } r e_{l h s} \text { then } \delta_{c}\left(r e_{r h s}\right) \text { else }\}
\end{aligned}
$$

Derivative Recursive Cases

Consider the recursive cases:

- $\delta_{c}(r e)=$ match re with:
- re ${ }_{\text {lhs }} / r e_{r h s}$

$$
\text { return } \delta_{c}\left(r e_{l h s}\right) \mid \delta_{c}\left(r e_{r h s}\right)
$$

- re starred *

$$
\text { return } \delta_{c}\left(r e_{\text {starred }}\right) \cdot r e_{\text {starred }} *
$$

- re =
|\{\}
| ε
a (single character)
$\mathrm{re}_{\text {lhs }} \mid \mathrm{re}_{\text {rhs }}$
$\mathrm{re}_{\text {lhs }} \cdot \mathrm{re}_{\text {rhs }}$
$\mathrm{re}_{\text {starred }}$ *
- re ${ }_{\text {lhs }} \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { return } \quad \delta_{c}\left(r e_{l h s}\right) \cdot r e_{r h s} / \\
& \quad \operatorname{NULL}\left(r e_{\mid h s}\right) \cdot \delta_{c}\left(r e_{r h s}\right)
\end{aligned}
$$

Parsing REs with derivative

given a function δ_{c} to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if re matches s ?

Parsing REs with derivative

given a function δ_{c} to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if re matches s ?

$$
L(r e)=\{. . s . .\}
$$

Parsing REs with derivative

given a function δ_{c} to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if re matches s ?

$$
\begin{aligned}
& \delta_{c 1}(r e) \\
& L\left(\delta_{c 1}(r e)\right)=\{. . s[1:] . .\}
\end{aligned}
$$

Parsing REs with derivative

given a function δ_{c} to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if $r e$ matches s ?

Parsing REs with derivative

given a function δ_{c} to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if $r e$ matches s ?

Parsing REs with derivative

given a function δ_{c} to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if $r e$ matches s ?

$L(r e)=\{. . s .$.	$\delta_{c 1}(r e)$	$\delta_{c 2}\left(\delta_{c 1}(\mathrm{re})\right)=\delta_{c 1, c 2}(\mathrm{re})$	$\delta_{s}(r e)$	Then re matches s
				$N U L L\left(\delta_{s}(r e)\right)={ }^{\prime \prime \prime}$
	$L\left(\delta_{c 1}(\mathrm{re})\right)=\{. . s[1:] ~ .$.	$L\left(\delta_{c 1, c 2}(\mathrm{re})\right)=\{. . s[2:] ~ .$.	$\mathrm{L}\left(\delta_{s}(r e)\right)=\left\{. .{ }^{\text {c" }}\right.$.. $\}$	

