
CSE211: Compiler Design
Nov. 27, 2023

• Topic: Loop structure and DSLs

• Discussion questions:
• Lots of discussions throughout about loops

and DSLs

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

Announcements
• Homework 3 is due on FRIDAY
• Two day extension
• No extension on HW 4

• It will be released on Wednesday
• It is due on Dec. 15. No extensions will be possible.
• Have partners by Monday

• Second paper needs to be selected by Monday

Announcements
• Final project presentations are required by Dec. 6
• 10 minutes
• Things don’t have to be completed
• But you should be able to present at least one result and your

approach.

• I will randomly select a subset of people to do final
presentations in class over Dec. 6 and Dec. 8.

• If you are not selected, then a zoom recording of your
presentation is due on Dec. 8.

Announcements
• Final Exam:
• Tuesday Dec 12: 8 AM – 11 AM
• 3 pages of notes allowed
• Inclusive material
• Same style as midterm, but probably ~2x as long.

Guest lecture next time!

• Two presenters from Google about using ML in compilers:
• Ondrej Sykora – GRANITE: using ML to estimate the throughput of basic

blocks

• Mircea Trofin – MLGO: using ML to pick when to apply compiler optimizations

• Both papers linked in canvas announcement: please try to overview
the papers before the lecture

• Mircea will be around for the day. Let me know if you’d like to meet
with him and I can organize.

Review

Shifting our focus back to a single core

• We need to consider single
threaded performance

• Good single threaded performance
can enable better parallel
performance
• Memory locality is key to good

parallel performance.

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Discussion

Discussion questions:
What is a DSL?
What are the benefits and drawbacks of a DSL?
What DSLs have you used?

Halide: pretty straight
forward computation
for brightening

(1 pass over all pixels)

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

This computation is known as the “Local Laplacian Filter”. Requires visiting all pixels 99 times

We want to be able to do this
fast and efficiently!

Main results in from Halide show
a 1.7x speedup with 1/5 the LoC
over hand optimized versions at Adobe

Decoupling computation from optimization

• We love Halide not only because it can make pretty pictures very fast

• We love it because it changed the level of abstraction for thinking
about computation and optimization

• (Halide has been applied in many other domains now, turns out
everything is just linear algebra)

Halides approach

• Decouple
• what to compute (the program)
• with how to compute (the optimizations, also called the schedule)

for (int y = 0; y < y_size; y++) {
 for (int x = 0; x < x_size; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

C++:
Halide (high-level)

add(x,y) = b(x,y) + c(x,y)

program

add.order(x,y)

schedule

Halide::Func gradient;
Halide::Var x, y;
gradient(x, y) = x + y;
Halide::Buffer<int32_t> output =
 gradient.realize({16, 16});

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Schedule

for (int y = 0; y < 4; y++) {
 for (int x = 0; x < 4; x++) {
 output[y,x] = x + y;
 }
}

Var x_outer, x_inner, y_outer, y_inner;
gradient.split(x, x_outer, x_inner, 4);
gradient.split(y, y_outer, y_inner, 4);
gradient.reorder(x_inner, y_inner, x_outer, y_outer);

gradient.tile(x, y,
 x_outer, y_outer,
 x_inner, y_inner, 4, 4);

Halide::Func gradient_fast;
Halide::Var x, y;
gradient_fast(x, y) = x + y;
Halide::Buffer<int32_t> output =
 gradient.realize({2, 2});

Finally: a fast schedule that they found:

Var x_outer, y_outer, x_inner, y_inner, tile_index;
gradient_fast
 .tile(x, y, x_outer, y_outer, x_inner, y_inner, 64, 64)
 .fuse(x_outer, y_outer, tile_index)
 .parallel(tile_index);

Var x_inner_outer, y_inner_outer, x_vectors, y_pairs;
gradient_fast
 .tile(x_inner, y_inner, x_inner_outer, y_inner_outer, x_vectors, y_pairs, 4, 2)
 .vectorize(x_vectors)
 .unroll(y_pairs);

New material

function fusing...

Example: unnormalized blur

Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

Example: unnormalized blur

Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

Example: unnormalized blur

Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

Example: unnormalized blur

Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

Example: unnormalized blur

Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

Example: unnormalized blur

Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

how to compute?

Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

input blur_x blur

Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

alloc blurx[2048][3072]
foreach y in 0..2048:
 foreach x in 0..3072:
 blurx[y][x] = in[y][x-1] + in[y][x] + in[y][x+1]

alloc out[2046][3072]
foreach y in 1..2047:
 foreach x in 0..3072:
 out[y][x] = blurx[y-1][x] + blurx[y][x] + blurx[y+1][x]

pros?
cons?

Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

input blur_x blur

stored to memory! no locality

Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

Other options?

Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

alloc out[2046][3072]
foreach y in 1..2047:
 foreach x in 0..3072:
 out[y][x] = in[y-1][x] + in[y][x] + in[y+1][x] +
 in[y-1][x-1] + in[y][x-1] + in[y+1][x-1]
 in[y-1][x+1] + in[y][x+1] + in[y+1][x+1]

completely inline

Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

input blur

These two squares will both sum up the same
values in blue

Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

other ideas?

Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

blur
first iteration, only compute blur_x

sliding window

Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

blur
first iteration, only compute blur_x
second iteration, compute blur_x again:
Compute first blursliding window

Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

blur
first iteration, only compute blur_x
second iteration, compute blur_x again:
Compute first blur

Third iteration
drop first bar
Compute second blur
compute one next row

sliding window

Example: unnormalized blur
Halide::Func blur_x(x,y) = in(x-1,y) + in(x,y) + in(x+1,y);

Halide::Func blur(x,y) = blur_x(x,y+1) + blur_x(x,y) + blur_x(x,y-1);

blur
first iteration, only compute blur_x
second iteration, compute blur_x again:
Compute first blur

Third iteration
drop first bar
Compute second blur
compute one next row

Fourth iteration
Drop second bar
Compute third blur
Compute one next row

sliding window

Fusing functions

• Can compose with all other optimizations
• Tiling, loop order, unrolling, etc.

• Creates a very powerful optimization framework, and automatically produces
code that you do not want to write by hand!

End Halide

Next topic: Compiling concurrency

What happens when threads share data?

Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
L:%t1 = load(x);

Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
L:%t1 = load(x);

S:store(x, 1);

L:%t0 = load(y); L:%t1 = load(x);

S:store(y, 1);

pick from the top of the pile of either thread

Sequential Consistency

• Sequential interleaving of atomic instructions

• What are ”atomic instructions”?

Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1);
L:%t1 = load(x);

S:store(x, 1);

L:%t0 = load(y);

L:%t1 = load(x);

S:store(y, 1);

pick from the top of the pile of either thread
Can t0 == t1 == 0 at the end of the execution?

Demo

• What is going on?

Thread 0: Thread 1:

mov [x], 1

mov %t0, [y]
mov %t1, [x]

mov [y], 1

Core 0 Core 1

Main Memory
x:0
y:0

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

mov [x], 1 mov [y], 1

execute first instruction
what happens to the stores?

x:0
y:0

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:0

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:0

eventually they flush to main memory

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:1

eventually they flush to main memory

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:0
y:0

mov [x], 1 mov [y], 1

rewind

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:0
y:0

mov [x], 1 mov [y], 1

execute first instruction

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

values get stored in SB

Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Execute next instruction

mov %t0, [y] mov %t1, [x]

Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Values get loaded from memory

mov %t0, [y] mov %t1, [x]

Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

we see t0 == t1 == 0!

mov %t0, [y] mov %t1, [x]

Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Store buffers are drained eventually

Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:1
y:1

Store buffers are drained eventually
but we’ve already done our loads

Our first relaxed memory execution!

• also known as weak memory behaviors

• An execution that is NOT allowed by sequential consistency

• A memory model that allows relaxed memory executions is known as
a relaxed memory model

Litmus tests

• Small concurrent programs that check for relaxed memory behaviors

• Vendors have a long history of under documented memory
consistency models

• Academics have empirically explored the memory models
• Many vendors have unofficially endorsed academic models
• X86 behaviors were documented by researchers before Intel!

Litmus tests

Thread 0:
mov [x], 1
mov %t0, [y]

Thread 1:
mov [y], 1
mov %t1, [x]

Can t0 == t1 == 0?

This test is called “store buffering”

Restoring sequential consistency

• It is typical that relaxed memory models provide special instructions
which can be used to disallow weak behaviors.

• These instructions are called Fences

• The X86 fence is called mfence. It flushes the store buffer.

Thread 0: Thread 1:

mov [x], 1

mov %t0, [y] mov %t1, [x]

mov [y], 1

Core 0 Core 1

Main Memory
x:0
y:0

mfence mfence

Store Buffer Store Buffer

Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov [x], 1

mov %t0, [y] mov %t1, [x]

mov [y], 1

Main Memory
x:0
y:0

mfence mfence
Execute first instruction

Store Buffer
x:1

Store Buffer
y:1Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:0
y:0

mfence mfenceValues go into the store buffer

Store Buffer
x:1

Store Buffer
y:1Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:0
y:0

mfence mfence

Execute next instruction

Store Buffer
x:1

Store Buffer
y:1Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:0
y:0

store buffers are flushed

Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

store buffers are flushed

Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

execute next instruction

Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

values are loaded from memory

Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

We don’t get the problematic behavior: t0 != 0 and t1 != 0

Next example

Thread 0:

mov [x], 1

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer

single thread
same address

possible outcomes:
t0 = 1
t0 = 0

Which one do you expect?

Thread 0:

mov [x], 1

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer

How does this execute?

Thread 0:

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer

execute first instruction

mov [x], 1

Thread 0:

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Store the value in the store buffer

Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Next instruction

mov %t0, [x]

Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Where to load??

Store buffer?
Main memory?

mov %t0, [x]

Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Where to load??

Threads check store buffer before going to main memory

It is close and cheap to check.

mov %t0, [x]

Question

• Can stores be reordered with stores?

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1

Rules: S(tores) followed by a L(oad)
do not have to follow program order.

Thread 0:
S:mov [x], 1
mfence
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
mfence
L:mov %t1, [x]

Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1

Rules: S(tores) followed by a L(oad)
do not have to follow program order.

mfence

mfence

Thread 0:
S:mov [x], 1
mfence
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
mfence
L:mov %t1, [x]

Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1

mfence

mfence

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

Rules

• Are we done?

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

Thread 0:
S:mov [x], 1
L:mov %t0, [x]

Global variable:
int x[1] = {0};
int y[1] = {0};

Another test
Can t0 == 0?

S:mov [x], 1

L:mov %t0, [x] Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

Thread 0:
S:mov [x], 1
L:mov %t0, [x]

Global variable:
int x[1] = {0};
int y[1] = {0};

Another test
Can t0 == 0?

S:mov [x], 1

L:mov %t0, [x]

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

S(tores) cannot be reordered past L(oads)
from the same address

TSO - Total Store Order

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

S(tores) cannot be reordered past L(oads)
from the same address

Other memory models?

• We can specify them in terms of what reorderings are allowed

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

Other memory models?

• We can specify them in terms of what reorderings are allowed

NO NO

NO NO

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

Sequential Consistency

Other memory models?

• We can specify them in terms of what reorderings are allowed

NO Different
address

NO NO

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

TSO - total store order

Other memory models?

• We can specify them in terms of what reorderings are allowed

? ?

? ?

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

Weaker models?

Other memory models?

• We can specify them in terms of what reorderings are allowed

NO Different
address

NO Different
address

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

PSO - partial store order

Allows stores to drain from the store buffer in any order

Other memory models?

• We can specify them in terms of what reorderings are allowed

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

RMO - Relaxed Memory Order

Very relaxed model!

Other memory models?

• FENCE: can always restore order using fences. Accesses cannot be
reordered past fences!

If memory access 0 appears before
memory access 1 in program order, and
there is a FENCE between the two accesses,
can it bypass program order?

Any Memory Model

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

First thing: change our syntax to pseudo code
You should be able to find natural mappings
to any ISA

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Question: can t0 == t1 == 1?

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks and try for sequential consistency

L:%t0 = load(y)

S:store(x,1)
L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks and try for TSO

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

NO Different
address

NO NO

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks and try for PSO

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

NO Different
address

NO Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks and try for RMO

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

memory access 0

memory access 1

L S

L

S

YES Different
address

different
address

Different
address

How do we disallow it?

Thread 0:
L:%t0 = load(y)
fence
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
fence
S:store(y,1)

Get out our lego bricks and try for RMO

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

memory access 0

memory access 1

L S

L

S

YES Different
address

different
address

Different
address

How do we disallow it?

fence
fence

Compiling relaxed memory models

Compiling relaxed memory models

• C++ style:
• Any memory conflicts (read-write or write-write) must be accessed with an

atomic operation*
• Otherwise your program is undefined
• By default, you will get sequentially consistent behavior

• *unless they are synchronized, which is a really complicated concept in c++...
If you are interested, I can recommend papers.

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine

? ?

? ?

L S

L

S

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

find mismatch

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

find mismatch

Two options:

make sure stores
are not reordered
with later loads

make sure loads
are not reordered
with earlier stores

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);

This should help you see why you
want to reduce the number of atomic
load/stores in your program

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S

How about this one?

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S

C++11 atomic operation compilation

start with both both of the grids for the two different memory models

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);

x.store(1); fence;
store(x,1);

Memory orders

• Atomic operations take an additional “memory order” argument
• memory_order_seq_cst - default
• memory_order_relaxed - weakest

Relaxed memory order

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

basically no orderings except for accesses to
the same address

Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

lots of mismatches!

Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

lots of mismatches!

But language is more
relaxed than machine

so no fences are needed

Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

Do any of the ISA memory models need any fences
for relaxed memory order?

NO Different
address

NO NO

L S

L

S

TSO

NO Different
address

NO Different
address

L S

L

S

PSO

YES Different
address

Different
address

Different
address

L S

L

S

RMO

Memory order relaxed

• Very few use-cases! Be very careful when using it
• Peeking at values (later accessed using a heavier memory order)
• Counting (e.g. number of finished threads in work stealing)

More memory orders: we will not discuss in class

• Atomic operations take an additional “memory order” argument
• memory_order_seq_cst - default
• memory_order_relaxed - weakest

• More memory orders (useful for mutex implementations):
• memory_order_acquire
• memory_order_release

• EVEN MORE memory orders (complicated: in most research it is
ommitted)
• memory_order_consume

Memory consistency in the real world

• Historic Chips:
• X86: TSO

• Surprising robost
• mutexes and concurrent data structures generally seem to work
• watch out for store buffering

• IBM Power and ARM
• Very relaxed. Similar to RMO with even more rules
• Mutexes and data structures must be written with care
• ARM recently strengthened theirs

Memory consistency in the real world

• Modern Chips:
• RISC-V : two specs: one similar to TSO, one similar to RMO
• Apple M1: toggles between TSO and weaker

Memory consistency in the real world

• PSO and RMO were never implemented widely
• I have not met anyone who knows of any RMO taped out chip
• They are part of SPARC ISAs (i.e. RISC-V before it was cool)
• These memory models might have been part of specialized chips

• Interestingly:
• Early Nvidia GPUs appeared to informally implement RMO

• Other chips have very strange memory models:
• Alpha DEC - basically no rules

Compiler

• Previously (before C/++11):
• Use volatile
• Use inline assembly for fences
• Not portable!

• Now:
• C/++11 memory model
• But there are still bugs: Intel OpenCL compiler, IBM C++ compiler...

Further research

• Should we provide sequential consistency by default? even without
atomics?
• How to do this?
• Many interesting papers

A cautionary tale

Thread 0:
m.lock();
display.enq(triangle0);
m.unlock();

Thread 1:
m.lock();
display.enq(triangle1);
m.unlock();

Consider the following example: a graphics program where each thread wants to display a triangle;
the display is a queue (not thread safe)

Thread 0:
m.lock();
display.enq(triangle0);
m.unlock();

Thread 1:
m.lock();
display.enq(triangle1);
m.unlock();

Consider the following example: a graphics program where each thread wants to display a triangle;
the display is a queue (not thread safe)

We know how lock and unlock are implemented

Thread 0:
SPIN:CAS(mutex,0,1);
display.enq(triangle0);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
display.enq(triangle1);
store(mutex,0);

Consider the following example: a graphics program where each thread wants to display a triangle;
the display is a queue (not thread safe)

We know how lock and unlock are implemented
We also know how a queue is implemented

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

Consider the following example: a graphics program where each thread wants to display a triangle;
the display is a queue (not thread safe)

We know how lock and unlock are implemented
We also know how a queue is implemented

What is an execution?

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

if blue goes first
it gets to complete
its critical section
while thread 1 is spinning

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

now yellow gets a change to go

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

now yellow gets a change to go
CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different
address

Different
address

L S

L

S

what can happen in a PSO
memory model?

NO

NO

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

NO Different
address

NO Different
address

L S

L

S

what can happen in a PSO
memory model?

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle1);

store(head, %i+1);

store(mutex,0);

Different
address

Different
address

L S

L

S

what can happen in a PSO
memory model?

What just happened if this store moves?
NO

NO

Nvidia in 2015

• Nvidia architects implemented a weak memory model

• Nvidia programmers expected a strong memory model

• Mutexes implemented without fences!

Nvidia in 2015

bug found in two
Nvidia textbooks

We implemented
a side-channel attack
that made the bugs
appear more frequently

These days Nvidia has
a very well-specified
memory model!

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different
address

Different
address

L S

L

S

what can happen in a PSO
memory model? How to fix the issue?

NO

NO

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
fence;
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
fence;
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different
address

Different
address

L S

L

S

what can happen in a PSO
memory model? How to fix the issue?

your unlock function
should contain a fence!

unlock contains fence
before store!

unlock contains fence
before store!

NO

NO

Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
fence;
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
fence;
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different
address

Different
address

L S

L

S

what can happen in a PSO
memory model? How to fix the issue?

your unlock function
should contain a fence!

unlock contains fence
before store!

unlock contains fence
before store!

fence;

No instructions
can move after
the mutex store!

NO

NO

Thanks!

• Next, we will talk about decoupled access execute (DAE)

