CSE211: Compiler Design Oct. 13, 2023

• **Topic**: Symbol tables and parsing with derivatives

• Questions:

- What is "scope"
- How do you parse a regular expression?
- How do you parse a context free grammar?

Announcements

- Homework 1 is out!
 - Please partner up if you haven't. If you don't have a partner you can make a private post on Piazza. Please do that in the next few days.
 - Failing to find a partner by Monday or else it will be a 20% deduction AND you will have to do the homework assignment by yourself.
 - Please record your partners in the shared spreadsheet. If you do not record, I will assume that you don't have a partner and you will get the deduction.
 - Please help keep up with organization
 - Use Piazza to find a partner

Announcements

- Homework 1 is out!
 - Where we are at now:
 - The homework has you using PLY to parse 2 languages
 - A calculator language
 - A regular expression language
 - You should be able to parse both languages now
 - By the end of today you should be able to do all of part 1
 - By the end of Monday you should be able to do all of part 2

Review

Review

- What is a parser generator?
- How do you use a parser generator?
- What features do parser generators have that can make your life easier?
 - As a compiler writer?
 - As a compiler user?

New material

First topic of today: Scope

- What is scope?
- Can it be determined at compile time? Can it be determined at runtime?
- C vs. Python
- Anyone have any interesting scoping rules they know of?

One consideration: Scope

• Lexical scope example

int x = 0; int y = 0; { int y = 0; x+=1; y+=1; } x+=1; y+=1;

What are the final values in x and y?

How to track scope during parsing?

- Symbol table
- Global object, accessible (and mutable) by all production actions
- two methods:
 - lookup(id) : lookup an id in the symbol table. Returns None if the id is not in the symbol table.
 - insert(id, info) : insert a new id (or overwrite an existing id) into the symbol table along with a set of information about the id.

What information might we store about an id?

a very simple programming language

VARIABLE_NAME = " $[a-z]+"$	int x;
$INCREMENT = " \setminus + \setminus + "$	x++;
TYPE = "int"	int y; y++;
LB = "{"	

```
RB = "}"
SEMI = ";"
```

statements are either a declaration or an increment

a very simple programming language

VARIABLE_NAME = "[a-z]+"	int x;
$INCREMENT = " \setminus + \setminus + "$	{ int y;
TYPE = "int"	x++;
LB = "{"	у++;
RB = "}"	} V++ ;
SEMI = ";"	

statements are either a declaration or an increment

a very simple programming language

```
VARIABLE_NAME = "[a-z]+"
INCREMENT = "\+\+"
TYPE = "int"
LB = "{"
RB = "}"
SEMI = ";"
```


statements are either a declaration or an increment

• SymbolTable ST;

declare_variable: TYPE VARIABLE_NAME SEMI { }

Say we are matched string: int x;

lookup(id) : lookup an id in the symbol table. Returns None if the id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into the symbol table along with a set of information about the id.

• SymbolTable ST;

declare_variable: TYPE VARIABLE_NAME SEMI {ST.insert(C[1],C[0])}

Say we are matched string:
int x;

In this example we are storing a type

• SymbolTable ST;

Say we are matched string: x++;

variable_inc: VARIABLE_NAME INCREMENT SEMI { }

lookup(id) : lookup an id in the symbol table. Returns None if the id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into the symbol table along with a set of information about the id.

• SymbolTable ST;

Say we are matched string: x++;

variable_inc: VARIABLE_NAME INCREMENT SEMI {if not ST.lookup(x): raise SymbolTableException; else:

... // continue}

• SymbolTable ST;

statement : variable_inc | declare_variable

statement_list : statement statement_list
| statement

adding in scope

• SymbolTable ST;

statement_list : statement statement_list
| statement

• SymbolTable ST;

statement : LB statement_list RB

start a new scope S

remove the scope S

- Symbol table
- four methods:
 - lookup(id) : lookup an id in the symbol table. Returns None if the id is not in the symbol table.
 - insert(id, info) : insert a new id into the symbol table along with a set of information about the id.
 - push_scope() : push a new scope to the symbol table
 - **pop_scope()** : pop a scope from the symbol table

• SymbolTable ST;

statement : LB statement_list RB

start a new scope S

remove the scope S

Think about how to solve with production rules

- Thoughts? What data structures are good at mapping strings?
- Symbol table
- four methods:
 - lookup(id) : lookup an id in the symbol table. Returns None if the id is not in the symbol table.
 - insert(id, info) : insert a new id into the symbol table along with a set of information about the id.
 - push_scope() : push a new scope to the symbol table
 - **pop_scope()** : pop a scope from the symbol table

- Many ways to implement:
- A good way is a stack of hash tables:

base scope

HT 0

- Many ways to implement:
- A good way is a stack of hash tables:

push_scope()

HT 0

- Many ways to implement:
- A good way is a stack of hash tables:

- Many ways to implement:
- A good way is a stack of hash tables:

HT 1

HT 0

insert(id,data)

- Many ways to implement:
- A good way is a stack of hash tables:

insert (id -> data) at
top hash table

insert(id,data)

- Many ways to implement:
- A good way is a stack of hash tables:

HT 1

HT 0

lookup(id)

- Many ways to implement:
- A good way is a stack of hash tables:

- Many ways to implement:
- A good way is a stack of hash tables:

HT 1

lookup(id)

then check here

HT 0

- Many ways to implement:
- A good way is a stack of hash tables:

pop_scope()

HT 0

- Many ways to implement:
- A good way is a stack of hash tables:

HT 0

int x = 0;• Example int y = 0;y++; int y = 0;x++; y++; y++; x++; y++;

HT 0

Moving on

• Parsing with derivatives!

Matching RE's with Derivatives

- A simple regular expression matcher implementation
 - Given an RE AST, you can check matches with very few lines of code
- Think recursively!

Language Derivatives

- A language is a (potentially infinite) set of strings {s₁, s₂, s₃, s₄, ...}
- A language is regular if it can be captured using a regular expression
- Examples of regular languages:
 - {"a"}, {"+"}, {"+", "-", "*", "\"}
 - {*"1", "1+1", "1+1+1"*}
 - {""}, also called $\{\varepsilon\}$
 - {}

Subtle distinction between {} and { ε }

Language Derivatives

• The Derivative of language L with respect to character c (noted $\delta_c(L)$) is:

for all s in L, if s begins with c, then s[1:] is in $\delta_c(L)$

• We'll go over some examples in the next slides

• $L = {"a"}$

• $\delta_a(L) = \{ "" \}$

• $\delta_b(L) = \{\}$

- L = {"+", "-", "*", "/"}
- $\delta_+(L) = \{""\}$
- $\delta_{\wedge}(L) = \{\}$
- $\delta_*(L) = {""}$

- $L = \{ "1", "1+1", "1+1+1", "1+1+1+1", ... \}$
- $\delta_+(L) = \{\}$
- $\delta_1(L) = \{ "", "+1", "+1+1" \dots \}$
- $\delta_{1+}(L) = L$

- L = {"aaa", "ab", "ba", "bba"}
- $\delta_a(L) = \{?\}$
- $\delta_{aa}(L) = \{?\}$
- $\delta_{b}(L) = \{?\}$
- $\delta_{ba}(L) = \{?\}$

Regular Expressions

Recall we defined regular expressions recursively:

The three base cases: a character literal

- The RE for a character "a" is given by "a". It matches only the character "a"
- The RE for the empty string is is given by "" or ε
- The RE for the empty set is given by {}

Regular Expressions

three recursive definitions

- The concatenation of two REs x and y is given by x.y and matches the strings of RE x concatenated with the strings of RE y
- The union of two REs x and y is given by x|y and matches the strings of RE x or the strings of RE y
- The Kleene star of an RE x is given by x* and matches the strings of RE x repeated 0 or more times

Regular expressions recursive definition

re = |{} | "" | c (single character) | re_{lhs} | re_{rhs} | re_{lhs} . re_{rhs} | re_{starred} *

Regular expressions recursive definition

re = $|\{\}$ | "" | c (single character) $| re_{lhs} | re_{rhs}$ $| re_{lhs} . re_{rhs}$ $| re_{starred} *$

re = a.b = re_{lhs}.re_{rhs} "a" "b"

input: a.b |c*

Operator	Name	Productions
I	union	: union PIPE concat concat
	concat	: concat CONCAT starred starred
*	starred	: starred STAR unit
	unit	: CHAR ""

Excluding special cases for {}

input: a.b |c*

Operator	Name	Productions
I	union	: union PIPE concat concat
	concat	: concat CONCAT starred starred
*	starred	: starred STAR unit
	unit	: CHAR ""

Excluding special cases for {}

parse tree for a regular expression input: a.b |c* union <|> abstract syntax tree union concat concat <|> starred concat <.> starred <.> <*> unit <*> <"b"> <"a"> unit starred <"c"> <CHAR, c> <CHAR ,b> unit <CHAR, a>

input: a.b |c*

abstract syntax tree

• re = |{} | "" | a (single character) | re_{lhs} | re_{rhs} | re_{lhs} . re_{rhs} | re_{starred} *

input: a.b |c*


```
• re =

|\{\}
| ""
| a (single character)
| re_{lhs} | re_{rhs}
| re_{lhs} . re_{rhs}
| re_{starred} *
```

input: a.b |c*

abstract syntax tree re_{lhs} (|> re_{rhs} re_{lhs} (*> re_{rhs} (**> re_{rhs} (**) re_{rhs} (**) $re_{starred}$ • re = |{} | "" | a (single character) | re_{lhs} | re_{rhs} | re_{lhs} . re_{rhs} | re_{starred} *

each node is also a regular expression!

input: a.b |c*

abstract syntax tree

- In your homework you will need to generate an RE AST using production rules
- given a regular expression AST, how check if a string is in the language?
- parsing with derivatives!

each node is also a regular expression!

- Given a regular language L, any derivative of L is also a regular language.
- Let's try some!

- *re* = *a*
- L = {"a"}
- $\delta_a(L) = \{""\}$
- $\delta_a(re) = ""$
- $\delta_b(re) = \{\}$

- *re* = *a* / *b*
- L = {"a", "b"}
- $\delta_a(re) = ""$
- $\delta_b(re) = ""$

- *re* = *a*.*a* / *a*.*b*
- L = {"aa", "ab"}
- $\delta_a(re) = a \mid b$
- $\delta_b(re) = \{\}$

- *re* = (a.b.c)*
- L = {"", "abc", "abcabc", ...}
- δ_a (L)={"bc", "bcabc", "bcabc", ...}
- $\delta_a(re) = b.c.(a.b.c)^*$

What is a method for computing the derivative?

Consider the base cases

- δ_c (*re*) = match re with:
 - {} return {}
 - ""

return {}

a (single character) if a == c then return ε else return {}

Consider the recursive cases:

- δ_c (*re*) = match re with:
 - re_{lhs} | re_{rhs}

return??

• re_{starred}*

return??

return

??

• re_{lhs} . re_{rhs}

re =

 |{}
 |ε
 |a (single character)
 |re_{lhs} | re_{rhs}
 |re_{lhs} . re_{rhs}
 |re_{starred} *

- *re* = *a.a* / *a.b*
- L = {"aa", "ab"}
- $\delta_a(re) = \{a, b\} = a \mid b$
- $\delta_b(re) = \{\}$

Consider the recursive cases:

- δ_c (*re*) = match re with:
 - re_{lhs} | re_{rhs}

return ??

• re_{starred}*

return ??

return

??

• re_{lhs} . re_{rhs}

re =

 |{}
 |ε
 |a (single character)
 |re_{lhs} | re_{rhs}
 |re_{lhs} . re_{rhs}
 |re_{lhs} . re_{rhs}
 |re_{starred} *

Consider the recursive cases:

- δ_c (*re*) = match re with:
 - re_{lhs} | re_{rhs}

return $\delta_c(re_{lhs}) \mid \delta_c(re_{rhs})$

• re_{starred}*

return ??

• *re_{lhs}* . *re_{rhs}*

return ??

re =

 |{}
 |ε
 |a (single character)
 |re_{lhs} | re_{rhs}
 |re_{lhs} . re_{rhs}
 |re_{starred} *

- *re* = (*a.b.c*)*
- *L* = {*"", "abc", "abcabc", "abcabcabc" …*}
- $\delta_a(re) = \{$ "bc", "bcabc", "bcabcabc", ... $\}$

Consider the recursive cases:

- δ_c (*re*) = match re with:
 - re_{lhs} | re_{rhs}

return $\delta_c(re_{lhs}) \mid \delta_c(re_{rhs})$

• re_{starred}*

return ??

• *re_{lhs}* . *re_{rhs}*

return ??

re =

 |{}
 |ε
 |a (single character)
 |re_{lhs} | re_{rhs}
 |re_{lhs} . re_{rhs}
 |re_{starred} *

Consider the recursive cases:

- δ_c (*re*) = match re with:
 - re_{lhs} | re_{rhs}

return $\delta_c(re_{lhs}) \mid \delta_c(re_{rhs})$

• re_{starred}*

return $\delta_{c}(re_{starred})$. $re_{starred}^{*}$

• re_{lhs} . re_{rhs}

return ??

re =

 |{}
 |ε
 |a (single character)
 |re_{lhs} | re_{rhs}
 |re_{lhs} . re_{rhs}
 |re_{starred} *

Some properties/optimizations

How do certain regular expressions combine?

- a | "" = a
- a | {} = a
- a . "" = a
- a . {} = {}
- "" * = ""
- {} * = {}

Let's look at concatenation:

- δ_c (*re*) = match re with:
 - re_{lhs} . re_{rhs}

return??

Example: re = a.b $\delta_a(re) = ?$

Let's look at concatenation:

- δ_c (*re*) = match re with:
 - re_{lhs} . re_{rhs}

return $\delta_c(re_{lhs})$. re_{rhs}

Example: re = a.b $\delta_a(re) = b$

Let's look at concatenation:

- δ_c (*re*) = match re with:
 - re_{lhs} . re_{rhs}

return $\delta_c(re_{lhs})$. re_{rhs}

Example: re = a.b $\delta_a(re) = b$

return $\delta_c(re_{lhs})$. re_{rhs}

Let's look at concatenation:

• δ_c (*re*) = match re with:

• re_{lhs} . re_{rhs}

What about?

Let's look at concatenation:

• δ_c (*re*) = match re with:

•
$$re_{lhs}$$
. re_{rhs}
return $\delta_c(re_{lhs})$. re_{rhs} |
 if "" in re_{lhs} then $\delta_c(re_{rhs})$ else {}
 $\delta_a(re) = ?$

Derivative Recursive Cases

Consider the recursive cases:

- δ_c (*re*) = match re with:
 - re_{lhs} | re_{rhs}

return $\delta_c(re_{lhs}) \mid \delta_c(re_{rhs})$

• re_{starred}*

return
$$\delta_{\it c}(\it re_{\it starred})$$
 . $\it re_{\it starred}^{*}$

• re_{lhs} . re_{rhs}

return $\delta_c(re_{lhs}) \cdot re_{rhs}$ / if "" in re_{lhs} then $\delta_c(re_{rhs})$ else {} re =

 |{}
 |ε
 |a (single character)
 |re_{lhs} | re_{rhs}
 |re_{lhs} . re_{rhs}
 |re_{starred} *

Nullable operator

• NULL(re) = *if "" ∈ re* then: *"" else: {}*

Nullable operator

re =

$$|\{\}$$

 $|$ ""
 $|$ a (single character)
 $|$ re_{lhs} | re_{rhs}
 $|$ re_{lhs} . re_{rhs}
 $|$ re_{starred} *

•

What is a method for computing NULL?

Consider the base cases

- NULL(*re*) = match re with:
 - {} return {}
 - ""

return ""

a (single character) return {}

re =

$$|\{\}$$

$$| ""$$

$$| a (single character)$$

$$| re_{lhs} | re_{rhs}$$

$$| re_{lhs} . re_{rhs}$$

$$| re_{starred} *$$

•

What is a method for computing NULL?

Consider the recursive cases:

- NULL(*re*) = match re with:
 - re_{lhs} | re_{rhs}

return ??

• *re*_{starred}*

return ??

• *re_{lhs}* . *re_{rhs}*

return ??

re =

 |{}
 |ε
 |a (single character)
 |re_{lhs} | re_{rhs}
 |re_{lhs} . re_{rhs}
 |re_{starred} *

What is a method for computing NULL?

Consider the recursive cases:

- NULL(*re*) = match re with:
 - re_{lhs} | re_{rhs}

return NULL(*re*_{lhs}) | NULL(*re*_{rhs})

• re_{starred}*

return ""

re =

 |{}
 |ε
 |a (single character)
 |re_{lhs} | re_{rhs}
 |re_{lhs} . re_{rhs}
 |re_{lhs} . re_{rhs}
 |re_{starred} *

```
• re<sub>lhs</sub> . re<sub>rhs</sub>
```

return NULL(*re_{lhs}*) . NULL(*re_{rhs}*)

Derivative Recursive Cases

Consider the recursive cases:

- δ_c (*re*) = match re with:
 - re_{lhs} | re_{rhs}

return $\delta_c(re_{lhs}) \mid \delta_c(re_{rhs})$

• re_{starred}*

return $\delta_c(re_{starred})$. $re_{starred}^*$

• re_{lhs}. re_{rhs}

return $\delta_c(re_{lhs}) \cdot re_{rhs}$ | if ϵ in re_{lhs} then $\delta_c(re_{rhs})$ else {} re =

 |{}
 |ε
 |a (single character)
 |re_{lhs} | re_{rhs}
 |re_{lhs} . re_{rhs}
 |re_{starred} *

Derivative Recursive Cases

Consider the recursive cases:

- δ_c (*re*) = match re with:
 - re_{lhs} | re_{rhs}

return $\delta_c(re_{lhs}) \mid \delta_c(re_{rhs})$

• $re_{starred}^*$ return $\delta_c(re_{starred})$

return
$$\delta_{\it c}$$
($\it re_{\it starred}$) . $\it re_{\it starred}$ *

return $\delta_c(re_{lhs}) \cdot re_{rhs}$ / NULL(re_{lhs}) $\cdot \delta_c(re_{rhs})$ re =

 |{}
 |ε
 |a (single character)
 |re_{lhs} | re_{rhs}
 |re_{lhs} . re_{rhs}
 |re_{lhs} . re_{rhs}
 |re_{starred} *

given a function δ_c to compute the derivative of an RE, the NULL function, an RE *re*, and a string $s = c_1 \cdot c_2 \cdot c_3 \dots$ (concat of characters)

Can we check if *re* matches *s*?

given a function δ_c to compute the derivative of an RE, the NULL function, an RE *re*, and a string $s = c_1 \cdot c_2 \cdot c_3 \dots$ (concat of characters)

Can we check if *re* matches *s*?

L(re) = {.. s ..}

given a function δ_c to compute the derivative of an RE, the NULL function, an RE *re*, and a string $s = c_1 \cdot c_2 \cdot c_3 \dots$ (concat of characters)

Can we check if *re* matches *s*?

$$\delta_{c1}$$
 (re

L(re) = {.. s ..}

 $L(\delta_{c1} (re)) = \{.. s[1:] ..\}$

given a function δ_c to compute the derivative of an RE, the NULL function, an RE *re*, and a string $s = c_1 \cdot c_2 \cdot c_3 \dots$ (concat of characters)

Can we check if *re* matches *s*?

$$\mathcal{L}(re) = \{.. \ s \ ..\}$$

$$\mathcal{L}(\delta_{c1} \ (re)) = \{.. \ s[1:] \ ..\}$$

$$\mathcal{L}(\delta_{c1} \ (re)) = \{.. \ s[1:] \ ..\}$$

$$\mathcal{L}(\delta_{c1,c2} \ (re)) = \{.. \ s[2:] \ ..\}$$

given a function δ_c to compute the derivative of an RE, the NULL function, an RE *re*, and a string $s = c_1 \cdot c_2 \cdot c_3 \dots$ (concat of characters)

Can we check if *re* matches *s*?

L(re)

$$= \{ \dots s \dots \}$$
 $\delta_{c1} (re)$ $\delta_{c2} (\delta_{c1} (re)) = \delta_{c1,c2} (re)$ $\delta_{s} (re)$
 $L(\delta_{c1} (re)) = \{ \dots s[1:] \dots \}$ $L(\delta_{c1,c2} (re)) = \{ \dots s[2:] \dots \}$ $L(\delta_{s} (re)) = \{ \dots \varepsilon \dots \}$

given a function δ_c to compute the derivative of an RE, the NULL function, an RE *re*, and a string $s = c_1 \cdot c_2 \cdot c_3 \dots$ (concat of characters)

Can we check if *re* matches *s*?

$$L(re) = \{ \dots \ S \ \dots \}$$

$$L(re) = \{ \dots \ S \ \dots \}$$

$$L(\delta_{c1} (re)) = \{ \dots \ S[1:] \ \dots \}$$

$$L(\delta_{c1,c2} (re)) = \{ \dots \ S[2:] \ \dots \}$$

$$L(\delta_{s}(re)) = \{ \dots \ "" \ \dots \}$$