
CSE211: Compiler Design 
Nov. 27, 2023

• Topic: Loop structure and DSLs

• Discussion questions:
• Lots of discussions throughout about loops 

and DSLs

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/



Announcements
• Homework 3 is due on FRIDAY
• Two day extension
• No extension on HW 4

• It will be released on Wednesday
• It is due on Dec. 15. No extensions will be possible.
• Have partners by Monday

• Second paper needs to be selected by Monday



Announcements
• Final project presentations are required by Dec. 6
• 10 minutes
• Things don’t have to be completed
• But you should be able to present at least one result and your 

approach.

• I will randomly select a subset of people to do final 
presentations in class over Dec. 6 and Dec. 8. 

• If you are not selected, then a zoom recording of your 
presentation is due on Dec. 8.



Announcements
• Final Exam:
• Tuesday Dec 12: 8 AM – 11 AM
• 3 pages of notes allowed
• Inclusive material
• Same style as midterm, but probably ~2x as long.



Guest lecture next time!

• Two presenters from Google about using ML in compilers:
• Ondrej Sykora – GRANITE: using ML to estimate the throughput of basic 

blocks

• Mircea Trofin – MLGO: using ML to pick when to apply compiler optimizations

• Both papers linked in canvas announcement: please try to overview 
the papers before the lecture

• Mircea will be around for the day. Let me know if you’d like to meet 
with him and I can organize.



Review



Shifting our focus back to a single core

• We need to consider single 
threaded performance

• Good single threaded performance 
can enable better parallel 
performance
• Memory locality is key to good 

parallel performance.
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Discussion

Discussion questions:
What is a DSL?
What are the benefits and drawbacks of a DSL?
What DSLs have you used?



Halide: pretty straight
forward computation
for brightening

(1 pass over all pixels)

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

This computation is known as the “Local Laplacian Filter”. Requires visiting all pixels 99 times

We want to be able to do this
fast and efficiently!

Main results in from Halide show
a 1.7x speedup with 1/5 the LoC
over hand optimized versions at Adobe



Decoupling computation from optimization

• We love Halide not only because it can make pretty pictures very fast

• We love it because it changed the level of abstraction for thinking 
about computation and optimization

• (Halide has been applied in many other domains now, turns out 
everything is just linear algebra)



Halides approach

• Decouple 
• what to compute (the program) 
• with how to compute (the optimizations, also called the schedule)

for (int y = 0; y < y_size; y++) {
  for (int x = 0; x < x_size; x++) {
        a[x,y] = b[x,y] + c[x,y];
   }
}

C++:
Halide (high-level)

add(x,y) = b(x,y) + c(x,y)

program

add.order(x,y)

schedule



Halide::Func gradient;
Halide::Var x, y;
gradient(x, y) = x + y;
Halide::Buffer<int32_t> output =
              gradient.realize({16, 16});

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Schedule

for (int y = 0; y < 4; y++) { 
    for (int x = 0; x < 4; x++) {
        output[y,x] = x + y;
    } 
}

Var x_outer, x_inner, y_outer, y_inner; 
gradient.split(x, x_outer, x_inner, 4); 
gradient.split(y, y_outer, y_inner, 4); 
gradient.reorder(x_inner, y_inner, x_outer, y_outer);

gradient.tile(x, y, 
              x_outer, y_outer, 
              x_inner, y_inner, 4, 4);



Halide::Func gradient_fast;
Halide::Var x, y;
gradient_fast(x, y) = x + y;
Halide::Buffer<int32_t> output =
              gradient.realize({2, 2});

Finally: a fast schedule that they found:

Var x_outer, y_outer, x_inner, y_inner, tile_index;
gradient_fast 
              .tile(x, y, x_outer, y_outer, x_inner, y_inner, 64, 64)
              .fuse(x_outer, y_outer, tile_index) 
              .parallel(tile_index); 

Var x_inner_outer, y_inner_outer, x_vectors, y_pairs; 
gradient_fast
       .tile(x_inner, y_inner, x_inner_outer, y_inner_outer, x_vectors, y_pairs, 4, 2)           
       .vectorize(x_vectors) 
       .unroll(y_pairs);



New material



function fusing...



Example: unnormalized blur

Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);



Example: unnormalized blur

Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);



Example: unnormalized blur

Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);



Example: unnormalized blur

Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);



Example: unnormalized blur

Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);



Example: unnormalized blur

Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

how to compute?



Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

input blur_x blur



Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

alloc blurx[2048][3072]
foreach y in 0..2048:
  foreach x in 0..3072:
   blurx[y][x] = in[y][x-1] + in[y][x] + in[y][x+1]

alloc out[2046][3072]
foreach y in 1..2047:
  foreach x in 0..3072:
   out[y][x] = blurx[y-1][x] + blurx[y][x] + blurx[y+1][x]

pros?
cons?



Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

input blur_x blur

stored to memory! no locality



Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

Other options?



Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

alloc out[2046][3072]
foreach y in 1..2047:
  foreach x in 0..3072:
   out[y][x] = in[y-1][x] + in[y][x] + in[y+1][x] +
                  in[y-1][x-1] + in[y][x-1] + in[y+1][x-1]
                  in[y-1][x+1] + in[y][x+1] + in[y+1][x+1]

completely inline



Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

input blur

These two squares will both sum up the same
values in blue



Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

other ideas?



Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

blur
first iteration, only compute blur_x

sliding window



Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

blur
first iteration, only compute blur_x
second iteration, compute blur_x again:
Compute first blursliding window



Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

blur
first iteration, only compute blur_x
second iteration, compute blur_x again:
Compute first blur

Third iteration
drop first bar
Compute second blur
compute one next row

sliding window



Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

blur
first iteration, only compute blur_x
second iteration, compute blur_x again:
Compute first blur

Third iteration
drop first bar
Compute second blur
compute one next row

Fourth iteration
Drop second bar
Compute third blur
Compute one next row

sliding window



Fusing functions

• Can compose with all other optimizations
• Tiling, loop order, unrolling, etc.

• Creates a very powerful optimization framework, and automatically produces 
code that you do not want to write by hand!



End Halide



Next topic: Compiling concurrency 



What happens when threads share data?



Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1); 
L:%t1 = load(x);



Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1); 
L:%t1 = load(x);

S:store(x, 1);

L:%t0 = load(y); L:%t1 = load(x);

S:store(y, 1);

pick from the top of the pile of either thread



Sequential Consistency

• Sequential interleaving of atomic instructions

• What are ”atomic instructions”?



Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1); 
L:%t1 = load(x);

S:store(x, 1);

L:%t0 = load(y);

L:%t1 = load(x);

S:store(y, 1);

pick from the top of the pile of either thread
Can t0 == t1 == 0 at the end of the execution?



Demo



• What is going on?



Thread 0: Thread 1:

mov [x], 1

mov %t0, [y]
mov %t1, [x]

mov [y], 1

Core 0 Core 1

Main Memory
x:0
y:0



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

mov [x], 1 mov [y], 1

execute first instruction
what happens to the stores?

x:0
y:0



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:0



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:0

eventually they flush to main memory



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:1

eventually they flush to main memory



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:0
y:0

mov [x], 1 mov [y], 1

rewind



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:0
y:0

mov [x], 1 mov [y], 1

execute first instruction



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

values get stored in SB



Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Execute next instruction

mov %t0, [y] mov %t1, [x]



Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Values get loaded from memory

mov %t0, [y] mov %t1, [x]



Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

we see t0 == t1 == 0!

mov %t0, [y] mov %t1, [x]



Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Store buffers are drained eventually



Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:1
y:1

Store buffers are drained eventually
but we’ve already done our loads



Our first relaxed memory execution!

• also known as weak memory behaviors

• An execution that is NOT allowed by sequential consistency

• A memory model that allows relaxed memory executions is known as 
a relaxed memory model



Litmus tests

• Small concurrent programs that check for relaxed memory behaviors

• Vendors have a long history of under documented memory 
consistency models

• Academics have empirically explored the memory models
• Many vendors have unofficially endorsed academic models
• X86 behaviors were documented by researchers before Intel!



Litmus tests

Thread 0:
mov [x], 1
mov %t0, [y]

Thread 1:
mov [y], 1
mov %t1, [x]

Can t0 == t1 == 0?

This test is called “store buffering”



Restoring sequential consistency

• It is typical that relaxed memory models provide special instructions 
which can be used to disallow weak behaviors.

• These instructions are called Fences

• The X86 fence is called mfence. It flushes the store buffer.



Thread 0: Thread 1:

mov [x], 1

mov %t0, [y] mov %t1, [x]

mov [y], 1

Core 0 Core 1

Main Memory
x:0
y:0

mfence mfence

Store Buffer Store Buffer



Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov [x], 1

mov %t0, [y] mov %t1, [x]

mov [y], 1

Main Memory
x:0
y:0

mfence mfence
Execute first instruction



Store Buffer
x:1

Store Buffer
y:1Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:0
y:0

mfence mfenceValues go into the store buffer



Store Buffer
x:1

Store Buffer
y:1Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:0
y:0

mfence mfence

Execute next instruction



Store Buffer
x:1

Store Buffer
y:1Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:0
y:0

store buffers are flushed



Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

store buffers are flushed



Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

execute next instruction



Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

values are loaded from memory



Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

We don’t get the problematic behavior: t0 != 0 and t1 != 0



Next example



Thread 0:

mov [x], 1

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer

single thread
same address

possible outcomes:
t0 = 1
t0 = 0

Which one do you expect?



Thread 0:

mov [x], 1

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer

How does this execute?



Thread 0:

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer

execute first instruction

mov [x], 1



Thread 0:

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Store the value in the store buffer



Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Next instruction

mov %t0, [x]



Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Where to load??

Store buffer?
Main memory?

mov %t0, [x]



Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Where to load??

Threads check store buffer before going to main memory

It is close and cheap to check.

mov %t0, [x]



Question

• Can stores be reordered with stores?



Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1

Rules: S(tores) followed by a L(oad)
do not have to follow program order.



Thread 0:
S:mov [x], 1
mfence
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
mfence
L:mov %t1, [x]

Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1

Rules: S(tores) followed by a L(oad)
do not have to follow program order.

mfence

mfence



Thread 0:
S:mov [x], 1
mfence
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
mfence
L:mov %t1, [x]

Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1

mfence

mfence

Rules: 
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order



Rules

• Are we done?

Rules: 
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order



Thread 0:
S:mov [x], 1
L:mov %t0, [x]

Global variable:
int x[1] = {0};
int y[1] = {0};

Another test
Can t0 == 0?

S:mov [x], 1

L:mov %t0, [x] Rules: 
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order



Thread 0:
S:mov [x], 1
L:mov %t0, [x]

Global variable:
int x[1] = {0};
int y[1] = {0};

Another test
Can t0 == 0?

S:mov [x], 1

L:mov %t0, [x]

Rules: 
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

S(tores) cannot be reordered past L(oads)
from the same address



TSO - Total Store Order

Rules: 
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

S(tores) cannot be reordered past L(oads)
from the same address



Other memory models?

• We can specify them in terms of what reorderings are allowed

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S



Other memory models?

• We can specify them in terms of what reorderings are allowed

NO NO

NO NO

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

Sequential Consistency



Other memory models?

• We can specify them in terms of what reorderings are allowed

NO Different 
address

NO NO

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

TSO - total store order



Other memory models?

• We can specify them in terms of what reorderings are allowed

? ?

? ?

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

Weaker models?



Other memory models?

• We can specify them in terms of what reorderings are allowed

NO Different 
address

NO Different 
address

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

PSO - partial store order

Allows stores to drain from the store buffer in any order



Other memory models?

• We can specify them in terms of what reorderings are allowed

YES Different 
address

Different 
address

Different 
address

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

RMO - Relaxed Memory Order

Very relaxed model!



Other memory models?

• FENCE: can always restore order using fences. Accesses cannot be 
reordered past fences!

If memory access 0 appears before
memory access 1 in program order, and 
there is a FENCE between the two accesses,
can it bypass program order?

Any Memory Model



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

First thing: change our syntax to pseudo code
You should be able to find natural mappings
to any ISA



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Question: can t0 == t1 == 1?



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks and try for sequential consistency

L:%t0 = load(y)

S:store(x,1)
L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks and try for TSO

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

NO Different 
address

NO NO

memory access 0

memory access 1

L S

L

S



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks and try for PSO

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

NO Different 
address

NO Different 
address

memory access 0

memory access 1

L S

L

S



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks and try for RMO

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

memory access 0

memory access 1

L S

L

S

YES Different 
address

different 
address

Different 
address

How do we disallow it?



Thread 0:
L:%t0 = load(y)
fence
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
fence
S:store(y,1)

Get out our lego bricks and try for RMO

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

memory access 0

memory access 1

L S

L

S

YES Different 
address

different 
address

Different 
address

How do we disallow it?

fence
fence



Compiling relaxed memory models



Compiling relaxed memory models

• C++ style:
• Any memory conflicts (read-write or write-write) must be accessed with an 

atomic operation*
• Otherwise your program is undefined
• By default, you will get sequentially consistent behavior

• *unless they are synchronized, which is a really complicated concept in c++... 
If you are interested, I can recommend papers.



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine

? ?

? ?

L S

L
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C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)
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address

NO No
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C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

find mismatch



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

find mismatch

Two options:

make sure stores
are not reordered
with later loads

make sure loads
are not reordered
with earlier stores



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);

This should help you see why you 
want to reduce the number of atomic
load/stores in your program



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S

How about this one?



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);

x.store(1); fence;
store(x,1);



Memory orders

• Atomic operations take an additional “memory order” argument
• memory_order_seq_cst - default
• memory_order_relaxed - weakest



Relaxed memory order

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

basically no orderings except for accesses to 
the same address



Compiling memory order relaxed

different
address

different
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different
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C++11 (memory_order_relaxed)
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Compiling memory order relaxed

different
address

different
address

different
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different
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L S
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S

language
C++11 (memory_order_relaxed)

target machine
TSO (x86)

NO different
address

NO No
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lots of mismatches!



Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

lots of mismatches!

But language is more
relaxed than machine

so no fences are needed



Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

Do any of the ISA memory models need any fences
for relaxed memory order?

NO Different 
address

NO NO

L S

L

S

TSO

NO Different 
address

NO Different 
address

L S

L

S

PSO

YES Different 
address

Different 
address

Different 
address

L S

L

S

RMO



Memory order relaxed

• Very few use-cases! Be very careful when using it
• Peeking at values (later accessed using a heavier memory order)
• Counting (e.g. number of finished threads in work stealing)



More memory orders: we will not discuss in class 

• Atomic operations take an additional “memory order” argument
• memory_order_seq_cst - default
• memory_order_relaxed - weakest

• More memory orders (useful for mutex implementations):
• memory_order_acquire
• memory_order_release

• EVEN MORE memory orders (complicated: in most research it is 
ommitted)
• memory_order_consume



Memory consistency in the real world

• Historic Chips:
• X86: TSO

• Surprising robost
• mutexes and concurrent data structures generally seem to work
• watch out for store buffering

• IBM Power and ARM
• Very relaxed. Similar to RMO with even more rules
• Mutexes and data structures must be written with care
• ARM recently strengthened theirs



Memory consistency in the real world

• Modern Chips:
• RISC-V : two specs: one similar to TSO, one similar to RMO
• Apple M1: toggles between TSO and weaker



Memory consistency in the real world

• PSO and RMO were never implemented widely
• I have not met anyone who knows of any RMO taped out chip
• They are part of SPARC ISAs (i.e. RISC-V before it was cool)
• These memory models might have been part of specialized chips

• Interestingly:
• Early Nvidia GPUs appeared to informally implement RMO

• Other chips have very strange memory models:
• Alpha DEC - basically no rules



Compiler

• Previously (before C/++11): 
• Use volatile
• Use inline assembly for fences
• Not portable!

• Now:
• C/++11 memory model
• But there are still bugs: Intel OpenCL compiler, IBM C++ compiler...



Further research

• Should we provide sequential consistency by default? even without 
atomics?
• How to do this?
• Many interesting papers



A cautionary tale



Thread 0:
m.lock();
display.enq(triangle0);
m.unlock();

Thread 1:
m.lock();
display.enq(triangle1);
m.unlock();

Consider the following example: a graphics program where each thread wants to display a triangle; 
the display is a queue (not thread safe)



Thread 0:
m.lock();
display.enq(triangle0);
m.unlock();

Thread 1:
m.lock();
display.enq(triangle1);
m.unlock();

Consider the following example: a graphics program where each thread wants to display a triangle; 
the display is a queue (not thread safe)

We know how lock and unlock are implemented



Thread 0:
SPIN:CAS(mutex,0,1);
display.enq(triangle0);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
display.enq(triangle1);
store(mutex,0);

Consider the following example: a graphics program where each thread wants to display a triangle; 
the display is a queue (not thread safe)

We know how lock and unlock are implemented
We also know how a queue is implemented



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

Consider the following example: a graphics program where each thread wants to display a triangle; 
the display is a queue (not thread safe)

We know how lock and unlock are implemented
We also know how a queue is implemented

What is an execution?



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

if blue goes first
it gets to complete
its critical section
while thread 1 is spinning



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

now yellow gets a change to go



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

now yellow gets a change to go
CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different 
address

Different 
address

L S

L

S

what can happen in a PSO
memory model?

NO

NO



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

NO Different 
address

NO Different 
address

L S

L

S

what can happen in a PSO
memory model?



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle1);

store(head, %i+1);

store(mutex,0);

Different 
address

Different 
address

L S

L

S

what can happen in a PSO
memory model?

What just happened if this store moves?
NO

NO



Nvidia in 2015

• Nvidia architects implemented a weak memory model

• Nvidia programmers expected a strong memory model

• Mutexes implemented without fences!



Nvidia in 2015

bug found in two
Nvidia textbooks

We implemented 
a side-channel attack
that made the bugs
appear more frequently

These days Nvidia has
a very well-specified 
memory model!



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different 
address

Different 
address

L S

L

S

what can happen in a PSO
memory model? How to fix the issue?

NO

NO



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
fence;
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
fence;
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different 
address

Different 
address

L S

L

S

what can happen in a PSO
memory model? How to fix the issue?

your unlock function
should contain a fence!

unlock contains fence
before store!

unlock contains fence
before store!

NO

NO



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
fence;
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
fence;
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different 
address

Different 
address

L S

L

S

what can happen in a PSO
memory model? How to fix the issue?

your unlock function
should contain a fence!

unlock contains fence
before store!

unlock contains fence
before store!

fence;

No instructions
can move after
the mutex store!

NO

NO



Thanks!

• Next, we will talk about decoupled access execute (DAE)


