CSE211: Compiler Design

Nov. 27, 2023

* Topic: Loop structure and DSLs

* Discussion questions:

 Lots of discussions throughout about loops
and DSLs

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

Announcements

e Homework 3 is due on FRIDAY

* Two day extension

* No extension on HW 4
* It will be released on Wednesday
* Itis due on Dec. 15. No extensions will be possible.
* Have partners by Monday

* Second paper needs to be selected by Monday

Announcements

* Final project presentations are required by Dec. 6
* 10 minutes
* Things don’t have to be completed

* But you should be able to present at least one result and your
approach.

* | will randomly select a subset of people to do final
presentations in class over Dec. 6 and Dec. 8.

* If you are not selected, then a zoom recording of your
presentation is due on Dec. 8.

Announcements

* Final Exam:
* Tuesday Dec 12: 8 AM —-11 AM
e 3 pages of notes allowed
* Inclusive material
e Same style as midterm, but probably ~2x as long.

Guest lecture next time!

* Two presenters from Google about using ML in compilers:

* Ondrej Sykora — GRANITE: using ML to estimate the throughput of basic
blocks

* Mircea Trofin — MLGO: using ML to pick when to apply compiler optimizations

* Both papers linked in canvas announcement: please try to overview
the papers before the lecture

* Mircea will be around for the day. Let me know if you'd like to meet
with him and | can organize.

Review

Shifting our focus back to a single core

* We need to consider single
threaded performance

e Good single threaded performance
can enable better parallel
performance

* Memory locality is key to good
parallel performance.

CcO

C1

L1
cache

C2

L1

cache

C3

L1
cache

L1
cache

L2 cache

A4

DRAM

Discussion

Discussion questions:

W

W
W

nat is a DSL?
nat are the benefits and drawbacks of a DSL?

nat DSLs have you used?

Halide:

pretty straight
forward computation
for brightening

(1 pass over all pixels)

We want to be able to do this
fast and efficiently!

Main results in from Halide show
a 1.7x speedup with 1/5 the LoC
over hand optimized versions at Adobe

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

Decoupling computation from optimization

* We love Halide not only because it can make pretty pictures very fast

* We love it because it changed the level of abstraction for thinking
about computation and optimization

* (Halide has been applied in many other domains now, turns out
everything is just linear algebra)

Halides approach

* Decouple

e what to compute (the program)
* with how to compute (the optimizations, also called the schedule)

for (int yv = 0;
for (i1nt x =
alx,yl]

Y
0;

<
X
b[x

y size;
< X size; X++)

Y]

+ c[X

y++) |

IY];

{

C++:

program

add(x,y) = b(x,y) + c(x

schedule

add.order (x

' Y)

Halide (high-level)

' Y)

Halide: :Func gradient; Schedule
Halide: :Var x, vy;

gradient (x, y) = x + vy, Var x_outer, x_inner, y_outer, y_inner;
Halide: :Buffer<int32 t> output = gradient.split(x, x_outer, x_inner, 4);
gradient.realize ({16, 16}); gradient.split(y, y_outer, y_inner, 4);

gradient.reorder(x_inner, y_inner, x_outer, y_outer);

for (int yv = 0; vy < 4; y++) |
for (int x = 0; x < 4; x++) {
outputly,x] = x + y;

gradient.tile(x, v,
X outer, y outer,

X _1lnner, y inner, 4, 4);

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Halide: :Func gradient fast;
Halide::Var x, y; Finally: a fast schedule that they found:
gradient fast(x, y) = x + y;
Halide: :Buffer<int32 t> output =
gradient.realize ({2, 2});

Var x outer, y outer, x inner, y 1nner, tile index;

gradient fast
.tile(x, y, X outer, y outer, x inner, y inner, 64, 064)
.fuse (x outer, y outer, tile index)
.parallel (tile index) ;

Var x inner outer, y inner outer, x vectors, y pairs;

gradient fast
.tile(x inner, y inner, X inner outer, y inner outer, x vectors, y pailrs,
.vectorize (X vectors)
.unroll (y pairs);

New material

function fusing...

Example: unnormalized blur

Halide: :Func blur x(x,y) = in(x-1,y) + in(x,y) + in(x+1l,y);

Halide: :Func blur(x,y) = blur x(x,y+l) + blur x(x,y) + blur x(x,y-1);

Example: unnormalized blur

Halide: :Func blur x(x,y) = in(x-1,y) + in(x,y) + in(x+1l,y);

Halide: :Func blur(x,y) = blur x(x,y+l) + blur x(x,y) + blur x(x,y-1);

Example: unnormalized blur

Halide: :Func blur x(x,y) = in(x-1,y) + in(x,y) + in(x+1l,y);

Halide: :Func blur(x,y) = blur x(x,y+l) + blur x(x,y) + blur x(x,y-1);

Example: unnormalized blur

Halide: :Func blur x(x,y) = in(x-1,y) + in(x,y) + in(x+1l,y);

Halide: :Func blur(x,y) = blur x(x,y+l) + blur x(x,y) + blur x(x,y-1);

Example: unnormalized blur

Halide: :Func blur x(x,y) = in(x-1,y) + in(x,y) + in(x+1l,y);

Halide: :Func blur(x,y) = blur x(x,y+l) + blur x(x,y) + blur x(x,y-1);

Example: unnormalized blur

Halide: :Func blur x(x,y) = in(x-1,y) + in(x,y) + in(x+1l,y);

Halide: :Func blur(x,y) = blur x(x,y+l) + blur x(x,y) + blur x(x,y-1);

how to compute?

Example: unnormalized blur

Halide: :Func blur x(x,y) = in(x-1,y) + in(x,y) + in(x+1l,y);
Halide: :Func blur(x,y) = blur x(x,y+1l) + blur x(x,y) + blur x(x,y-1);
input blur_x blur

Example: unnormalized blur

Halide: :Func blur x(x,y) = in(x-1,y) + in(x,y) + in(x+1l,y);

Halide: :Func blur(x,y) = blur x(x,y+1l) + blur x(x,y) + blur x(x,y-1);

alloc blurx[2048] [3072]
foreach y in 0..2048:

foreach x in 0..3072:
blurx[y] [x] = in[y][x-1] + in[y][x] + in[y] [x+1]

pros?
alloc out[2046][3072] cons?
foreach y in 1..2047:
foreach x in 0..3072:
outl[y] [x] = blurx[y-1][x] + blurx[y][x] + blurx[y+1] [x]

Example: unnormalized blur

Halide: :Func blur x(x,y)

Halide: :Func blur(x,y) = blur x(x,y+1)

input

blur_x

in(x-1,y) + in(x,Vy)

+ blur x(x,Vy)

stored to memory!

I

+ in(x+1,v);

+ blur x(x,y-1);

no locality

Example: unnormalized blur

Halide: :Func blur x(x,y) = in(x-1,y) + in(x,y) + in(x+1l,y);

Halide: :Func blur(x,y) = blur x(x,y+1l) + blur x(x,y) + blur x(x,y-1);

Other options?

Example: unnormalized blur

Halide: :Func blur x(x,y) = in(x-1,y) + in(x,y) + in(x+1l,y);

Halide: :Func blur(x,y) = blur x(x,y+1l) + blur x(x,y) + blur x(x,y-1);

completely inline

alloc out[2046][3072]
foreach y in 1..2047:
foreach x in 0..3072:

out[y] [x] = in[y-1][x] + in[y][x] + in[y+1][x] +
in[y-1][x-1] + in[y][x-1] + in[y+1][x-1]
in[y-1] [x+1] + in[y][x+1] + in[y+1] [x+1]

Example: unnormalized blur

Halide: :Func blur x(x,y) = in(x-1,y) + in(x,y) + in(x+1l,y);

Halide: :Func blur(x,y) = blur x(x,y+1l) + blur x(x,y) + blur x(x,y-1);

input blur

These two squares will both sum up the same
values in blue

Example: unnormalized blur

Halide: :Func blur x(x,y) = in(x-1,y) + in(x,y) + in(x+1l,y);

Halide: :Func blur(x,y) = blur x(x,y+1l) + blur x(x,y) + blur x(x,y-1);

other ideas?

Example: unnormalized blur

Halide: :Func blur x(x,y) = in(x-1,y) + in(x,y) + in(x+1l,y);

Halide: :Func blur(x,y) = blur x(x,y+1l) + blur x(x,y) + blur x(x,y-1);

first iteration, only compute blur_x

blur

sliding window

Example: unnormalized blur

Halide: :Func blur x(x,y) = in(x-1,y) + in(x,y) + in(x+1l,y);

Halide: :Func blur(x,y) = blur x(x,y+1l) + blur x(x,y) + blur x(x,y-1);

first iteration, only compute blur_x
blur second iteration, compute blur_x again:

sliding window Compute first blur

Example: unnormalized blur

Halide: :Func blur x(x,y) = in(x-1,y) +

Halide: :Func blur(x,Vy)

sliding window

= blur x(x,y+1)

blur

in(x,y) + in(x+1,vy);

+ blur x(x,Vy)

+ blur x(x,y-1);

first iteration, only compute blur_x
second iteration, compute blur_x again:
Compute first blur

Third iteration

drop first bar
Compute second blur
compute one next row

Example: unnormalized blur

Halide: :Func blur x(x,y) = in(x-1,y) +

Halide: :Func blur(x,Vy)

sliding window

= blur x(x,y+1)

blur

in(x,y) + in(x+1,vy);

+ blur x(x,Vy)

+ blur x(x,y-1);

first iteration, only compute blur_x
second iteration, compute blur_x again:
Compute first blur

Third iteration

drop first bar
Compute second blur
compute one next row

Fourth iteration

Drop second bar
Compute third blur
Compute one next row

Fusing functions

* Can compose with all other optimizations
* Tiling, loop order, unrolling, etc.

* Creates a very powerful optimization framework, and automatically produces
code that you do not want to write by hand!

End Halide

Next topic: Compiling concurrency

What happens when threads share data?

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O: Thread 1:
S:store(x, 1); S:store(y, 1);
L:%t0 = load(y); L:5tl = load(x);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O: Thread 1:
S:store(x, 1); S:store(y, 1);
L:%t0 = load(y); L:%tl = load(x);
S:store(x, 1); S:store(y, 1);

L:3t0 = load (V) ; L:%tl = load(x);

pick from the top of the pile of either thread

Sequential Consistency

e Sequential interleaving of atomic instructions

e What are “atomic instructions”?

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O: Thread 1:
S:store(x, 1); S:store(y, 1);
L:%5t0 = load(y); | L:3tl = load(x);

S:store(x, 1);
|
S:store(y, 1);

L:%t0 = load(y);

pick from the top of the pile of either thread
Can t0 ==t1 == 0 at the end of the execution?

Demo

* What is going on?

Thread O:

Thread 1:

mov [x], 1

mov [y],

1

mov %t0, [y]

mov %tl,

[x]

Core 1l

Thread O:

mov %t0,

[v]

Core O

mov [X],

execute first instruction
what happens to the stores?

Thread 1:

mov %tl, [x]

Core 1

mov [y], 1

x:0

Main Memory

Thread O: Thread 1:
X86 cores contain a store
buffer; holds stores before mov $tl, [x]
mov st0, [y] going to main memory
Store Buffer Store Buffer
Core O x:1 y:1 Core 1l
x:0

Main Memory

Thread O: Thread 1:

X86 cores contain a store

buffer; holds stores before mov $tl, [x]
going to main memory

mov st0, [v]

Store Buffer Store Buffer
Core O x:1 y:1 Core 1l

eventually they flush to main memory

x:0
y:0 Main Memory

Thread O: Thread 1:

X86 cores contain a store

buffer; holds stores before mov $tl, [x]
going to main memory

mov st0, [v]

Store Buffer Store Buffer
Core O x:1 Core 1

eventually they flush to main memory

x:0
y:1 Main Memory

Thread O:

mov [x], 1

mov %t0, [y]

rewind

Thread 1:

mowv [Y] ’ 1
mov %$tl, [x]

Store Buffer

Core 1l

Thread O:

mov %tO0,

[v]

mov [x], 1

execute first instruction

Thread 1:

mov %tl,

[x]

Store Buffer

Core 1l

mov [y], 1

Thread O:

mov %tO0,

[v]

values get stored in SB

Thread 1:

mov %tl,

[x]

Store Buffer

y:1

Core 1l

Thread O:

mov %t0,

[v]

Execute next instruction

Thread 1:

Store Buffer

y:1

Core 1l

mov $tl, [x]

Thread O:

mov %t0,

[v]

Values get loaded from memory

Thread 1:

Store Buffer

y:1

Core 1l

mov $tl, [x]

Thread 0: Thread 1:

weseet() == tl1 == 0!

Store Buffer
y:1 Core 1

mov $tl, [x]

mov $t0, [Vy]

Thread O:

Thread 1:

Store buffers are drained eventually

Store Buffer
y:1

Core 1l

Thread O:

Store buffers are drained eventually
but we’ve already done our loads

Thread 1:

Store Buffer

Core 1l

Our first relaxed memory execution!

* also known as weak memory behaviors
* An execution that is NOT allowed by sequential consistency

* A memory model that allows relaxed memory executions is known as
a relaxed memory model

Litmus tests

* Small concurrent programs that check for relaxed memory behaviors

* Vendors have a long history of under documented memory
consistency models

e Academics have empirically explored the memory models
* Many vendors have unofficially endorsed academic models
* X86 behaviors were documented by researchers before Intel!

Litmus tests

This test is called “store buffering”

Thread O: Thread 1:
mov [x], 1 mov [y], 1
mov $t0, [vy] mov Stl, [Xx]

Cant0 == tl1 == 07

Restoring sequential consistency

* It is typical that relaxed memory models provide special instructions
which can be used to disallow weak behaviors.

* These instructions are called Fences

e The X86 fence is called mfence. It flushes the store buffer.

Thread O:

mov [x], 1

mfence

mov %t0, [Vy]

Thread 1:

mov [vy],

1

mfence

mov %tl,

[x]

Store Buffer

Core 1l

Thread O:

mfence

mov %t0,

[v]

Core O

Store Buffer

mov [X],

Execute first instruction

Thread 1:

mfence

mov $tl, [x]

Store Buffer

Core 1

mov [y], 1

x:0

Main Memory

Thread O: Thread 1:
mfence Values go into the store buffer nEEnee
mov %t0, [y] mov stl, [x]
Store Buffer
y:1 Core 1

Thread O:

mov %tO0,

[v]

mfence

Execute next instruction

Thread 1:
mov $tl, [x]
Store Buffer
y:1 Core 1
mfence

Thread O:

mov %tO0,

[v]

store buffers are flushed

Thread 1:

mov %tl,

Store Buffer

y:1

Core 1l

Thread O:

mov %tO0,

[v]

store buffers are flushed

Thread 1:

mov %tl,

Store Buffer

Core 1l

Thread O:

execute next instruction

Thread 1:

Store Buffer

Core 1l

mov %tl,

Thread O:

values are loaded from memory

Thread 1:

Store Buffer

Core 1l

mov %tl,

Thread O:

Thread 1:

We don’t get the problematic behavior: t0

'= 0 and tl

Store Buffer

Core 1l

mov %tl,

0

Next example

Thread O:

mov [x],

1

mov %t0,

[x]

single thread
same address

possible outcomes:
t0=1
t0=0

Which one do you expect?

Thread O:

mov [x], 1
mov %$t0, [x]

How does this execute?

Thread O:

execute first instruction

mov %$t0, [x]

mov [x], 1

Thread O:

mov %t0,

[x]

Store the value in the store buffer

Thread O:

Next instruction

Thread O:

Where to load??

Store buffer?
Main memory?

Thread O:

Where to load??
Threads check store buffer before going to main memory

It is close and cheap to check.

Question

e Can stores be reordered with stores?

Global variable:
int x[1] = {0};

Cant0 == tl == 07
int yv[1] = {0};
Thread 1:
: 1
Thread 0O: imov O[%:]]ll]
I o
S:mov [x], 1 oV s
L:mov 3t0, [vy]
S:mov [y], 1
L:mov %tl, [x]
S:mov [x], 1
L:mov %t0, [v] M Rules: S(tores) followed by a L(oad)

do not have to follow program order.

Global variable:
int x[1] = {0}; Cant0 == t1 == 0?

int y[1] = {0};

Thread 1:
: , 1
Thread O: ri ffenize [v]
S , 1
wow Lz L:mov 3stl, [X]
mfence
L:mov 3st0, [Vy] S:mov [y], 1

mfence

L:mov %tl, [x]

mfence

L:mov %t0, [v] M Rules: S(tores) followed by a L(oad)
do not have to follow program order.

Global variable:

int x[1] = {0};
int y[1] = {0};

Can t0

Thread O:

S:mov [x], 1
mfence

L:mov 3t0, [vy]

S:mov [x], 1

mfence

L:mov %t0, [vy]

Thread 1:

S:mov [y], 1
mfence

L:mov Stl, [X]

S:mov [y], 1

mfence

L:mov %tl, [x]

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

Rules

e Are we done?

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

Global variable:
int x[1] = {0};

| Another test
int y[1] = {0}; Cant0 == 0?
Thread O:
S:mov [x], 1
L:mov 3%t0, [Xx]
S:mov [x], 1
L:mov %t0, [x] Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

Global variable:
int x[1] = {0};

| Another test
int y[1] = {0}; Cant0 == 07?
Thread O:
S:mov [x], 1
L:mov 3%t0, [Xx]
Rules:
S:mov [x], 1 S(tores) followed by a L(oad)
i ! do not have to follow program order.
L:mov 5t0, [X] S(tores) cannot be reordered past a fence
in program order
v S(tores) cannot be reordered past L(oads)

from the same address

TSO - Total Store Order

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

S(tores) cannot be reordered past L(oads)
from the same address

Other memory models?

* We can specify them in terms of what reorderings are allowed

memory access 0

L S

If memory access O appears before
memory access 1 in program order,
memory access 1 can it bypass program order?

Other memory models?

* We can specify them in terms of what reorderings are allowed

memory access 0 Sequential Consistency
L S

If memory access O appears before
memory access 1 in program order,
memory access 1 can it bypass program order?

L NO NO

Other memory models?

* We can specify them in terms of what reorderings are allowed

memory access 1

memory access 0

L S
Different

NO address

NO NO

TSO - total store order

If memory access O appears before
memory access 1 in program order,
can it bypass program order?

Other memory models?

* We can specify them in terms of what reorderings are allowed

memory access 0 Weaker models?

L S

If memory access O appears before
memory access 1 in program order,
memory access 1 can it bypass program order?

Other memory models?

* We can specify them in terms of what reorderings are allowed

memory access 1

L

memory access 0

S

NO

Different
address

NO

Different
address

PSO - partial store order

If memory access O appears before
memory access 1 in program order,
can it bypass program order?

Allows stores to drain from the store buffer in any order

Other memory models?

* We can specify them in terms of what reorderings are allowed

memory access 1

memory access 0

L

S

YES

Different
address

Different
address

Different
address

Very relaxed model!

RMO - Relaxed Memory Order

If memory access O appears before
memory access 1 in program order,
can it bypass program order?

Other memory models?

* FENCE: can always restore order using fences. Accesses cannot be
reordered past fences!

Any Memory Model

If memory access O appears before
memory access 1 in program order, and
there is a FENCE between the two accesses,
can it bypass program order?

Global variable:
int x[1] = {0};

First thing: change our syntax to pseudo code
You should be able to find natural mappings

int y[1] = {0}; to any ISA

Thread O: Thread 1:

L:5t0 = load(y) L:3tl = load(x)
S:store(x,1) S:store(y,1)

Global variable:

, Question: can t0 == tl1 == 17?

int x[1] = {0},

int y[1] = {0};

Thread O: Thread 1:

L:5t0 = load(y) L:3tl = load(x)
S:store(x,1) S:store(y,1)

Global variable:

) Question:can t0 == tl1 == 17

int x[1] = {0},

int v 11 = {0}; Get out our lego bricks and try for sequential consistency

Thread O: Thread 1:

L:5t0 = load(y) L:%3tl = load (x)
S:store(x,1) S:store(y,1)

L:5t0 = load(y)

L:5tl = load(x)

S:store(x,1)

S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O:
L:5t0 = load(y)
S:store(x,1)

L:5t0 = load(y)

S:store(x,1)

Question: can t0 == tl1 == 17?

Get out our lego bricks and try for TSO

Thread 1:

L:3tl

= load (x)
S:store(y,1)

L:stl =

load (x)

S:store(y,1)

memory access 0

S

Different
address

L
L NO
memory access 1
S NO

NO

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread O:
L:5t0 = load(y)
S:store(x,1)

L:5t0 = load(y)

S:store(x,1)

Question: can t0 == tl1 == 17?

Get out our lego bricks and try for PSO

Thread 1:

L:3tl

load (x)
S:store(y,1)

L:5tl = load(x)

S:store(y,1)

memory access 1

memory access 0

L

S

NO

Different
address

NO

Different
address

Global variable:

) Question:can t0 == tl1 == 17

int x[1] = {0},

int v 11 = {0}; Get out our lego bricks and try for RMO

Thread O: Thread 1:

L:5t0 = load(y) L:%3tl = load (x)
S:store(x,1) S:store(y,1)

S:store(y,1)
[

S:store(x,1)

|

memory access 0

L S
L:5t0 = load(y)
|
Different
L:stl = lOad(X) L YES address
memory access 1
S different Different
address address

How do we disallow it?

Global variable:

, Question: can t0 == tl1 == 17?
int x[1] = {0};
int y [1] = {0}; Get out our lego bricks and try for RMO
Thread O: Thread 1:
L:5t0 = load(y) L:3tl = load(x)
fence fence
S:store(x,1) S:store(y,1)
L:%t0 = load(y) L:%tl = load(x)
memory access 0
fence
fence L S
S:store(y,1) |
S:store (X, 1) v 5 YES Different

address

memory access 1

S different Different
address address

How do we disallow it?

Compiling relaxed memory models

Compiling relaxed memory models

e C++ style:

* Any memory conflicts (read-write or write-write) must be accessed with an
atomic operation*

* Otherwise your program is undefined
* By default, you will get sequentially consistent behavior

* *unless they are synchronized, which is a really complicated concept in c++...
If you are interested, | can recommend papers.

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

language target machine
C++11 (sequential consistency)

L S L S
NO NO L ? ?
NO NO S ? ?

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

language target machine
C++11 (sequential consistency) TSO (x86)
L S L S
NO NO L NO different
address
NO NO S NO No

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

language target machine
C++11 (sequential consistency) TSO (x86)
L S L S
find mismatch
different
NO NO L NO address
NO NO S NO No

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

language
C++11 (sequential consistency)

L S
NO NO
NO NO

find mismatch
Two options:

make sure stores
are not reordered
with later loads

make sure loads
are not reordered
with earlier stores

target machine

TSO (x86)
L S
different
NO address
NO No

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

language target machine
C++11 (sequential consistency) TSO (x86)
L S L S
C++ ISA
NO NO . store(x 1). L NO different
x.store(1); ——— : L) address
ence;
NO NO S NO No
or

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

language
C++11 (sequential consistency)

target machine

TSO (x86)
L S
different
NO address
NO No

L S
C++ ISA
L NO NO x.store(1); ——_ | store(x,1);
fence;
S NO NO
or
z = x.load() ——_ | fence;

%z = load(x);

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

language target machine
C++11 (sequential consistency) TSO (x86)
L S L S
C++ ISA
different
L NO NO x.store(1); —— | store(x,1); L NO address
fence;
S NO NO S NO No
or
z =x.load() ——_ | fence; This should help you see why you
%z = load(x); want to reduce the number of atomic

load/stores in your program

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

language target machine
C++11 (sequential consistency) PSO
How his one?

L S ow about this one 1 S
NO NO L NO different
address
NO NO S NO different
address

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

language target machine
C++11 (sequential consistency) PSO
L S L S
NO NO L NO different
address
NO NO S NO different
address

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

target machine

language
C++11 (sequential consistency) C++ ISA
L S . 1):
x.store(1); — | store(x,1);
fence;
NO NO
or
z = x.load() ——_,| fence;
NO NE %z = load(x);

x.store(1); ——— fence;
store(x,1);

PSO
L S
different
NO address
different
NO address

Memory orders

* Atomic operations take an additional “memory order” argument

* memory order seq cst -default
* memory order relaxed -weakest

Relaxed memory order

language
C++11 (sequential consistency)

language

C++11 (memory_order_relaxed)

L S
NO NO
NO NO

L S
different different
address address
different different
address address

basically no orderings except for accesses to

the same address

Compiling memory order relaxed

language target machine
C++11 (memory_order_relaxed) TSO (x86)

L S L S
different different NO different
address address address
different different
address address NO No

Compiling memory order relaxed

language target machine
C++11 (memory_order_relaxed) TSO (x86)
L S L S
lots of mismatches!

different different NO different
address address address
different different
address address He e

Compiling memory order relaxed

language target machine
C++11 (memory_order_relaxed) TSO (x86)
L S L S
lots of mismatches!
L different different . L NO different
address address But Ianguage IS more address
relaxed than machine
different different
S address | address so no fences are needed S ME No

Compiling memory order relaxed

Do any of the ISA memory models need any fences
for relaxed memory order?

language
C++11 (memory_order_relaxed)

L

S

L S

. . Different Different Different
different different NO address NO address YES address
address address

Different

. } Different Different
different | different NO NO NO address address address
address address

TSO

PSO

RMO

Memory order relaxed

* Very few use-cases! Be very careful when using it
* Peeking at values (later accessed using a heavier memory order)
e Counting (e.g. number of finished threads in work stealing)

More memory orders: we will not discuss in class

* Atomic operations take an additional “memory order” argument
* memory order seq cst -default
* memory order relaxed -weakest

 More memory orders (useful for mutex implementations):
* memory order acquire
* memory order release

* EVEN MORE memory orders (complicated: in most research it is
ommitted)
* memory order consume

Memory consistency in the real world

* Historic Chips:
e X86: TSO
e Surprising robost
* mutexes and concurrent data structures generally seem to work
* watch out for store buffering

* |BM Power and ARM
e Very relaxed. Similar to RMO with even more rules
* Mutexes and data structures must be written with care
 ARM recently strengthened theirs

Memory consistency in the real world

* Modern Chips:

e RISC-V : two specs: one similar to TSO, one similar to RMO
* Apple M1: toggles between TSO and weaker

Memory consistency in the real world

* PSO and RMO were never implemented widely

* | have not met anyone who knows of any RMO taped out chip
* They are part of SPARC ISAs (i.e. RISC-V before it was cool)
* These memory models might have been part of specialized chips

* Interestingly:
e Early Nvidia GPUs appeared to informally implement RMO

* Other chips have very strange memory models:
* Alpha DEC - basically no rules

Compiler

* Previously (before C/++11):
* Use volatile
* Use inline assembly for fences
* Not portable!

* Now:
e C/++11 memory model
* But there are still bugs: Intel OpenCL compiler, IBM C++ compiler...

Further research

* Should we provide sequential consistency by default? even without
atomics?
* How to do this?
* Many interesting papers

A cautionary tale

Consider the following example: a graphics program where each thread wants to display a triangle;
the display is a queue (not thread safe)

Thread O: Thread 1:
m.lock () ; m.lock () ;

display.eng(trianglel) ; display.eng(trianglel) ;
m.unlock () ; m.unlock () ;

Consider the following example: a graphics program where each thread wants to display a triangle;
the display is a queue (not thread safe)

Thread O: Thread 1:
m.lock () ; m.lock () ;

display.eng(trianglel) ; display.eng(trianglel) ;
m.unlock () ; m.unlock () ;

We know how lock and unlock are implemented

Consider the following example: a graphics program where each thread wants to display a triangle;
the display is a queue (not thread safe)

Thread O: Thread 1:

SPIN:CAS (mutex, 0,1); SPIN:CAS (mutex, 0,1);
display.eng(triangleO) ; display.eng(trianglel) ;
store (mutex, 0) ; store (mutex, 0) ;

We know how lock and unlock are implemented
We also know how a queue is implemented

Consider the following example: a graphics program where each thread wants to display a triangle;

the display is a queue (not thread safe)

Thread O:

SPIN:CAS (mutex,0,1) ;

%1 = load (head);

store (buffer+i, triangleO);
store (head, %i1+1);

store (mutex, 0) ;

Thread 1:

SPIN:CAS (mutex,0,1);

%1 = load (head);

store (buffer+i, trianglel);
store (head, %i1+1);

store (mutex, 0) ;

We know how lock and unlock are implemented
We also know how a queue is implemented

What is an execution?

Thread O:

SPIN:CAS (mutex,0,1) ;

load (head) ;

store (buffer+i, triangleO);
store (head, %i+1);

store (mutex, 0) ;

O 1
ol

Thread 1:

1 load (head) ;
store (buffer+i,

store (head,
store (mutex, 0) ;

SPIN:CAS (mutex,0,1);

trianglel) ;

$1+1) ;

CAS (mutex,0,1) ;

if blue goes first

it gets to complete

its critical section

while thread 1 is spinning

Thread O:

SPIN:CAS (mutex,0,1) ;

1 load (head) ;
store (buffer+i,

store (head,
store (mutex, 0) ;

triangleO) ;

$1i+1) ;

Thread 1:

1 load (head) ;
store (buffer+i,

store (head,
store (mutex, 0) ;

SPIN:CAS (mutex,0,1);

trianglel) ;

$1+1) ;

CAS (mutex,0,1) ;

%1 = load (head) ;

store (buffer+i, triangleO);

store (head, %i+1);

store (mutex, 0) ;

Thread O:

SPIN:CAS (mutex,0,1) ;

1 load (head) ;

store (buffer+i, triangleO);
store (head, %i+1);

store (mutex, 0) ;

Thread 1:

1 load (head) ;
store (buffer+i,

store (head,
store (mutex, 0) ;

SPIN:CAS (mutex,0,1);

trianglel) ;

$1+1) ;

CAS (mutex,0,1) ;

%1 = load (head) ;

store (buffer+i, triangleO);

store (head, %i+1);

store (mutex, 0) ;

now yellow gets a change to go

Thread O:

SPIN:CAS (mutex,0,1) ;
1 load (head) ;
store (buffer+i,
store (head, %i1+1
store (mutex, 0) ;

triangleO) ;
) ;

Thread 1:

SPIN:CAS (mutex,0,1) ;
T1 load (head) ;
store (buffer+i,
store (head, %i1+1
store (mutex, 0) ;

trianglel) ;
) ;

CAS (mutex,0,1) ;

%1 = load (head) ;

store (buffer+i, triangleO);

store (head, %i+1);

store (mutex, 0) ;

CAS (mutex,0,1) ;

now yellow gets a change to go

@ 4
1

= load (head) ;

store (buffer+i, triangleO);

store (head, %i+1);

store (mutex, 0) ;

v

Thread O:
SPIN:CAS (mutex,0,1) ;
%1 = load (head);

store (buffer+i, triangleO);

store (head, %i+1);
store (mutex, 0) ;

Thread 1:
SPIN:CAS (mutex,0,1) ;
%1 = load (head);

store (head, %1i+1);
store (mutex, 0) ;

store (buffer+i1i, trianglel);

what can happen in a PSO
memory model?

L S
Different
L NO address
S NO Different
address

CAS (mutex,0,1) ;

%1 = load (head) ;

store (buffer+i, triangleO);

store (head, %i+1);

store (mutex, 0) ;

CAS (mutex,0,1) ;

%1 = load (head) ;

store (buffer+i, triangleO);

store (head, %i+1);

store (mutex, 0) ;

v

Thread O:
SPIN:CAS (mutex,0,1) ;
%1 = load (head);

store (buffer+i, triangleO);

store (head, %i+1);
store (mutex, 0) ;

Thread 1:
SPIN:CAS (mutex,0,1) ;
%1 = load (head);

store (head, %1i+1);
store (mutex, 0) ;

what can happen in a PSO
memory model?

L S
Different
L NO address
S NO Different
address

store (buffer+i1i, trianglel);

CAS (mutex, 0,1) ;
[

%1 = load (head) ;
[

store (buffer+i, triangleO);
|

Istore(head, $i+1l) ; I
|

store (mutex, 0) ;

|

CAS (mutex,0,1);
[

%1 = load (head) ;
[

store (buffer+i, triangleO);
|

store (head, %i+1);
[

store (mutex, 0) ;

v

Thread O:
SPIN:CAS (mutex,0,1) ;
%1 = load (head);

store (buffer+i, triangleO);

store (head, %i+1);
store (mutex, 0) ;

Thread 1:

what can happen in a PSO
memory model?

L S
Different
L NO address
S NO Different
address

SPIN:CAS (mutex,0,1);

%1 = load (head);

store (buffer+i1i, trianglel);
store (head, %i1i+1);

store (mutex, 0) ;

CAS (mutex,0,1) ;
[

%1 = load (head) ;
[

store (buffer+i, triangleO);

|
store (mutex, 0) ;

|
CAS (mutex,0,1) ;
[
%1 = load (head) ;
|
Istore(head, i+l) ; I
[

store (buffer+i, trianglel);

[
store (head, %i+1);
[
store (mutex, 0) ;

v

What just happened if this store moves?

Nvidia in 2015

* Nvidia architects implemented a weak memory model
* Nvidia programmers expected a strong memory model

* Mutexes implemented without fences!

Nvidia in 2015

(d)

GPU

COMPUTING GEMS

CUDA

BY EXAMPLE

bug found in two
Nvidia textbooks

We implemented

a side-channel attack
that made the bugs
appear more frequently

These days Nvidia has
a very well-specified
memory model!

Thread O:
SPIN:CAS (mutex,0,1) ;
%1 = load (head);

store (buffer+i, triangleO);

store (head, %i+1);
store (mutex, 0) ;

Thread 1:
SPIN:CAS (mutex,0,1) ;
%1 = load (head);

store (head, %1i+1);
store (mutex, 0) ;

what can happen in a PSO
memory model?

L S
Different
L NO address
S NO Different
address

store (buffer+i1i, trianglel);

CAS (mutex, 0,1) ;
[

%1 = load (head) ;
[

store (buffer+i, triangleO);
|

Istore(head, $i+1l) ; I
|

store (mutex, 0) ;

|

CAS (mutex,0,1);
[

%1 = load (head) ;
[

store (buffer+i, triangleO);
|

store (head, %i+1);
[

store (mutex, 0) ;

v

How to fix the issue?

Thread O:
SPIN:CAS (mutex,0,1) ;
%1 = load (head);

store (buffer+i, triangleO);

store (head, %i+1);
fence;

store (mutex, 0); beforestore!

unlock contains fence

what can happen in a PSO
memory model?

L S
Different
L NO address
S NO Different
address

Thread 1:
SPIN:CAS (mutex,0,1);

%1 = load (head);

store (buffer+i1i, trianglel);
store (head, %i1i+1);

fence;

store (mutex, 0) ;

unlock contains fence
before store!

CAS (mutex,0,1) ;

%1 = load (head) ;

store (buffer+i, triangleO);

How to fix the issue?

Istore(head, $i+l) ; I

| your unlock function

store (mutex, 0) ;

should contain a fence!

CAS (mutex, 0,1) ;

@ 4
o1

load (head) ;

store (buffer+i, triangleO);

store (head, %i+1l);

store (mutex, 0) ;

Thread O:
SPIN:CAS (mutex,0,1) ;

1 load (head) ;

store (buffer+i, triangleO);
store (head, %i+1);

fence;

store (mutex, 0) ;

unlock contains fence
before store!

Thread 1:

SPIN:CAS (mutex,0,1);

1 load (head) ;

store (buffer+i1i, trianglel);
store (head, %i+1l);

fence;

store (mutex, 0) ;

unlock contains fence
before store!

CAS (mutex,0,1) ;

what can happen in a PSO

%1 = load (head) ;

memory model?

store (buffer+i,

triangle0) ; How to fix the issue?

Istore(head, $i+l) ; I

your unlock function

fence;

should contain a fence!

store (mutex, 0) ;

No instructions
can move after

CAS (mutex, 0,1) ;

the mutex store!

L S
Different
L NO address
NO Different .
S $i
address

= load (head) ;

store (buffer+i,

triangleO) ;

store (head,

$i+1) ;

Thanks!

* Next, we will talk about decoupled access execute (DAE)

