
CSE211: Compiler Design
Oct. 11, 2023

• Topic: Parser Generator Example 2

• Questions:
• Given token definitions, how would you

implement a scanner?

• What can you use token actions for?

from: https://en.wikipedia.org/wiki/Yak

Announcements

• Homework 1 is out!
• Please partner up if you haven’t. If you don’t have a partner you can make a

private post on Piazza. Please do that in the next few days.
• Failing to find a partner by the end of the week will be a 20% deduction and

you will have to do the homework assignment by yourself.
• I will make a shared spreadsheet that we can use to record partners
• Please self organize (use Piazza)
• You will have (slightly more than) 2 weeks to do the homework

Announcements

• Homework 1 is out!
• Where we are at now:
• The homework has you using PLY to parse 2 languages

• A calculator language
• A regular expression language

• You should have been able to write tokens for each
• At the end of the lecture today you should be able to parse each
• You might need Friday’s lecture for the symbol table needed to finish part 1
• Early lectures next week will cover parsing by derivatives needed for part 2

Announcements

• Think about paper review
• You will need to approve a paper with me by Oct. 23
• First review is due Oct. 30
• You should probably not wait until these due dates because the midterm is

also on Oct. 30.
• I give this time for you to organize, not as a guidance!
• You can discuss papers on piazza or ask me for suggestions

Announcements

• I will have office hours this week: Thursday from 3 – 5 PM

• Rithik has office hours too

Review

Parser architecture

First level of
abstraction.

Transforms a string of
characters into a string

of tokens

Second level:
transforms a string

of tokens in a tree of
tokens.

Language:
Regular Expressions

(REs)

Language:
Context-Free Grammars

(CFGs)

Parser

Parser
Scanner
(Lexer)

(Tokenizer)

PLY Parser Generator

• An implementation of Lex and Yacc in Python

• links:
• source: https://github.com/dabeaz/ply
• docs: https://ply.readthedocs.io/en/latest/

Review PLY code for Lexer

New material

How to handle keywords and ids

• How to tokenize: if (x)

How to handle keywords and ids
reserved = {

 'if' : 'IF',
 'else' : 'ELSE'

}

tokens = ["ID"] + list(reserved.values())

def t_ID(t):
 "[a-zA-Z]+"
 t.type = reserved.get(t.value, 'ID')
 return t

This will work!

Multiline calculator example

• For this, we will use the lexer and parser

• input:
• 1 or more mathematical expressions separated by a ;
• mathematical expressions can have non-negative integers as operands
• mathematical operators are +,-,*,/ and ()

• output:
• the solution to each expression

Reminder: Production rules vs production
actions
• Great to check if a string is grammatically correct

• But can the production rules actually help us with compilation??

Production actions

• Each production option is associated with a code block
• It can use values from its children
• it returns a value to its parent
• Executed in a post-order traversal (natural order traversal)

Production actions

Operator Name Productions Actions

+,- expr : expr PLUS term
| expr MINUS term
| term

{ret C[0] + C[2]}
{ret C[0] - C[2]}
{ret C[0]}

*,/ term : term TIMES factor
: term DIV factor
| factor

{ret C[0] * C[2]}
{ret C[0] / C[2]}
{ret C[0]}

() factor : LPAR expr RPAR
| NUM

{ret C[1]}
{ret int(C[0])}

Example: executing a mathematical expression during parsing

Children values are passed in as an array C, indexed from left to right expr

expr <PLUS>

<NUM, 1>

<TIMES>termterm

factor

input: 1+5*6

term

<NUM, 5>

factor <NUM, 6>

factor

We have just implemented a simple arithmetic interpreter!

Multiline calculator example
import ply.lex as lex

tokens = ["NUM", "MULT", "PLUS", "MINUS", "DIV", "LPAR", "RPAR", "SEMI", "NEWLINE"]

t_NUM = '[0-9]+'
t_MULT = '*'
t_PLUS = '\+'
t_MINUS = '-'
t_DIV = '/'
t_LPAR = '\('
t_RPAR = ‘\)'
t_SEMI = ";"

t_ignore = ' '

def t_NEWLINE(t):
 "\\n"
 t.lexer.lineno += 1

Error handling rule
def t_error(t):
 print("Illegal character '%s'" % t.value[0])
 exit(1)

lexer = lex.lex()

Set up the lexer

Multiline calculator example
• Import the library

import ply.yacc as yacc

• Simple rule

def p_expr_num(p):
 "expr : NUM"
 p[0] = int(p[1])

functions are given prefixed by p_

production rules are the doc string

return values are stored in p[0]
children values are in p[1], p[2], etc.

Multiline calculator example
• Try it out

parser = yacc.yacc(debug=True)

result = parser.parse("5")
print(result)

What about trying to parse “a”?
What about trying to parse “+”?

Multiline calculator example
• Next rule

def p_expr_plus(p):
 "expr : expr PLUS expr"
 p[0] = p[1] + p[3]

• Try it again

result = parser.parse("5 + 4")
print(result)

What errors are we getting? Can we look into them?

Multiline calculator example
• Set an error function

• Set associativity (and precedence)

def p_error(p):
 print("Syntax error in input!")

precedence = (
 ('left', 'PLUS'),

)

Multiline calculator example
• Next rules

def p_expr_minus(p):
 "expr : expr MINUS expr"
 p[0] = p[1] - p[3]

def p_expr_mult(p):
 "expr : expr MULT expr"
 p[0] = p[1] * p[3]

def p_expr_div(p):
 "expr : expr DIV expr"
 p[0] = p[1] / p[3]

precedence = [
 ('left', 'PLUS', 'MINUS'),
 ('left', 'MULT', 'DIV'),

]

Multiline calculator example
• Last rule for expressions

def p_expr_par(p):
 "expr : LPAR expr RPAR"
 p[0] = p[2]

Multiline calculator example
• An extra we can easily implement

def p_expr_div(p):
 "expr : expr DIV expr"
 if p[3] == 0:
 print("divide by 0 error:")
 print("cannot divide: " + str(p[1]) + " by 0")
 exit(1)
 p[0] = p[1] / p[3]

Multiline calculator example
• Combining rules:

def p_expr_plus(p):
 "expr : expr PLUS expr"
 p[0] = p[1] + p[3]

def p_expr_minus(p):
 "expr : expr MINUS expr"
 p[0] = p[1] - p[3]

def p_expr_mult(p):
 "expr : expr MULT expr"
 p[0] = p[1] * p[3]

def p_expr_bin(p):
 """
 expr : expr PLUS expr
 | expr MINUS expr
 | expr MULT expr

 """
 if p[2] == '+':
 p[0] = p[1] + p[3]
 elif p[2] == '-':
 p[0] = p[1] - p[3]
 elif p[2] == '*':
 p[0] = p[1] * p[3]
 else:
 assert(False)

Multiline calculator demo using lambdas

• demo

One consideration: Scope

• What is scope?

• Can it be determined at compile time? Can it be determined at
runtime?

• C vs. Python

• Anyone have any interesting scoping rules they know of?

One consideration: Scope

• Lexical scope example

int x = 0;
int y = 0;
{
 int y = 0;
 x+=1;
 y+=1;
}
x+=1;
y+=1; What are the final values in x and y?

How to track scope?

• Symbol table
• Global object, accessible (and mutable) by all production actions

• two methods:
• lookup(id) : lookup an id in the symbol table.
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id (or overwrite an
existing id) into the symbol table along with a set
of information about the id.

What information might we store about an id?

a very simple programming language

VARIABLE_NAME = “[a-z]+”
INCREMENT = “\+\+”
TYPE = “int”
LB = “{“
RB = “}”
SEMI = “;”

statements are either a declaration or an increment

int x;
x++;
int y;
y++;

a very simple programming language

VARIABLE_NAME = “[a-z]+”
INCREMENT = “\+\+”
TYPE = “int”
LB = “{“
RB = “}”
SEMI = “;”

statements are either a declaration or an increment

int x;
{
 int y;
 x++;
 y++;
}
y++;

a very simple programming language

VARIABLE_NAME = “[a-z]+”
INCREMENT = “\+\+”
TYPE = “int”
LB = “{“
RB = “}”
SEMI = “;”

statements are either a declaration or an increment

int x;
{
 int y;
x++;

 y++;
}
y++;

How to track scope?

• SymbolTable ST;

declare_variable: TYPE VARIABLE_NAME SEMI
{}

Say we have matched string:
int x;

lookup(id) : lookup an id in the symbol table. Returns None if the
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.

How to track scope?

• SymbolTable ST;

declare_variable: TYPE VARIABLE_NAME SEMI
{ST.insert(C[1],C[0])}

Say we are matched string:
int x;

In this example we are storing a type

How to track scope?

• SymbolTable ST;

variable_inc: VARIABLE_NAME INCREMENT SEMI
{}

Say we are matched string:
x++;

lookup(id) : lookup an id in the symbol table. Returns None if the
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.

How to track scope?

• SymbolTable ST;

variable_inc: VARIABLE_NAME INCREMENT SEMI
{if not ST.lookup(x):
 raise SymbolTableException;

 else:

 ... // continue}

Say we are matched string:
x++;

How to track scope?

• SymbolTable ST;

statement : variable_inc
 | declare_variable

statement_list : statement_list statement
 | statement

How to track scope?

• SymbolTable ST;

statement : variable_inc
 | declare_variable

statement_list : statement_list statement
 | statement

adding in scope

How to track scope?

• SymbolTable ST;

statement : variable_inc
 | declare_variable
 | LBAR statement_list RBAR

statement_list : statement_list statement
 | statement

How to track scope?

• SymbolTable ST;

statement : LBAR statement_list RBAR

start a new scope S remove the scope S

How to track scope?

• Symbol table
• four methods:
• lookup(id) : lookup an id in the symbol table.
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id into the symbol
table along with a set of information about the id.

• push_scope() : push a new scope to the symbol table

• pop_scope() : pop a scope from the symbol table

How to track scope?

• SymbolTable ST;

statement : LBAR statement_list RBAR

start a new scope S remove the scope S

Think about how to solve with production rules

How to implement a symbol table?

• Thoughts? What data structures are good at mapping strings?

• Symbol table
• four methods:
• lookup(id) : lookup an id in the symbol table.
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id into the symbol
table along with a set of information about the id.

• push_scope() : push a new scope to the symbol table

• pop_scope() : pop a scope from the symbol table

How to implement a symbol table?

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

HT 0base scope

How to implement a symbol table?

HT 0push_scope()

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

push_scope()

adds a new
Hash Table
to the top of the stack

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

insert(id,data)

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

insert(id,data)

insert (id -> data) at
top hash table

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

lookup(id)

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

lookup(id)

check here
first

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

lookup(id) then check
here

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

pop_scope()

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

• Example

HT 0

int x = 0;
int y = 0;
{
 int y = 0;
 x++;
 y++;
}
x++;
y++;

Stack of hash tables

