CSE211: Compiler Design

Oct. 13, 2023

* 6, (re), where re is:
* Topic: Symbol tables and parsing
with derivatives * €pps - Iy

8. (rems) - reps |

if e inre, then 6 (rey,) else {}

* Questions:
* What is “scope”
* How do you parse a regular expression?
* How do you parse a context free grammar?



Announcements

* Homework 1 is out!

* Please partner up if you haven’t. If you don’t have a partner you can make a
private post on Piazza. Please do that in the next few days.

 Failing to find a partner by Monday or else it will be a 20% deduction AND you
will have to do the homework assignment by yourself.

* Please record your partners in the shared spreadsheet. If you do not record, |
will assume that you don’t have a partner and you will get the deduction.

* Please help keep up with organization
e Use Piazza to find a partner



Announcements

* Homework 1 is out!
* Where we are at now:

 The homework has you using PLY to parse 2 languages
* A calculator language
* A regular expression language

* You should be able to parse both languages now
* By the end of today you should be able to do all of part 1
* By the end of Monday you should be able to do all of part 2



Review



Review

* What is a parser generator?
* How do you use a parser generator?

* What features do parser generators have that can make your life
easier?
* As a compiler writer?
* As a compiler user?



New material



First topic of today: Scope
* What is scope?

e Can it be determined at compile time? Can it be determined at
runtime?

* Cvs. Python

* Anyone have any interesting scoping rules they know of?



One consideration: Scope

* Lexical scope example

|_l.
3
(_'-
N
[
O

What are the final values in x and y?



How to track scope during parsing?

* Symbol table
* Global object, accessible (and mutable) by all production actions

 two methods:

* lookup(id) : lookup an id in the symbol table.
Returns None 1f the 1d 1s not 1n the symbol table.

* insert(id,info) : insert a new 1d (or overwrite an

exlsting 1d) 1nto the symbol table along with a set
of i1nformation about the 1id.

What information might we store about an id?



a very simple programming language

VARIABLE_NAME = “[a-z]+"
INCREMENT = “\+\+”

TYPE = “int”

LB = “{“

RB = “}”

SEMI = “;”

statements are either a declaration or an increment



a very simple programming language

VARIABLE_NAME = “[a-z]+” int x;
INCREMENT = “\+\+” L
int y;

TYPE - ”int” X++;
LB — u{u y-|—-|—;

{av }
RB = “} "y
SEMI = “;”

statements are either a declaration or an increment



a very simple programming language

VARIABLE_NAME = “[a-z]+” int x;
INCREMENT = “\+\+” L

int y;
TYPE - ”int” X++;
LB — u{u y-|--|-;
RB — ((}II }
SEMI = “;”

statements are either a declaration or an increment



How to track scope?

e SymbolTable ST;

declare variable: TYPE VARIABLE_ NAME SEMI Say we are matched string:

0 int x;

lookup(id) : lookup an id in the symbol table. Returns None 1f the
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.



How to track scope?

e SymbolTable ST;

declare variable: TYPE VARIABLE_ NAME SEMI
{ST.1nsert (C[1],C[O0]) }

In this example we are storing a type

Say we are matched string:
int x;




How to track scope?

Say we are matched string:
e SymbolTable ST; X+ :

variable_inc: VARIABLE_NAME INCREMENT SEMI
{}

lookup(id) : lookup an id in the symbol table. Returns None 1f the
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.



How to track scope?

Say we are matched string:
e SymbolTable ST; X+ :

variable_inc: VARIABLE_ NAME INCREMENT SEMI
{1f not ST.lookup(x):
ralse SymbolTableException;
else:

// continue}



How to track scope?
e SymbolTable ST;

statement : variable_inc
| declare_variable

statement_list : statement statement_list
| statement

adding in scope



How to track scope?
e SymbolTable ST;
statement : variable_inc

| declare_variable

| LB statement_list RB

statement_list : statement statement_list
| statement



How to track scope?

e SymbolTable ST;

statement : LB statement_list RB

start a new scope S remove the scope S



How to track scope?

* Symbol table

 four methods:
* lookup(id) : lookup an id in the symbol table.
Returns None 1f the 1d 1s not 1n the symbol table.

* insert(id,info) : insert a new 1d into the symbol
table along with a set of information about the id.

* push scope() : push a new scope to the symbol table

* pop_scope() : pop a scope from the symbol table



How to track scope?

e SymbolTable ST;

statement : LB statement_list RB

start a new scope S remove the scope S

Think about how to solve with production rules



How to implement a symbol table?

* Thoughts? What data structures are good at mapping strings?

* Symbol table

 four methods:
* lookup(id) : lookup an id in the symbol table.
Returns None 1f the 1d 1s not 1n the symbol table.

* insert(id,info) : insert a new 1d into the symbol
table along with a set of information about the id.

* push scope() : push a new scope to the symbol table

* pop_scope() : pop a scope from the symbol table



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

base scope HT O

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

push scope () HT O

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

adds a new
Hash Table HT 1
to the top of the stack

push scope () HT O

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

HT 1

insert (id,data)

HTO

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables: | |
insert (1d -> data) at

top hash table

HT 1

insert (id,data)

HTO

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

HT 1

lookup (id) HT O

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

check here

first HT1

lookup (id) HT O

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

HT 1

lookup (id) thegecrzeCk HT O

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

HT 1

pop_scope () HT O

Stack of hash tables



How to implement a symbol table?

* Many ways to implement:

* A good way is a stack of hash tables:

HTO

Stack of hash tables



How to implement a symbol table?

* Example

int x
int y
{
y++;
int vy
X++;
y++;

HT 1

HTO

Stack of hash tables



Moving on

* Parsing with derivatives!



Matching RE’s with Derivatives

* A simple regular expression matcher implementation
* Given an RE AST, you can check matches with very few lines of code

* Think recursively!



Language Derivatives
* A language is a (potentially infinite) set of strings {s;, s, 53, S, ...}
* A language is regular if it can be captured using a regular expression

* Examples of regular languages:

° { {4 a Il}, { Il} { Il II Va/ & Y4 Il\ Il}

{I/lll I/1+1II //1+1+1ll}
. {7} also called {¢} Subtle distinction between {} and {<}

* {}



Language Derivatives
* The Derivative of language L with respect to character ¢ (noted 6 (L) ) is:

forall sin L, if s begins with ¢, then s[1:]isin § (L)

* We’ll go over some examples in the next slides



Language Derivatives Examples

° L - {Ilall}

* 04(L)={""}

* O,(L) = {}



Language Derivatives Examples
° L - {Il+lj /I_I: Il*l: Il/ll}

* 0, (L)=1{""}
*0a(L)=1{}
* 0« (L) =1{""}



Language Derivatives Examples
o L={"1", “1+1", “1+1+1", “1+1+1+1", ...}
*0,(L)=1{}

° 51 (L) - {I/I; //+1I; /I+1+1ll...}

° 51+(L)=L



Language Derivatives Examples
o | = {”aaa’ﬁ ”(Jb’: ”ba’j ”bba”}

* 50 (L) = {?}
* 5aa (L) = {7}

* 9, (L) ={?}

* 5ba (L) = {?}



Regular Expressions

Recall we defined regular expressions recursively:

The three base cases: a character literal

* The RE for a character “a” is given by “a”. It matches only
the character “a”

* The RE for the empty string is is given by “” or &
* The RE for the empty set is given by {}



Regular Expressions

three recursive definitions

* The concatenation of two REs x and y is given by x.y and matches the
strings of RE x concatenated with the strings of RE y

* The union of two REs x and y is given by x|y and matches the strings of
RE x or the strings of RE y

* The Kleene star of an RE x is given by x* and matches the strings of RE
X repeated O or more times



Regular expressions recursive definition

re =

U

)

¢ (single character)
r€hs | s
M€hs - MCrhs

*
resta rred




Regular expressions recursive definition

re =

{} re=a.b

)

¢ (single character)
M€ hs | M€ hs F€ips - I€prps

e - reﬂr‘hs / \

resta rred



parse tree for a regular expression

ilnput: a.b |c*

“

| union : union PIPE concat
| concat
concat : concat CONCAT starred
| starred
* starred : starred STAR
| unit
unit : CHAR

| awn

Excluding special cases for {}



parse tree for a regular expression

“

| union : union PIPE concat
| concat
concat : concat CONCAT starred
| starred
* starred : starred STAR
| unit
unit : CHAR

| awn

Excluding special cases for {}

ilnput: a.b |c*

union

concat
/ /\ starred
concat <.> starred /\

ﬂ \. unit <*>
starred unit ’
| | <CHAR, “c">

. <CHAR ) b”>
unit

\

<CHAR, “a@”>



parse tree for a regular expression

abstract syntax tree

<|>
<> <*>
<”a”> <l(bll>

input: a.b |c*

union
union <|> concat

concat
/ | T~ starred
concat <.> starred /\

I \. unit <*>
starred unit ’
| | <CHAR, c>
. <CHAR ,b>
unit

<CHAR, a>



parse tree for a regular expression

input: a.b |c*

abstract syntax tree

<|>
<> <*>
<”a”> <((bll>

<IICII>

*re=

U

)

a (single character)
r€hs | s
(€hs - MCrhs

£
resta rred



parse tree for a regular expression

input: a.b |c*

abstract syntax tree

<|>
re
<> <*>
re,,,/ ws
restarred
o ”n
<“9”s <“b’>
a <IICII>

*re=

U

)

a (single character)
r€hs | s
(€hs - MCrhs

£
resta rred



parse tree for a regular expression
input: a.b |c*

*re=

abstract syntax tree

U

)

a (single character)
(€hs | Mrhs
I€starred re|hs . rerhs

£
resta rred

each node is
also a regular expression!



parse tree for a regular expression

input: a.b |c*

abstract syntax tree

each node is
also a regular expression!

* In your homework you will
need to generate an RE AST
using production rules

e given a regular expression
AST how check if a string is
in the language?

* parsing with derivatives!



Regular expressions are closed under derivatives

* Given a regular language L, any derivative of L is also a regular
language.

e Let’s try some!



Regular expressions are closed under derivatives
‘re=a

L= {a")

* 84(L)={""}

+ 8,re) =

* d(re) = {}



Regular expressions are closed under derivatives
re=a /b

o L={"a" “b"}

+ 8,re) =

° 5b(re) - an



Regular expressions are closed under derivatives
*re=a.a [ a.b

+ L = {“aa’, “ab”}

+ 8,(re)=a b

* d(re) = {}



Regular expressions are closed under derivatives
re=(a.b.c)*
o | ={"” “abc”, “abcabc”’, ...}

* 0, (L)={"bc”, “bcabc”, “bcabc’, ...}
*d,(re) =b.c.(a.b.c)*



What is a method for computing the derivative?

Consider the base cases

*re=

* §. (re) = match re with: 0
- -
return {} a (single character)
rhs | s
(€hs - MCrhs
return {} €starred *

g (single character)
if a ==cthenreturn ¢
else return {}



Derivative Recursive Cases

Consider the recursive cases:

* §. (re) = match re with:

* reps [ réps

return ? ?

*
°r estarred
return ? ?

*r elhs T erhs
return ?77?

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred



Regular expressions are closed under derivatives
*re=a.a [ a.b

+ L = {“aa’, “ab”}

* O4(re)={a, b}=a [ b

* d(re) = {}



Derivative Recursive Cases

Consider the recursive cases:

* §. (re) = match re with:

* reps [ réps

return ??

*
°r estarred
return ??

*r elhs T erhs
return ?77?

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred



Derivative Recursive Cases

Consider the recursive cases:

* 0. (re) = match re with:

* reps [ réps

return 6 (rey) | 8. (req)

*
°r estarred
return ? ?

*r elhs T erhs
return ?77?

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred



Regular expressions are closed under derivatives
re=(a.b.c)*
e [ ={"" "abc” “abcabc”, “abcabcabc” ...}

* d,(re) = {“bc”, “bcabc”, “bcabcabc’, ...}



Derivative Recursive Cases

Consider the recursive cases:

* 0. (re) = match re with:

* reps [ réps

return 6 (rey) | 8. (req)

*
°r estarred
return ? ?

*r elhs T erhs
return ?77?

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred



Derivative Recursive Cases

Consider the recursive cases:
°re =
* §. (re) = match re with: {}
€
a (single character)

r€hs | rerns
return 5c(relhs) | 5c (rerhs) r.elhs : rer‘hs

* reps [ réps

k
. r.esta rred
°r estarred

x
return 0 (réqigrreq) - M€starred

*r elhs T erhs
return ?77?



Some properties/optimizations



How do certain regular expressions combine?

.alllﬂza
*al{}=a
a“wn»

°4a. =d

*a.{}=1}

“wJ» x _ «un

*{H* =1



Derivative Recursive Cases

Let’s look at concatenation:

* §. (re) = match re with:

*r elhs . r erhs
Example:
return ? ? p

re=a.b

O,(re)="7?




Derivative Recursive Cases

Let’s look at concatenation:

* §. (re) = match re with:

* rey . re
lhs rhs 5 Exam p le:
return o (rey) . re,.

re=a.b

o,re)=b




Derivative Recursive Cases

Let’s look at concatenation:

* §. (re) = match re with:

* rey . re
lhs rhs 5 Exam p le:
return o.rey.) . re,.

re=a.b

O,re)=b




Derivative Recursive Cases

Let’s look at concatenation:

* 0. (re) = match re with: What about?

* rey . re
lhs rhs 5 Exam p le:
return O.rey.) . re,,

re=c*.a.b

O,re)="7?




Derivative Recursive Cases

Let’s look at concatenation:

* §. (re) = match re with:

°* re,..re
lhs rhs 5 Exam p le:
return JAreps) . req |

if " in reysthen 8 (re,,) else {} re=c*.a.b

O,re)="7?




Derivative Recursive Cases

Consider the recursive cases:

* 0, (re) = match re with:

*r elhs / r erhs

return o (rey,) | 0. (re,)

*
*r estarred

x
return 0 (re rreq) - €starred

*r elhs T erhs

return o rey,) . re.. |

if “”in re, then 6 (re,,.) else {}

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred



Nullable operator

* NULL(re) =
if “” € re then:
else: {}



Nullable operator

* NULL(re) =
if “” € re then:
else: {}
°re =
implement over a RE abstract syntax tree {}
o))
<|>
T a (single character)
/<'>\ <> r€hs | M€hs
. . re
< an> <”b”> n |hS th
<c > €starred




What is a method for computing NULL?

Consider the base cases

* NULL(re) = match re with:

* {}

return {}

return “”

g (single character)
return {}

*re=

U

)

a (single character)
rhs | s
(€hs - MCrhs

£
r.esta rred



What is a method for computing NULL?

Consider the recursive cases:

°* re =
* NULL(re) = match re with: {
e
* Teps | rerms a (single character)
return ?? repns | remme
F€ihs - MC€rhs
* reurred” MCstarred *

return ??

*r elhs T erhs

return ??



What is a method for computing NULL?

Consider the recursive cases:

[ re =
* NULL(re) = match re with: {}
E
* reps | rep a (single character)
return NULL(re;,,) | NULL(re,p) M€ ns | r€hs
F€ihs - MC€rhs
o« reg it r€ctarred *

on”»n

return

*r elhs T erhs

return NULL(re;,) . NULL(re,;)



Derivative Recursive Cases

Consider the recursive cases:

* 0, (re) = match re with:

*r elhs / r erhs

return o (rey,) | 0. (re,)

*
*r estarred

x
return 0 (re rreq) - €starred

*r elhs T erhs

return o rey,) . re.. |

if € in re, then o (re,,.) else {}

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred



Derivative Recursive Cases

Consider the recursive cases:

_ ° re =
* 0, (re) = match re with: 0
*r elhs / r erhs € ]
return 8 (re,,.) | 8. (re.,.) a (single character)
rejns | réms
re,..re
*r estarred* t 5 ( ) * Ihs ;;hs
return C r estarred T estarred resta rred

*r elhs T erhs

return o rey,) . re.. |

NULL(I'e/hS) . Sc(rerhs)



Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?



Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

Lire)={..s..}



Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

5c1 (I’E’)
Lire)={..s..}

L(6. (re)) ={..s[1:]..}




Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

5c1 (I’E’) 6c2 (5c1 (re) ) = 5c1,c2 (I’E)

Lire)={..s..}

L(5C1 (re)) = { 5[1] } L(5C1,C2 (re)) = { 5[2] }




Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

5c1 (I’E’) 6c2 (5c1 (re) ) = 5c1,c2 (I’E) 55(I’€)

Lire)={..s..}

L(6. (re)) ={.s[1:]..} L(6c1,co (re)) ={.. s[2:] ..} L(8(re)) ={.. € ..}



Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

Lire)={..s..}

5c1 (I’ E’)

L(6. (re)) ={..s[1:]..}

6c2 (5c1 (re) ) = 5c1,c2 (I’E)

L(5c1,c2 (re)) = { 5[2-'] }

dy(re)

L(8.(re)) = {..“” ..}

If this is true,
Then re matches s

NULL(6(re)) == "




