
CSE211: Compiler Design
Nov. 20, 2023

• Topic: Loop structure and DSLs

• Discussion questions:
• Lots of discussions throughout about loops

and DSLs

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Announcements

• Homework 3 is out
• Due on Nov. 29 (1.5 weeks to do it)
• Get a partner ASAP

• Start thinking about 2nd paper
• Final Project Getting close to the deadline to getting it

approved
• Approved in ~1 week (Nov. 27)!
• Presentations must be ready by Dec. 6
• Deadline is to get final project APPROVED, not start

brainstorming

• One more homework assigned when HW 3 is due

Announcements

• HW 2 is graded, please let us know if there are issues
ASAP

Review identify safe loops to parallelize

SMP Parallelism in For Loops

• Given a nest of candidate For loops, determine if we can we make the
outer-most loop parallel?
• Safely
• efficiently

• Criteria: every iteration of the outer-most loop must be independent
• The loop can execute in any order, and produce the same result

• Such loops are called “DOALL” Loops. The can be flagged and handed
off to another pass that can finely tune the parallelism (number of
threads, chunking, etc)

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

• How do we check this?
• If the property doesn’t hold then there exists 2 iterations, such that if they are

re-ordered, it causes different outcomes for the loop.

• Write-Write conflicts: two distinct iterations write different values to the
same location

• Read-Write conflicts: two distinct iterations where one iteration reads from
the location written to by another iteration.

Safety Criteria

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

First example: write-write conflict

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

First example: write-write conflict

Calculate index based on i

Safety Criteria

Computation to store in the memory location

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

First example: write-write conflict

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for two distinct iterations:
ix != iy
Check:
index(ix) != index(iy)

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

First example: write-write conflict

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for two distinct iterations:
ix != iy
Check:
index(ix) != index(iy)

Because we start at 0 and increment by 1, we can use i to refer
to loop iterations

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

First example: write-write conflict

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

Why?
Because if
index(ix) == index(iy)
then:
a[index(ix)] will equal
either loop(ix) or loop(iy)
depending on the order

for two distinct iterations:
ix != iy
Check:
index(ix) != index(iy)

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

First example: write-write conflict

Automation?

• We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
write_index(ix) == write_index(iy)
write_index(ix) == read_index(iy)

write-write conflict
read-write conflict

Ask if these constraints are satisfiable (if so, it is not safe to parallelize)

SMT Solver

• Satisfiability Modulo Theories (SMT)
• Generalized SAT solver

• Solves many types of constraints over many domains
• Integers
• Reals
• Bitvectors
• Sets

• Complexity bounds are high (and often undecidable). In practice, they
work pretty well

Discussion: Data races

Are data races ever okay?

Are data races ever okay?

• Consider this program:

int x = 0;
for (int i = 0; i < 1024; i++) {
 int tmp = *(&x);
 tmp += 1;
 *(&x) = tmp;
}

What can go wrong if we run the loop in parallel?

Horrible data races in the real world

Therac 25: a radiation therapy machine
• Between 1987 and 1989 a software bug caused 6 cases where

radiation was massively overdosed

• Patients were seriously injured and even died.

• Bug was root caused to be a data race.

• https://en.wikipedia.org/wiki/Therac-25

Horrible data races in the real world

2003 NE power blackout
• second largest power outage in history: 55 million people were

effected

• NYC was without power for 2 days, estimated 100 deaths

• Root cause was a data race

• https://en.wikipedia.org/wiki/Northeast_blackout_of_2003

But checking for data conflicts is hard...

• Tools are here to help (Professor Flanagan is famous in this area)

• My previous group:
• “Dynamic Race Detection for C++11” Lidbury and Donaldson
• Scalable (complete) race detection

• Firefox has ~40 data races
• Chromium has ~6 data races

How to efficiently parallelize loops

Shifting our focus back to a single core

• We need to consider single
threaded performance

• Good single threaded performance
can enable better parallel
performance
• Memory locality is key to good

parallel performance.

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Shifting our focus back to a single core

• Why?

Shifting our focus back to a single core

• Why?

Transforming Loops

• Locality is key for good (parallel) performance:

• What kind of locality are we talking about?

Transforming Loops

• Locality is key for good parallel performance:

• Two types of locality:
• Temporal locality
• Spatial locality

r1 = a[2];
...
r2 = a[2];

temporal locality

Transforming Loops

• Locality is key for good parallel performance:

• Two types of locality:
• Temporal locality
• Spatial locality

r1 = a[2];
...
r2 = a[3];

spatial locality

how far apart can memory locations be?

Transforming Loops

• Locality is key for good (parallel) performance:

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

good data locality: cores will
spend most of their time accessing
private caches

Transforming Loops

• Locality is key for good (parallel) performance:

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Bad data locality: cores will
pressure and thrash shared memory
resources

How multi dimensional arrays are stored:

How multi dimensional arrays are stored:

Row major

How multi dimensional arrays are stored:

Row major

How multi dimensional arrays are stored:

Row major

How multi dimensional
arrays are stored:

Column major?
Fortran
Matlab
R

How multi dimensional
arrays are stored:

Column major?
Fortran
Matlab
R

How multi dimensional arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[x,y];
x2 = a[x, y+1];

say x == y == 0

How multi dimensional arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[x,y];
x2 = a[x, y+1];

unrolled row major: still has locality

How multi dimensional arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[x,y];
x2 = a[x, y+1];

How multi dimensional
arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[x,y];
x2 = a[x, y+1];

unrolled
column
major:
Bad locality

How multi dimensional arrays are stored:

good pattern for column major
bad pattern for row major

x1 = a[x,y];
x2 = a[x+1, y];

say x == y == 0

How multi dimensional arrays are stored:

row major unrolled: bad spatial locality

good pattern for column major
bad pattern for row major

x1 = a[x,y];
x2 = a[x+1, y];

How multi dimensional
arrays are stored:

good pattern for column major
bad pattern for row major

x1 = a[x,y];
x2 = a[x+1, y];

unrolled
column
major:
good locality

How much does this matter?

for (int x = 0; x < x_size; x++) {
 for (int y = 0; y < y_size; y++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

for (int y = 0; y < y_size; y++) {
 for (int x = 0; x < x_size; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

which will be faster?
by how much?

Demo

How to reorder loop nestings?

• For a loop when can we reorder loop nestings?
• If loop iterations are independent
• If loop bounds are independent

How to reorder loop nestings?

• For a loop when can we reorder loop nestings?
• If loop iterations are independent
• If loop bounds are independent

• If the loop bounds are dependent...

Example:

for (y = 0; y <= 5; y++) {
 for (x = y; x <= 7; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

Example:

for (y = 0; y <= 5; y++) {
 for (x = y; x <= 7; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

bad nesting order for
row-major!

Example:

for (y = 0; y <= 5; y++) {
 for (x = y; x <= 7; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

bad nesting order for
row-major!

but iteration variables are
dependent

Example:

for (y = 0; y <= 5; y++) {
 for (x = y; x <= 7; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

bad nesting order for
row-major!

but iteration variables are
dependent

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

Example:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

System with N variables can be viewed as an N
dimensional polyhedron

x

y

5

0 7

x = y

Fourier-Motzkin elimination:

• Given a system of inequalities with N variables, reduce it to a system
with N - 1 variables.

• A system of inequalities describes an N-dimensional polyhedron.
Produce a system of equations that projects the polyhedron onto an
N-1 dimensional space

Example:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

System with N variables can be viewed as an N
dimensional polyhedron

x

y

5

0 7

x = y

Fourier-Motzkin elimination:

• To eliminate variable 𝑥!:
For every pair of lower bound 𝐿! and upper bound 𝑈! on 𝑥!, create:

𝐿! ≤ 𝑥! ≤ 𝑈!
Then simply remove 𝑥! 	:

𝐿! ≤ 𝑈!

Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
 for (x = y; x <= 7; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
 for (x = y; x <= 7; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

0 <= y <= 5
0 <= y <= x

Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
 for (x = y; x <= 7; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

0 <= y <= 5
0 <= y <= x

Then eliminate y:

0 <= 5
0 <= x

Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
 for (x = y; x <= 7; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

0 <= y <= 5
0 <= y <= x

Then eliminate y:

0 <= 5
0 <= x

Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
 for (x = y; x <= 7; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

0 <= y <= 5
0 <= y <= x

Then eliminate y:

0 <= x

Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
 for (x = y; x <= 7; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

0 <= y <= 5
0 <= y <= x

Then eliminate y:

0 <= x

loop constraints without y:

x >= 0
x <= 7

Example:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

System with N variables can be viewed as an N
dimensional polyhedron

x

y

5

0 7

x = y

Reording Loop bounds:

• Given a new order: 𝑥", 𝑥#, 𝑥$, … 𝑥%

• For each variable 𝑥! 	: perform Fourier-Motzkin elimination to
eliminate any variables that come after 𝑥! in the new order.

• Instantiate loop conditions for 𝑥!, potentially using max/min
operators

Example:

for (y = 0; y <= 5; y++) {
 for (x = y; x <= 7; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

Example:

for (y = 0; y <= 5; y++) {
 for (x = y; x <= 7; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

new order: [x,y]

for x: eliminate y using FM elimination:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

Example:

for (y = 0; y <= 5; y++) {
 for (x = y; x <= 7; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

new order: [x,y]

for x: eliminate y using FM elimination:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

x loop constraints without y:

x >= 0
x <= 7

Example:

for (y = 0; y <= 5; y++) {
 for (x = y; x <= 7; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

new order: [x,y]

for x: eliminate y using FM elimination:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

x loop constraints without y:

x >= 0
x <= 7

y loop constraints:
y >= 0
y <= 5
y <= x

Example:

for (y = 0; y <= 5; y++) {
 for (x = y; x <= 7; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

new order: [x,y]

for x: eliminate y using FM elimination:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

x loop constraints without y:

x >= 0
x <= 7

y loop constraints:
y >= 0
y <= 5
y <= x

Example:

for (y = 0; y <= 5; y++) {
 for (x = y; x <= 7; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

new order: [x,y]

for x: eliminate y using FM elimination:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

x loop constraints without y:

x >= 0
x <= 7

y loop constraints:
y >= 0
y <= min(x,5)

Example:

for (x = 0; x <= 7; x++) {
 for (y = 0; y <= min(x,5); y++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

x loop constraints without y:

x >= 0
x <= 7

y loop constraints:
y >= 0
y <= min(x,5)

x

y

Reordering loop bounds

• only works if loop increments by 1; assumes a closed polyhedron

• best performance when array indexes are simple:
• e.g.: a[x,y]
• harder with, e.g.: a[x*5+127, y+x*37]
• There exists schemes to automatically detect locality. Reach chapter 10 of the

Dragon book

• compiler implementation allows exploration and auto-tuning

Adding loop nestings

• In some cases, there might not be a good nesting order for all
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Adding loop nestings

• In some cases, there might not be a good nesting order for all
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

cold miss for all of them

Adding loop nestings

• In some cases, there might not be a good nesting order for all
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on A and B. Miss on C

Adding loop nestings

• In some cases, there might not be a good nesting order for all
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on A and B. Miss on C

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

cold miss for all of them

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Miss on C

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Miss on A,B, hit on C

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on all!

Adding loop nestings

• Add two outer loops for both x and y

for (int x = 0; x < SIZE; x++) {
 for (int y = 0; y < SIZE; y++) {
 a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];
 }
 }

Adding loop nestings

• Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
 for (int yy = 0; yy < SIZE; yy += B) {
 for (int x = xx; x < xx+B; x++) {
 for (int y = yy; y < yy+B; y++) {
 a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];
 }
 }
 }
}

Adding loop nestings

• Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
for (int yy = 0; yy < SIZE; yy += B) {

 for (int x = xx; x < xx+B; x++) {
 for (int y = yy; y < yy+B; y++) {
 a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];
 }
 }
 }
}

Adding loop nestings

• Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
 for (int yy = 0; yy < SIZE; yy += B) {
 for (int x = xx; x < xx+B; x++) {
 for (int y = yy; y < yy+B; y++) {
 a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];
 }
 }
 }
}

Adding loop nestings

• Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
 for (int yy = 0; yy < SIZE; yy += B) {
 for (int x = xx; x < xx+B; x++) {
 for (int y = yy; y < yy+B; y++) {
 a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];
 }
 }
 }
}

Demo

Recap what we’ve covered with loops

• Are the loop iterations independent?
• The property holding all of these optimizations together

• mainstream compilers don’t do much to help us out here
• why not?

• But DSLs can!

Discussion

Discussion questions:
What is a DSL?
What are the benefits and drawbacks of a DSL?
What DSLs have you used?

What is a DSL

• Objects in an object oriented language?
• operator overloading (C++ vs. Java)

• Libraries?
• Numpy

• Does it need syntax?
• Pytorch/Tensorflow

What is a DSL

• Not designed for general computation, instead
designed for a domain

• How wide or narrow can this be?
• Numpy vs TensorFlow
• Pros and cons of this design?

• Domain specific optimizations
• Optimizations do not have to work well in all cases

DSL designs

• Ease of expressiveness
sed ‘s/Utah/California’ address.txt

set title ”Parallel timing experiments"
set xlabel ”Threads”
set ylabel ”Speedup"
plot ”data.dat" with lines

gnuplot

Other examples?

These require their own front end. What about Matplotlib?

DSL designs

• Ease of expressiveness

From: Geometry Types for Graphics Programming, OOPSLA 2020

Add reference tags to types: World or View

make it harder to write bugs!

DSL designs

• Ease of optimizations

Examples?

From homework 3:

• reduction loops:
• Entire computation is dependent
• Typically short bodies (addition, multiplication, max, min)

1 2 3 4 5 6
addition: 21

max: 6

min: 1

What does this assume?
Optional in C++
Non-optional in Tensorflow

Typically faster than
implementations in general
languages.

DSL designs

• Easier to reason about

set title ”Parallel timing experiments"
set xlabel ”Threads”
set ylabel ”Speedup"
plot ”data.dat" with lines

gnuplot example again

tf.matmul(a, b)

tensorflow

What does an optimized matrix multiplication look like?

https://github.com/flame/blis/tree/master/kernels

Typically much fewer lines of code
than implementations in general
languages.

DSL designs

• Easier to maintain

• Optimizations and transforms are less general (more targeted).
• Less syntax (sometimes no syntax).
• Fewer corner cases.

DSL design

• Recipe for a DSL talk:
• Introduce your domain
• Show scary looking optimized code
• Show clean DLS code
• Show performance improvement
• Have a correctness argument

The rest of the lecture

• A discussion and overview of Halide:
• Huge influence on modern DSL design
• Great tooling
• Great paper

• Originally: A DSL for image pipelining:

from: https://halide-lang.org/tutorials/tutorial_lesson_02_input_image.html

Brighten example

Motivation: pretty straight
forward computation
for brightening

(1 pass over all pixels)

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

This computation is known as the “Local Laplacian Filter”. Requires visiting all pixels 99 times

We want to be able to do this
fast and efficiently!

Main results in from Halide show
a 1.7x speedup with 1/5 the LoC
over hand optimized versions at Adobe

Decoupling computation from optimization

• We love Halide not only because it can make pretty pictures very fast

• We love it because it changed the level of abstraction for thinking
about computation and optimization

• (Halide has been applied in many other domains now, turns out
everything is just linear algebra)

Example

• in C++

for (int x = 0; x < x_size; x++) {
 for (int y = 0; y < y_size; y++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

for (int y = 0; y < y_size; y++) {
 for (int x = 0; x < x_size; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

Which one would you write?

Optimizations are a black box

• What are the options?
• -O0, -O1, -O2, -O3
• Is that all of them?
• What do they actually do?

https://stackoverflow.com/questions/15548023/clang-optimization-levels

Optimizations are a black box

• What are the options?
• -O0, -O1, -O2, -O3
• Is that all of them?
• What do they actually do?

• Answer: they do their best for a wide range of programs. The
common case is that you should not have to think too hard about
them.

• In practice, to write high-performing code, you are juggling
computation and optimization in your mind!

Halides approach

• Decouple
• what to compute (the program)
• with how to compute (the optimizations, also called the schedule)

Halides approach

• Decouple
• what to compute (the program)
• with how to compute (the optimizations, also called the schedule)

for (int y = 0; y < y_size; y++) {
 for (int x = 0; x < x_size; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

C++:
Halide (high-level)

add(x,y) = b(x,y) + c(x,y)

program

add.order(x,y)

schedule

Halides approach

• Decouple
• what to compute (the program)
• with how to compute (the optimizations, also called the schedule)

Halide (high-level)

add(x,y) = b(x,y) + c(x,y)

program

add.order(x,y)

schedulePros and Cons?

Halide optimizations

• Now all of a sudden, the programmer has to worry about how to
optimize the program. Previously the compiler compiler made those
decisions and we just “helped”.

• What can we do here?

Halide optimizations

• Auto-tuning
• automatically select a schedule
• compile and run/time the program.
• Keep track of the schedule that performs the best

• Why don’t all compilers do this?

Halide optimizations

• Auto-tuning
• automatically select a schedule
• compile and run/time the program.
• Keep track of the schedule that performs the best

• Why don’t all compilers do this?

• Image processing is especially well-suited for this:
• Images in different contexts might have similar sizes (e.g. per phone, on

twitter, on facebook)

Halide programs

• Halide programs:
• built into C++, contained within a header

#include "Halide.h"

from: https://halide-lang.org/tutorials/tutorial_lesson_01_basics.html

Halide::Func gradient; // a pure function declaration

Halide::Var x, y; // variables to use in the definition of the function (types?)

gradient(x, y) = x + y; // the function takes two variables (coordinates in the image) and adds them

gradient(x, y) = x + y;

y

x

increasing

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

increasing

gradient(x, y) = x + y;

y

x

increasing

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

y

x

0 1 2

1 2 3

2 3 4

after applying the gradient function

increasing

what are some properties of this computation?

gradient(x, y) = x + y;

y

x

increasing

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

y

x

0 1 2

1 2 3

2 3 4

after applying the gradient function

increasing

what are some properties of this computation?
Data races?
Loop indices and increments?
The order to compute each pixel?

Executing the function

Halide::Buffer<int32_t> output = gradient.realize({3, 3});

Not compiled until this point
Needs values for x and y

y

x

0 1 2

1 2 3

2 3 4 output

Example: brightening

Brighten example

Halide::Buffer<uint8_t> input = load_image("parrot.png");

Halide::Func brighter;

Halide::Expr value = input(x, y, c);

value = Halide::cast<float>(value);

value = value * 1.5f;

value = Halide::min(value, 255.0f);

value = Halide::cast<uint8_t>(value);

brighter(x, y, c) = value;

Halide::Buffer<uint8_t> output =
 brighter.realize({input.width(), input.height(), input.channels()});

Halide::Buffer<uint8_t> input = load_image("parrot.png");

Halide::Func brighter;

Halide::Expr value = input(x, y, c);

value = Halide::cast<float>(value);

value = value * 1.5f;

value = Halide::min(value, 255.0f);

value = Halide::cast<uint8_t>(value);

brighter(x, y, c) = value;

Halide::Buffer<uint8_t> output =
 brighter.realize({input.width(), input.height(), input.channels()});

brighter(x, y, c) = Halide::cast<uint8_t>(min(input(x, y, c) * 1.5f, 255));

Schedules

Halide::Func gradient;
Halide::Var x, y;
gradient(x, y) = x + y;
Halide::Buffer<int32_t> output =
 gradient.realize({3, 3});

y

x

increasing

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

increasing

which order to traverse these elements?

Halide::Func gradient;
Halide::Var x, y;
gradient(x, y) = x + y;
Halide::Buffer<int32_t> output =
 gradient.realize({4, 4});

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

for (int y = 0; y < 4; y++) {
 for (int x = 0; x < 4; x++) {
 output[y,x] = x + y;
 }
}

Halide::Func gradient;
Halide::Var x, y;
gradient(x, y) = x + y;
Halide::Buffer<int32_t> output =
 gradient.realize({4, 4});

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

for (int y = 0; y < 4; y++) {
 for (int x = 0; x < 4; x++) {
 output[y,x] = x + y;
 }
}

Halide::Func gradient;
Halide::Var x, y;
gradient(x, y) = x + y;
Halide::Buffer<int32_t> output =
 gradient.realize({4, 4});

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

gradient.reorder(y, x);

Schedule

for (int x = 0; x < 4; x++) {
 for (int y = 0; y < 4; y++) {
 output[y,x] = x + y;
 }
}

Halide::Func gradient;
Halide::Var x, y;
gradient(x, y) = x + y;
Halide::Buffer<int32_t> output =
 gradient.realize({4, 4});

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

for (int x = 0; x < 4; x++) {
 for (int y = 0; y < 4; y++) {
 output[y,x] = x + y;
 }
}

gradient.reorder(y, x);

Schedule

Halide::Func gradient;
Halide::Var x, y;
gradient(x, y) = x + y;
Halide::Buffer<int32_t> output =
 gradient.realize({4, 4});

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

for (int y = 0; y < 4; y++) {
 for (int x_outer = 0; x_outer < 2; x_outer++) {
 for (int x_inner = 0; x_inner < 2; x_inner++) {
 x = x_outer*2 + x_inner;
 output[y,x] = x + y;
 }
 }
}

Var x_outer, x_inner;
gradient.split(x, x_outer, x_inner, 2);

Schedule

Tiling

Adding loop nestings

• In some cases, there might not be a good nesting order for all
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Adding loop nestings

• In some cases, there might not be a good nesting order for all
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

cold miss for all of them

Adding loop nestings

• In some cases, there might not be a good nesting order for all
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on A and B. Miss on C

Adding loop nestings

• In some cases, there might not be a good nesting order for all
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on A and B. Miss on C

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

cold miss for all of them

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Miss on C

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Miss on A,B, hit on C

Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on all!

for (int x = 0; x < SIZE; x++) {
 for (int y = 0; y < SIZE; y++) {
 a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];
 }
 }

for (int xx = 0; xx < SIZE; xx += B) {
 for (int yy = 0; yy < SIZE; yy += B) {
 for (int x = xx; x < xx+B; x++) {
 for (int y = yy; y < yy+B; y++) {
 a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];
 }
 }
 }
}

transforms into:

Halide::Func gradient;
Halide::Var x, y;
gradient(x, y) = x + y;
Halide::Buffer<int32_t> output =
 gradient.realize({16, 16});

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Schedule

for (int y = 0; y < 16; y++) {
 for (int x = 0; x < 16; x++) {
 output[y,x] = x + y;
 }
}

Var x_outer, x_inner, y_outer, y_inner;
gradient.split(x, x_outer, x_inner, 4);
gradient.split(y, y_outer, y_inner, 4);
gradient.reorder(x_inner, y_inner, x_outer, y_outer);

Halide::Func gradient;
Halide::Var x, y;
gradient(x, y) = x + y;
Halide::Buffer<int32_t> output =
 gradient.realize({16, 16});

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Schedule

for (int y = 0; y < 4; y++) {
 for (int x = 0; x < 4; x++) {
 output[y,x] = x + y;
 }
}

Var x_outer, x_inner, y_outer, y_inner;
gradient.split(x, x_outer, x_inner, 4);
gradient.split(y, y_outer, y_inner, 4);
gradient.reorder(x_inner, y_inner, x_outer, y_outer);

gradient.tile(x, y,
 x_outer, y_outer,
 x_inner, y_inner, 4, 4);

Parallelism?

• Next lecture

Next class

• Continuing on DSL parallelism

• See you on Thursday
• Get a partner for homework 3!

