CSE211: Compiler Design

Nov. 1, 2023

O 00 3 ¢

* Topic: More flow analysis
applications and intro to SSA s

12
13
14
15

 Questions: 16

17

* What is SSA form? 18

19

* Has anyone heard of the phi 20
instruction?

$8 = phi i32 [%4, %3], [%6, %5], !dbg !24

; preds = %1
%4 = tail call i32 @ Zl4first functionv(), !dbg !19
call void @llvm.dbg.value(metadata i32 %4, metadata !14, metadata
br label %7, !dbg !21

; preds = %1
%6 = tail call i32 @_Zl15second_functionv(), !dbg !22
call void @llvm.dbg.value(metadata i32 %6, metadata !14, metadata
br label %7

; preds = %5, %3

call void @llvm.dbg.value(metadata i32 %8, metadata !14, metadata
ret i32 %8, !dbg !25

Announcements

* Paper assignment was due on Monday
 Start thinking about your next paper assignment!
* |tis due on the day of the finall Don’t let things pile up!

* Homework 2 is out

* Please have a partner by the end of day today (20% off and
doing the assignment solo)

* Due Nov. 13

Announcements

* We are working on grading your assignments ASAP.
Stay tuned!

Review global optimizations

Global optimizations review: Dominance

* Root node is initialized to itself
* Every node determines new dominators based on parent dominators

D = {x,y,z} D = {x,y} D = {a,x,y}

update:
intersection of parent values

Forward flow, as updates flow from
parents to children.

Dom(n) = {n} U (npin preds(n) Dom(p))

Global optimizations review: Live variable
analysis

LiveOut(n) = U, sucein) (UEVar(s) U (LiveOut(s) N VarKill(s)))

backwards flow

Dom(n) = {n} U (r]pin preds(n) Dom(p))

Global optimizations review: Live variable
analysis

LiveOut(n) = U, sucen) (UEVar(s) U (LiveOut(s) N VarKill(s)))

What are the sets?
backwards flow

Dom(n) = {n} U (r]pin preds(n) Dom(p))

Example

acks: thanks to this blog post for the example!
https://eli.thegreenplace.net/2015/directed-graph-traversal-orderings-and-applications-to-data-flow-analysis/

post order: D, C, B, A

Example

OO
D @
OO

reverse CFG

post order: D, C, B, A

rpo on reverse CFG: D, B, C, A

Example

post order: D, C, B, A

rpo on reverse CFG: D, B, C, A

rpo on reverse CFG computes B before C, thus, C can see updated
information from B

Example

post order: D, C, B, A

rpo on reverse CFG: D, B, C, A

updates in backwards flow

rpo on reverse CFG computes B before C, thus, C can see updated
information from B

Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before
being overwritten.

Consider:

Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before
being overwritten.

Consider:

UEVar needs to assume a[x] is any memory location that it cannot prove non-aliasing

LiveOut(n) = Uiy sueen) (UEVar(s) U (LiveOut(s) N VarKill(s)))

Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before
being overwritten.

Consider:

alx] = s + 1;

LiveOut(n) = Uiy sueen) (UEVar(s) U (LiveOut(s) N VarKill(s)))

Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before
being overwritten.

Consider:

alx] = s + 1;

VarKill also needs to know about aliasing

LiveOut(n) = Uiy sueen) (UEVar(s) U (LiveOut(s) N VarKill(s)))

Live variable limitations

Imprecision can come from CFG construction:
consider:

br 1 < 0, dead branch, alive branch

Live variable limitations

Imprecision can come from CFG construction:
consider:

br 1 < 0, dead branch, alive branch

could come from arguments, etc.

dead _branch

alive_branch

Live variable limitations

Imprecision can come from CFG construction:

consider first class labels (or functions):

br label reg

need to branch to all possible
basic blocks!

where label reg is a register that contains a register

Finishing up global analysis

The Data Flow Framework

LiveOut(n) = U, sucein) (UEVar(s) U (LiveOut(s) N VarKill(s)))

f (X) = O,D v in (succ | preds) CO(V) 0P, (f (V) 0P, CZ(V))

Available Expressions

AvailExpr(n)= N DEExpr(p) U (AvailExpr(p) N ExprKill(p))

p in preds

An expression e is “available” at the beginning of a basic
block b, if for all paths to b,, e is evaluated and none of its
arguments are overwritten

Available Expressions

AvailExpr(n)= N DEExpr(p) U (AvailExpr(p) N ExprKill(p))

p in preds

Forward Flow

Available Expressions

AvailExpr(n)= N DEExpr(p) U (AvailExpr(p) N ExprKill(p))

p in preds

intersection implies “must” analysis

Available Expressions

AvailExpr(n)= N DEExpr(p) U (AvailExpr(p) N ExprKill(p))

p in preds

DEExpr(p) is all Downward Exposed Expressions in p. That is expressions
that are evaluated AND operands are not redefined

Available Expressions

AvailExpr(n)= N DEExpr(p) U (AvailExpr(p) N ExprKill(p))

p in preds

AvailExpr(p) is any expression that is available at p

Available Expressions

AvailExpr(n)= N DEExpr(p) U (AvailExpr(p) N ExprKill(p))

p in preds

ExprKill(p) is any expression that p killed, i.e. if one or more of its operands is redefined
inp

Available Expressions

AvailExpr(n)= N DEExpr(p) U (AvailExpr(p) N ExprKill(p))

p in preds

Any expression
that is available (and not killed)
the parents, along with expressions exposed by
all the parents.

Available Expressions

AvailExpr(n)= N DEExpr(p) U (AvailExpr(p) N ExprKill(p))

p in preds

Application: you can add availExpr(n) to local optimizations in n, e.qg. local value numbering

Anticipable Expressions

AntOut(n)= N UEExpr(s) U (AntOut(s) N ExprKill(s))

S in succ

An expression e is “anticipable” at a basic block b, if for all
paths that leave b,, e is evaluated

Anticipable Expressions

AntOut(n)= N UEExpr(s) U (AntOut(s) N ExprKill(s))

S in succ

Backwards flow

Anticipable Expressions

AntOut(n)= N UEExpr(s) U (AntOut(s) N ExprKill(s))

S in succ

"must” analysis

Anticipable Expressions

AntOut(n)= N UEExpr(s) U (AntOut(s) N ExprKill(s))

S in succ

UEExpr(p) is all Upward Exposed Expressions in p. That is expressions
that are computed in p before operands are overwritten.

Anticipable Expressions

AntOut(n)= N UEExpr(s) U (AntOut(s) N ExprKill(s))

S in succ

Anticipable Expressions

AntOut(n)= N UEExpr(s) U (AntOut(s) N ExprKill(s))

S in succ

Anticipable Expressions

AntOut(n)= N, ... UEExpr(s) U (Antout(s) N EXOERIE))

n
X=y+z

X=Vy+2

Anticipable Expressions

AntOut(n)= N UEExpr(s) U (AntOut(s) N ExprKill(s))

S in succ

Application: you can hoist AntOut expressions to compute as early as possible

potentially try to reduce code size: -Oz

More flow algorithms:

Check out chapter 9 in EAC: Several more algorithms.

“Reaching definitions” have applications in memory analysis

New material: SSA

0 N a

il
12
13
14
15
16
17
18
19
20
21

; preds
%4 = tail call i32 @ Zl4first functionv(), !dbg !19

call void @llvm.dbg.value(metadata i32 %4, metadata !14,

br label %7, !dbg !21

; preds
%6 = tail call i32 @ Z15second_ functionv(), !dbg !22

call void @llvm.dbg.value(metadata i32 %6, metadata !14,

br label %7

; preds
%8 = phi i32 [%4, %3 1, [%6, %5], !dbg !24

call void @llvm.dbg.value(metadata i32 %8, metadata !14,

ret i32 %8, !dbg !25

= %1

metadata

= %1

metadata

= %5, %3

metadata

Intermediate representations

* What have we seen so far?
* 3 address code
e AST
* data-dependency graphs
e control flow graphs

* At a high-level:
e 3 address code is good for data-flow reasoning
e control flow graphs are good for... control flow reasoning

What we want: an IR that can reasonably capture both control and data flow

Static Single-Assignment Form (SSA)

* Every variable is defined and written to once
* We have seen this in local value numbering!

* Control flow is captured using ¢ instructions

¢ instructions

* Example: how to convert this code into SSA?

int x;

i1f (<some condition>) {

x = 5y
}
else {

x =7

¢ instructions

* Example: how to convert this code into SSA?

int x;

if (<some condition>) { Start with numbering
X = 5;

¢ instructions

* Example: how to convert this code into SSA?

int x;

if (<some condition>) { Start with numbering
x0 = 5;
}

else {
x1l = 7;
}

print (x)

¢ instructions

* Example: how to convert this code into SSA?

int x;

if (<some condition>) { Start with numbering
x0 = 5;
}

else {
x1l = 7;
}

print (B) What here?

¢ instructions

* Example: how to convert this code into SSA?

let’s make a CFG

int x;

: . if (<some condition>) {
1f (<some condition>) { —

c X = by
x = 5;
' }
}
else {
x = 7;

print (x)

¢ instructions

* Example: how to convert this code into SSA?

int x;

1f (<some condition>)
x0 = 5;
}

else {
x1l = 7;
}

print (x)

{

number the variables

1if

}

(<some condition>) {
S;

x0

else {
x1l =

7

print (x)

¢ instructions

* Example: how to convert this code into SSA?

number the variables

int x;
, o i1f (<some condition>) { else {
1f (<some condition>) { <0 = 5: <] = 7:
x0 = 5; } }
}
else { selects the value for
xl =7 x depending on which
} CFG path was taken
x2 = ¢ (x0, x1);
x2 = ¢ (x0, x1); print (x2)

X
print (x2)

¢ instructions

* X, = O(Xg, X1, X5, X3...);

* selects one of the values depending on the previously executed basic
block. Implementations will define how the value is selected:
* LLVM: couples values with labels
* EAC book: uses left-to-right ordering of parents in visual CFG

¢ instructions

* Xn = ¢(XO) Xll XZ/ X3"');

* variables that haven’t been assigned can appear (but they will not be
evaluated)

Xo = 1;
1f |) goto end loop;
loop:
X1 = (X0, X2) 7
X, = x;1 t 1;
if (...) goto loop;
end loop:

X3 = ¢(XOI X2) s

¢ instructions

* Xn = ¢(XO) Xll XZ/ X3"');

* variables that haven’t been assigned can appear (but they will not be
evaluated)

Xo = 1;
1f |) goto end loop;
loop:
X1 = (X0, X2) 7
X, = x;1 t 1;
if (...) goto loop;
end loop:

X3 = ¢(XOI X2) s

Conversion Into SSA

Different algorithms depending on how many ¢ instructions

The fewer ¢ instructions, the more efficient analysis will be

Two phases:
inserting ¢ instructions
variable naming

Maximal SSA

Straightforward:

* For each variable, for each basic block: insert a ¢ instruction with
placeholders for arguments

* local numbering for each variable using a global counter

* instantiate ¢ arguments

Maximal SSA

Example
x = 1;
y = 2;

i1f (<condition>) {
X =V

else {
X = 0;
y = 100;

Maximal SSA

Insert ¢ with argument
placeholders

Example
x = 1;
y = 2;

i1f (<condition>)
X =V

else {
X = 0;
y =]_OO/

{

x = 1;
y = 27

i1f (<condition>)

X =¢(...);
y = ¢(...);
X = y;
}
else {
X =¢(...);
y = ¢(...);
X 6;
y = 100;
}
x =¢(...);
y = ¢ ()
print (x)

{

Maximal SSA

Insert ¢ with argument
placeholders

Rename variables
iterate through basic
blocks with a global
counter

Example
x = 1;
y = 2;

i1f (<condition>)
X = y;

else {
X = 0;
y =]_OO/

{

x = 1;
y = 27

i1f (<condition>)

x=¢(...);
y = ¢(...);
X = y;

}

else {
x=¢(...);
y = ¢(...);
X ©;
y = 100;

}

x =¢(...);

y = ¢(...);

print (x)

{

x0 = 1;
vl = 2;

i1f (<condition>)

x3 = ¢d(...);
yd = ¢p(...);
x5 = vy4;

}

else {
x6 = P (...);
y7 = ¢ (...);
X8 6;
v9 = 100;

x10 = ¢ (...);

yll = ¢ (...);
print (x10)

Maximal SSA

Insert ¢ with argument

placeholders

Rename variables

iterate through basic

blocks with a global
counter

fill in ¢ arguments
by considering CFG

Example
x = 1;
y = 2;

i1f (<condition>)
X = y;

else {
X = 0;
y =]_OO/

{

x = 1;
y = 27

i1f (<condition>)
-)
-)

x =¢(..
y = ¢ (..
X = y;
}
else {
x = ¢
y = ¢
X 6
y =1
}
x = ¢ (.
y = ¢ (.
print (x)

{

x0 = 1;
vl = 2;

i1f (<condition>)

x3 = ¢d(...);
yd = ¢p(...);
x5 = vy4;

}

else {
x6 = P (...);
y7 = ¢ (...);
X8 6;
v9 = 100;

x10 = ¢ (...);

vl = ¢o(...);
print (x10)

x0 = 1;
vl = 2;

if (<condition>)

x3 = ¢ (x0);
y4d = ¢ (yl);
x5 = vy4;

}

else {
X6 = (x0) ;

x10 = ¢ (x5,x8);

yll = ¢ (y4,y9);
print (x10)

{

More efficient
translation?

Example

maximal SSA

x0 = 1;

yl = 2;

if (...) |
x3 = ¢ (x0);
y4d = ¢ (yl);
X5 = vy4;

}

else {
X6 = (x0) ;

x10 = ¢ (x5,x8);
vll = ¢ (v4,y9);

print (x10)

Optimized?

x0 = 1;

vyl = 2;

if (...) |
x3 = ¢ (x0);
v4d = ¢ (yl);
X5 = v4;

}

else {
X0 = (x0) ;

x10 = ¢ (x5,x8);

yll = ¢(Y4ry9),
print (x10)

More efficient
translation?

Example

x = 1;
4

y = 2;

else {

print (x)

maximal SSA

x0 = 1;

yl = 2;

if (...) |
x3 = ¢ (x0);
yd = ¢ (yl);
X5 = vy4;

}

else {
x6 = ¢ (x0);
y7 = ¢ (yl);
X8 = 0;
v9 = 100;

}

x10 = ¢ (x5, x8)

yll = ¢ (y4,y9)

Hand Optimized SSA

x0
VAl

if (...

x5
}

else
X8
v9
}

x10
v11l
prin

= ¢ (x5,x8);

= ¢(ery9),
t (x10)

A note on SSA variants:

e “Really Crude Approach”:
* Just like our example:

* Every block has a ¢ instruction
for every variable

A note on SSA variants:

e “Really Crude Approach”:
* Just like our example:

* Every block has a ¢ instruction
for every variable

* This approach was referenced
in a later paper as
“Maximal SSA”

A note on SSA variants: Appel Maximal SSA

x0 1

vl Z 2 EAC Maximal SSA
 EAC book describes a x0 = 1;
. . if (<condition>) { _ .
different “Maximal SSA” e r yl = 2;
* Insert ¢ instruction at every zé - (54(?1); if (...)
join node \ ' x5 = yl;
 Naming becomes more e J
o« L else
difficult =) clse |
yil = ¢(Yl); X8 = 6;
x8 = 6; y9 = 100;
v9 = 100;
| }
x10 = ¢ (x5,x8); x10 = ¢ (x5,x8);
yll = ¢ (y4,v9); yll = ¢ (y1l,y9);
print (x10) print (x10)

A note on SSA variants:

 EAC book describes:
* Minimal SSA
* Pruned SSA
* Semipruned SSA: We will discuss this one

A more optimal approach for ¢ placements

* When is a ¢ needed?

A more optimal approach for ¢ placements

* When is a ¢ needed?

variable
assignments
in different
branches

X
|
@)

x =1

N

print (x) join node

A more optimal approach for ¢ placements

* When is a ¢ needed?

variable
assignments
in different
branches
x0 = 0; xl =1
x2 = ¢(x0, x1) join node

print (x2)

A more optimal approach for ¢ placements

* When is a ¢ needed?

* More specific question: given a block i, find the set of blocks B which
may need a ¢ instruction for a definition in block i.

x = 0; what set of blocks need a ¢ node to resolve conflicts on this assignment to x?

A more optimal approach for ¢ placements

* When is a ¢ needed?

* More specific question: given a block i, find the set of blocks B which
may need a ¢ instruction for a definition in block i.

block i x = 0; what set of blocks need a ¢ node to resolve conflicts on this assignment to x?

block j print (x); | Does blockjneeda ¢ to resolve the assignment to x in block i?

A more optimal approach for ¢ placements

* When is a ¢ needed?

* More specific question: given a block i, find the set of blocks B which
may need a ¢ instruction for a definition in block i.

block i x = 0; what set of blocks need a ¢ node to resolve conflicts on this assignment to x?

is block j dominated by block i?

some path
P If so, then no ¢ node is needed

block j print (x); | Does blockjneeda ¢ to resolve the assignment to x in block i?

A more optimal approach for ¢ placements

* say j is dominated by i. Thus, no ¢ node is needed in block j

block i x = 0; what set of blocks need a ¢ node to resolve conflicts on this assignment to x?

some path

block j print (x);

A more optimal approach for ¢ placements

* say j is dominated by i. Thus, no ¢ node is needed in block j

block i x = 0; what set of blocks need a ¢ node to resolve conflicts on this assignment to x?
some path
block j print (x) ;

immediate successor

blockk |print (x);

A more optimal approach for ¢ placements

* say j is dominated by i. Thus, no ¢ node is needed in block j

block i x = 0; | Wwhatsetof blocks need a ¢ node to resolve conflicts on this assignment to x?

some path
Say block k is not dominated by block i.

Then there exists another in-edge to block k.

v

block j print (x);

If x is assigned along a path not through block i,
then a ¢ node is needed

immediate successor

path that doesn’t go through block i and assigns to x
blockk |print (x);

Dominance frontier

Dominance frontier

* For a block i, the set of blocks B in i's dominance frontier lie just
“outside” the blocks that i dominates.

block i ': i example: block k is in the dominance frontier
some path of block i
blockj | . ' say block j is dominated by block i
immediate successor
blockk | ... | isnot dominated by block i

There will be some path into block k that does not go through block i

Dominance frontier

* a viz using coloring (thanks to Chris Liu!)

e Efficient algorithm for computing in EAC section 9.3.2 using a
dominator tree. Please read when you get the chance!

Note that we are using strict dominance:
nodes don’t dominate themselves!

BO
Bl
B2
B3
B4
B5
B6
B7
B8

BO,

BO, B1,

BO, B1,
BO, B1, B3,
BO, B1,
BO, B1, BS5,
BO, B1, B5,
BO, B1, BS5,

Node |Dominators
BO

Bl BO,

B2 BO, B1,

B3 BO, B1,

B4 BO, B1, B3,

B5 BO, B1,

B6 BO, B1, BS5,

B7 BO, B1, BS5,

B8 BO, B1, BS5,

Node |Dominators
BO

Bl BO,

B2 BO, B1,

B3 BO, B1,

B4 BO, B1, B3,

B5 BO, B1,

B6 BO, B1, B5,

B7 BO, B1, BS5,

B8 BO, B1, BS5,

Node —Dominators
BO

Bl BO,

B2 BO, B1,

B3 BO, B1,

B4 BO, B1, B3,

B5 BO, B1,

B6 BO, B1, BS,

B7 BO, B1, B5,

B8 BO, B1, BS5,

Node —Dominators
BO

Bl BO,

B2 BO, B1,

B3 BO, B1,

B4 BO, B1, B3,

B5 BO, B1,

B6 BO, B1, BS,

B7 BO, B1, B5,

B8 BO, B1, BS,

B3 is in the dominance
frontier of B5

BO
Bl
B2
B3
B4
B5
B6
B7
B8

BO,

BO, B1,

BO, B1,
BO, B1, B3,
BO, B1,
BO, B1, BS5,
BO, B1, B5,
BO, B1, BS5,

Nose [bommatos
. ©

Bl BO,
B2 BO, B1,
B3 BO, B1,
B4 BO, B1, B3,
B5 BO, B1,
B6 BO, B1, B5, ° @
B7 BO, B1, B5,
B8 BO, B1, B5, Any child that
isn’t dominated is in the e

dominance frontier

BO
Bl
B2
B3
B4
B5
B6
B7
B8

BO,

BO, B1,

BO, B1,
BO, B1, B3,
BO, B1,
BO, B1, BS5,
BO, B1, B5,
BO, B1, BS5,

O

BO
Bl
B2
B3
B4
B5
B6
B7
B8

BO,

BO, B1,

BO, B1,
BO, B1, B3,
BO, B1,
BO, B1, BS,
BO, B1, B5,
BO, B1, BS,

O

BO
Bl
B2
B3
B4
B5
B6
B7
B8

BO,

BO, B1,

BO, B1,
BO, B1, B3,
BO, B1,
BO, B1, BS,
BO, B1, B5,
BO, B1, BS,

O

BO
Bl
B2
B3
B4
B5
B6
B7
B8

BO,

BO, B1,

BO, B1,
BO, B1, B3,
BO, B1,
BO, B1, BS,
BO, B1, B5,
BO, B1, BS,

OO

Dominator
Frontier

BO
Bl
B2
B3
B4
B5
B6
B7
B8

{}
B1

B3
B1
{}

B3
B7
B3
B7

O

Dominance Frontier

* Intuition: a variable declared in block b may need to resolve a conflict
in the dominance frontier of b

* Because it may have been assigned a new value in another path

BO:

BR1l:

B2:

B3:

R4 :

br

Q

PN

br

return;

B1,

R4;

B5:

BR7:

B8:

Var _Ja b c __Jd i vz

Blocks

g

BO: 1

BRl: a =

br

B2: b =

Q. QO

B3:

PN

B1,

BR4: return;

R4;

B5:

BR7:

B8:

Blocks

B1, BS

B2, B7

B1,B2,B8

B2,B5,B6

BO, B3

E

BO: i = ...; B5: a = ...;
d = ...;
Bl: a = ...; br ... Bo6, BS§;
C = ...;
br ... B2, B5; Bo: d = ...;
B2: b = ...; B7: b = ...;
c = ’
d = ; B8: c = ;
br B7
B3: y = ;
Z ’
i= ...;
br ... Bl, B4;

BR4: return;

local variables can be chopped

Blocks B1, BS B2, B7 B1,B2,B8 B2,85B6 BO,B3 B3 B3

BO: 1 = ...; B5: a = ...;
d = ...; Dominator
Bl: a = ...; br ... Bo6, BS; Frontier
C = ey BO {}
br ... B2, B5; Bo: d = ...;
Bl Bl
B2: b = ...; B7: b = ...; B2 B3
= 4 B3 B1
d = ; B8: ¢ = ...;
br B7/; B4 {}
B3: y = ...; B5 B3
“ 7 ' B6 B7
i = ...
br ... Bl, B4; B7 B3
B8 B7

BR4: return;

Var __Ja___ b lc __1d i

Blocks B1,B5 B2,B7 B1,B2,B8 B2,85B6 BO,B3

BO: 1 = ...; B5: a = ...;
d = ...; Dominator
Bl: a = ...; br ... Bo6, BS; Frontier
C = ey BO {}
br ... B2, B5; Bo: d = ...;
Bl Bl
B2: b = ...; B7: b = ...; B2 B3
= 4 B3 B1
d = ; B8: ¢ = ...;
br B7/; B4 {}
B3: y = ...; B5 B3
“ 7 ' B6 B7
i = ...
br ... Bl, B4; B7 B3
B8 B7

BR4: return;

Var _ for each variable v:

for each block b that writes to v:
Blocks B1,B5 ¢ is needed in the DF of b

BO: 1 = ...; B5: a = ...;
d = ...; Dominator
Bl: a = ...; br ... Bo6, BS; Frontier
C = ey BO {}
br ... B2, B5; Bo: d = ...;
Bl Bl
B2: b = ...; B7: b = ...; B2 B3
= 4 B3 B1
d = ; B8: ¢ = ...;
br B7/; B4 {}
B3: y = ...; B5 B3
“ 7 ' B6 B7
i = ...
br ... Bl, B4; B7 B3
B8 B7

BR4: return;

Var _ for each variable v:

for each block b that writes to v:
Blocks B1,B5 ¢ is needed in the DF of b

BO: 1 = ...; B5: a = ...;
d = ...; Dominator
Bl: a = ¢(...); br ... B6, BS; Frontier
a = ...;
; BO
C = ...; Bo: d = ...; U
br ... B2, B5; Bl Bl
B7: b= ...; B2 B3
B2: b = ...; B3 B1
C = ...; B8: ¢ = ...;
d = ...; br B7; B4 {}
B5 B3
B3: y = .’ BG B7
Z = ...
i=...; B7 B3
br ... Bl, B4; BS B7

BR4: return;

Var _ for each variable v:

for each block b that writes to v:
Blocks B1,B5 ¢ is needed in the DF of b

BO: 1 = ...; B5: a = ...;
d = ...; Dominator
Bl: a = ¢(...); br ... B6, BS; Frontier
a = ...;
; BO
C = ...; Bo: d = ...; U
br ... B2, B5; Bl Bl
B7: b= ...; B2 B3
B2: b = ...; B3 B1
C = ...; B8: ¢ = ...;
d = ...; br B7; B4 {}
B5 B3
B3: y = .’ BG B7
Z = ...
i=...; B7 B3
br ... Bl, B4; BS B7

BR4: return;

Var _ for each variable v:

for each block b that writes to v:
Blocks B1,B5 ¢ is needed in the DF of b

BO: 1 = ...; B5: a = ...;
d = ...; Dominator
Bl: a = ¢(...); br ... B6, BS; Frontier
a = ...;
’ BO
C = ...; Bo: d = ...; U
br ... B2, B5; Bl Bl
B7: b = ...; B2 B3
B2: b = ...; B3 B1
c = ; B8: ¢ = ...;
d = ; br B7; B4 {}
B5 B3
B3: a = ¢(...); BG B7
V = ..
> s B7 B3
1= ... BS B7
br B1l, B4;

BR4: return;

Var _ for each block b:

Blocks B1.B5 ¢ is needed in the DF of b

BO: 1 = ...; B5: a = ...;
d = ...; Dominator
Bl: a = ¢(...); br ... B6, BS; Frontier
a = ...;
’ BO
C = ...; Bo: d = ...; U
br ... B2, B5; Bl Bl
B7: b = ...; B2 B3
B2: b = ...; B3 B1
c = ; B8: ¢ = ...;
d = ; br B7; B4 {}
B5 B3
B3: a = ¢(...); BG B7
V = ..
> s B7 B3
1= ... BS B7
br Bl, B4;

BR4: return;

Var _ We’ve now added new definitions of ‘a’!

Blocks B1,B5

BO: 1 = ...; B5: a = ...;
d = ...; Dominator
Bl: a = ¢(...); br ... B6, BS; Frontier
a = ...;
’ BO
C = ...; Bo: d = ...; U
br ... B2, B5; Bl Bl
B7: b = ...; B2 B3
B2: b = ...; B3 B1
c = ; B8: ¢ = ...;
d = ; br B7; B4 {}
B5 B3
B3: a = ¢(...); BG B7
V = ..
> s B7 B3
1= ... BS B7
br Bl, B4;

BR4: return;

Var _ We’ve now added new definitions of ‘a’!

Blocks B1,B5,B1,B3

BO: 1 = ...; B5: a = ...;
d = ...; Dominator
Bl: a = ¢(...); br ... B6, BS; Frontier
a = ...;
’ BO
C = ...; Bo: d = ...; U
br ... B2, B5; Bl Bl
B7: b = ...; B2 B3
B2: b = ...; B3 B1
c = ; B8: ¢ = ...;
d = ; br B7; B4 {}
B5 B3
B3: a = ¢(...); BG B7
V = ..
> s B7 B3
1= ... BS B7
br Bl, B4;

BR4: return;

Var _ We’ve now added new definitions of ‘a’!

Blocks B1,B5,B3

BO: 1 = ...; B5: a = ...;
d = ...; Dominator
Bl: a = ¢(...); br ... B6, BS; Frontier
a = ...;
¢ BO
C = ...; Bo: d = ...; U
br ... B2, B5; Bl Bl
B7: b = ...; B2 B3
B2: b = ...; B3 B1
c = ; B8: ¢ = ...;
d = ; br B7; B4 {}
B5 B3
B3: a = ¢(...); BG B7
V = ..
> s B7 B3
1= ... BS B7
br Bl, B4;

BR4: return;

Blocks B1,B5,B3 B2,B7

BO: 1 = ...; B5: a = ...;
d = ...; Dominator
Bl: a = ¢(...); br ... B6, BS; Frontier
a = ...;
¢ BO
C = ...; Bo: d = ...; U
br ... B2, B5; Bl Bl
B7: b = ...; B2 B3
B2: b = ...; B3 B1
c = ; B8: ¢ = ...;
d = ; br B7; B4 {}
B5 B3
B3: a = ¢(...); BG B7
V = ..
> s B7 B3
1= ... BS B7
br Bl, B4;

BR4: return;

Blocks B1,B5,B3 B2,B7

BO: 1 = ...; B5: a = ...;
d = ...; Dominator
Bl: a = ¢(...); br ... B6, BS; Frontier
a = ...;
; BO
C = ...; Bo: d = ...; U
br ... B2, B5; Bl Bl
B7: b = ...; B2 B3
B2: b = ...; B3 B1
c = ; B8: ¢ = ...;
d = ; br B7; B4 {}
B5 B3
B3: a = ¢(...);
B6 B7
b d(...);
Y% . B7 B3
Z <7 B8 B7
i = ...
br ... Bl, B4;

BR4: return;

Blocks B1,B5,B3 B2,B7

BO: 1 = ...; B5: a = ...;
d = ...; Dominator
Bl: a = ¢(...); br ... B6, BS; Frontier
a = ...;
; BO
C = ...; Bo: d = ...; U
br ... B2, B5; Bl Bl
B7: b = ...; B2 B3
B2: b = ...; B3 B1
c = ; B8: ¢ = ...;
d = ; br B7; B4 {}
B5 B3
B3: a = ¢(...);
B6 B7
b d(...);
Y% . B7 B3
Z <7 B8 B7
i = ...
br ... Bl, B4;

BR4: return;

Blocks B1,B5,B3 B2,B7

BO: 1 = ...; B5: a = ...;
d= ..., Dominator
a = ...;
C = ...; Bo: d = ...; 50 U
br ... B2, B5; Bl Bl
B7: b = ...; B2 B3
B2: b = ...; B3 B1
c = ; B8: ¢c = ...;
d = ; br B7; B4 {}
B5 B3
B3: a = ¢(...);
b b(...); B6 B7
v . B7 B3
Z -7 B8 B7
i= ...;
br ... Bl, B4;

BR4: return;

Blocks B1,B5,B3 B2,B7,B3

BO: 1 = ...; B5: a = ...;
d = ...; Dominator
Bl: a = ¢(...); br ... B6, BS; Frontier
b = ¢(...); BO {}
a I Bo: d = ...;
Co= ... Bl Bl
br ... B2, B5; B7: b = ...; B2 B3
B3 Bl
B2: b = ...; B8: ¢ = ...;
C = ...7 br B7; B4 {}
d = ; B5 B3
B B7
B3: a = ¢(...); °
b d(...); B7 B3
Y ’ B8 B7
Z ’
1 = ;

br ... Bl, B4;

BR4: return;

Blocks B1,B5,B3 B2,87,B3,B1

BO: 1 = ...; B5: a = ...;
d = ...; Dominator
Bl: a = ¢(...); br ... B6, BS; Frontier
b = ¢(...); BO {}
a R Bo: d = ...;
Co= ... Bl Bl
br ... B2, B5; B7: b = ...; B2 B3
B3 Bl
B2: b = ...; B8: ¢ = ...;
C = ...7 br B7; B4 {}
d = ; B5 B3
B B7
B3: a = ¢(...); °
b d(...); B7 B3
Y ’ B8 B7
Z ’
1 = ;

br ... Bl, B4;

BR4: return;

Blocks B1,B5,B3 B2,87,B3.B1

m.XuI
B L] L]
5 ~ 7
N ~ M (XN “ “ N N
< = = .~
H © S [~
A . m
+ [| o Il
() M H
M T T Q O T O Q 0O Q
< W o~ o
2 2 2 2 2
rmlu,
) 2
o A/._’
. N « M NS ~
! RSalRS RS RS i S
1 | | N | | | (I
o H
-— T Q O T -+ © O Q QO O T
S N
2 2 2

AL AL AL AL

A~ A~ A~ ~

S—" SN SN N

eeee -
T O U T > N -H

™
M

H
Q

BO:

BR1l:

B2:

B3:

b7 =
c8 =
d9 =

all0 =
bll =
clz2 =
dl3 =
vl4d =
z1lb =
116 =

br

R4 :

B5:

Bo6:

BR7:

B8:

return

al’/l =
dl8 =
br

dl9 =

d20 =
cz2l =
b22 =

c23 =

br B7;

Bo,

() (33

How to convert back to 3 address code from
SSA?

* Can a processor execute phi instructions?

How to convert back to 3 address code from
SSA?

* Can a processor execute phi instructions?
e Just assigh to the new variable in the parent?

Lost copy Issue

Example from https://www.clear.rice.edu/comp512/Lectures/13SSA-2.pdf

Lost copy Issue

i0

|
(BN

il=¢ (10,1i2)
yl=il
i2=i1+1

z3=yl+1

Example from https://www.clear.rice.edu/comp512/Lectures/13SSA-2.pdf

Lost copy Issue

z3=i1+1

Example from https://www.clear.rice.edu/comp512/Lectures/13SSA-2.pdf

Lost copy Issue

i0

|
(BN

il=¢ (10,1i2)
i2=i1+1

z3=i1+1

Example from https://www.clear.rice.edu/comp512/Lectures/13SSA-2.pdf

Lost copy Issue

i0=1
i1=1i0

l

i2=i1+1
i1=i2;

A 4

z3=i1+1

Example from https://www.clear.rice.edu/comp512/Lectures/13SSA-2.pdf

Lost copy Issue

i0=1
i1=1i0

l

i2=i1+1
i1=i2;

A 4

z3=i1+1

Example from https://www.clear.rice.edu/comp512/Lectures/13SSA-2.pdf

Known as the lost-copy problem

I_O St CO py | S S u e there are algorithms for handling this (see book)
i0=1
i1=1i0
l i=1
i2=i1+1
i1=1i2; '
y=i
i=i+1
z3=i1+1 z=y+1

Similar problem called the Swap problem
Example from https://www.clear.rice.edu/comp512/Lectures/13SSA-2.pdf

Let’s back up

* Converting to SSA is difficult!
* Converting out of SSA is difficult!
* Why do we use SSA?

Optimizations using SSA

Constant Propagation

e Perform certain operations at compile time if the values are known

* Flow the information of known values throughout the program

Constant Folding

If values are constant:

x = 128 * 2 * b5;

Constant Folding

If values are constant:

x = 128 * 2 * b5;

x = 1280;

Constant Folding

If values are constant: Using identities

Xx = 128 * 2 * 5; x =2z * 0;

x = 1280;

Constant Folding

If values are constant: Using identities

Xx = 128 * 2 * 5; x =2z * 0;

x = 1280; x = 0;

Constant Folding

If values are constant: Using identities Operations on other data structures

x = 128 * 2 * 5 x =z * 0; x = “CSE” + “211”;

x = 1280; x = 0;

Constant Folding

If values are constant: Using identities Operations on other data structures
x = 128 * 2 * 5; Xx =z * 0; x="“CSE” + “211”;
x = 1280; x = 0; x = “CSE211”;

local to expressions!

Constant Propagation

multiple expressions:

X = 42;
y = xXx + 5;

Constant Propagation

multiple expressions:

X = 42;
y = xXx + 5;

47,

e
|

Constant Propagation

multiple expressions:

X = 42;
y = xXx t+ 5;

47,

e
|

Within a basic block, you can use local value numbering

Constant Propagation

_ _ What about across basic blocks?
multiple expressions:

X = 42;
x = 42; z = 9
v = x + 5; if (<some condition> {
y = 5;
}
else {
Yy = Zy
y = 47 }
W o= V;

To do this, we're going to use a lattice

* An object in abstract algebra

* Unique to each analysis you want to implement
* Kind of like the flow function

A simple lattice

* A set of symbols: {c;, ¢, C3 ...}

 Special symbols:
* Top: T
* Bottom: L

* Meet operator: A

A simple lattice

* A set of symbols: {c;, ¢, C3 ...}

 Special symbols:
* Top: T
* Bottom: L

* Meet operator: A

Lattices are an abstract algebra
construct, with a few properties:

1L Ax=1
TAX=X
Where x is any symbol

A simple lattice

* A set of symbols: {c;, ¢, C3 ...}

 Special symbols:
* Top: T
* Bottom: L

* Meet operator: A

Lattices are an abstract algebra
construct, with a few properties:

1L Ax=1
TAX=X
Where x is any symbol

For each analysis, we get to define symbols
and the meet operation over them.

A Si m p ‘ e ‘attice Lattices are an abstract algebra

construct, with a few properties:

* A set of symbols: {c;, ¢, C3 ...} LAx=1
TAX=X

* Special symbols: Where x is any symbol

* Top: T

e Bottom : L For constant propagation:

take the symbols to be integers
* Meet operator: A
Simple meet operations for integers:
ifc, I=¢:

Ci N\ C_l - J.

else:
GAC=C

Constant propagation

* Map each SSA variable x to a lattice value:

e Value(x) = T if the analysis has not made a judgment
* Value(x) = ¢; if the analysis found that variable x holds value c;
e Value(x) = L if the analysis has found that the value cannot be known

Constant propagation algorithm

Initially:

Assign each SSA variable a value c based on its expression:
e a constant ¢; if the value can be known

e 1 if the value comes from an argument or input

* T otherwise, e.g. if the value comes from a ¢ node

Then, create a “uses” map

This can be done in a single pass

Example: value |

x0 1 + 3 z2 = 1input ())
vl = input () v3 = 5 + z2;
br ...; br ...;

y4 = phi(yl,y3);
wb = x0 + 6;
to = z2 + 7;

HHHaH3WE WS

Example:

x0

br

1 + 3
input () ;

z2 =

br

input () ;
5 + z2;

.
LA 4

Wb
to

z2 + 7;

= phi(yl,y3);
= x0 + 0,

Value {

HHHaH3WE WS

Constant propagation algorithm

worklist based algorithm:

All variables NOT assigned to T get put on a worklist

iterate through the worklist:

For every item n in the worklist, we can look up the uses of n

evaluate each use m over the lattice

Example:

x0 =1 + 3
yl = input();
br ...;

z2 =
= 5 4+ 1;

br

input () ;

.
L 4

Wb
to

z2 + 7;

= phi(yl,y3);
= x0 + 0,

Worklist: [x0, yv1,z2, y3]

Value {

H HH o s

Constant propagation algorithm

for each item in the worklist, evaluate all of it’s uses m over
the lattice (unique to each optimization)

Example: m = n*x

if (Value(n) is L or Value(x) is 1)

Value(m) = 1;
Add m to the worklist if Value(m) has changed;
break;

Example:

x0 =1 + 3
yl = input();
br ...;

z2 =
= 5 4+ 1;

br

input () ;

.
L 4

Wb
to

z2 + 7;

= phi(yl,y3);
= x0 + 0,

Worklist: [x0, yv1,z2, y3]

Value {

H HH o s

Example:

x0 =1 + 3
yl = input();
br ...;

z2 =
= 5 4+ 1;

br

input () ;

.
L 4

Wb
to

z2 + 7;

= phi(yl,y3);
= x0 + 0,

Worklist: [x0, yv1,z2,vy3,t6]

Value {

W HHOOE W

Constant propagation algorithm

evaluate m over the lattice (unique to each optimization)
Example: m = n*x

if (Value(n) is L or V&'UE(X) IS J—) Can we optimize this for special

Value(m) = L; cases?
Add m to the worklist if Value(m) has changed;
break;

Example:

x0 =1 + 3
yl = input();
br ...;

z2 =
= 5 4+ 1;

br

input () ;

.
L 4

Wb

te =

= phi(yl,y3);
= x0 + ©0;
z2 * 0;

Worklist: [x0, yv1,z2, y3]

Value {

H HH o s

Example: value |

x0 1 + 3 z2 = 1input ())
vyl = input () v3 =5 + 1;
br ...; br ...;

v4 = phi(yl,y3);
wb = x0 + ©6;
te = z2 * 0;

Worklist: [x0, yv1,z2, y3] }
Can’t this be done

at the expression level?

H HH o s

Example:

x0 =1 + 3
yl = input();
br ...;

r99 = 0;
z2 = 1input ()
vy3 = 5 + 1;
br -

Wb

te =

= phi(yl,y3);
= x0 + 0,

z2 * r99;

Worklist: [x0, yv1,z2, y3]

Can’t this be done
at the expression level?

Value {

H HH o s

0

Example:

x0 =1 + 3
yl = input();
br ...;

z2 =
= 5 4+ 1;

br

input () ;

.
L 4

Wb
to

z2 + 7;

= phi(yl,y3);
= x0 + 0,

Worklist: [x0, yv1,z2, y3]

Value {

H HH o s

Constant propagation algorithm

evaluate m over the lattice (uniqgue to each optimization)
Example: m = n*x
// continued from previous slide

if (Value(n) has a value and Value(x) has a value)

Value(m) = evaluate(Value(n), Value(x));
Add m to the worklist if Value(m) has changed;
break;

Example:

x0 =1 + 3
yl = input();
br ...;

z2 =
= 5 4+ 1;

br

input () ;

.
L 4

Wb
to

z2 + 7;

= phi(yl,y3);
= x0 + 0,

Worklist: [x0, yv1, yv3,w5]

Value {

H HH o s

Example:

x0 =1 + 3
yl = input();
br ...;

z2 =
= 5 4+ 1;

br

input () ;

.
L 4

WD
to

z2 + 7;

= phi(yl,y3);
= x0 + 06,

Worklist: [x0, yv1, y3]

Value {

H HH o s

Example:

x0 =1 + 3
yl = input();
br ...;

z2 =
= 5 4+ 1;

br

input () ;

.
L 4

WD
to

z2 + 7;

= phi(yl,y3);
= x0 + 06,

Worklist: [x0, yv1, y3]

The elephant in the room

Example:

x0 =1 + 3
yl = input();
br ...;

z2 =
= 5 4+ 1;

br

input () ;

.
L 4

Wb
to

z2 + 7;

= phi(yl,y3);
= x0 + 0,

Worklist: [x0, y1, y3]

Value {

H HH o s

Constant propagation algorithm

evaluate m over the lattice:
Example: m = ¢(x,, x,)

Value(m) = x; A X,

if Value(m) is not T and Value(m) has changed, then add m to the
worklist

Example:

x0 =1 + 3
yl = input();
br ...;

z2 =
= 5 4+ 1;

br

input () ;

.
L 4

Wb
to

z2 + 7;

= phi(yl,y3);
= x0 + 0,

Worklist: [x0, y1, y3]

Value {

H H oo W o

x0 =

br ...;

+ +

N W

Worklist: [x0, y1, y3]

z2 =
= 5 4+ 1;

br

input () ;

.
L 4

Wb
to

z2 + 7;

= phi(yl,y3);
= x0 + 0,

Value {

H HH o s

Constant propagation algorithm

evaluate m over the lattice:
Example: m = ¢(x,, x,)

Value(m) = x; A X,

if Value(m) is not T and Value(m) has changed, then add m to the
worklist

Constant propagation algorithm

evaluate m over the lattice:

Issue here:
potentially assigning

Example: m = ¢(x;, x;) a value that might
not hold

Value(m) = x; A X,

if Value(m) is not T and Value(m) has changed, then add m to the
worklist

Example loop:

y3 = 1;
x0 = 17;
br ...;

x1:17

x1

phi (x0,x2) ;
x1 + v3;

Example loop:

v3 = 0;
x0 = 17; . .
by . optimistic analysis: Assume unknowns
Y will be the target value for the optimization.

Correct later

pessimistic analysis: Assume unknowns will NOT
x1 = phi (x0,x2) ; be the target value for the optimization.

x2 = x1 + y3;

Pros/cons?

A Si m p ‘ e ‘attice Lattices are an abstract algebra

construct, with a few properties:

* A set of symbols: {c;, ¢, C3 ...} LAx=1
TAX=X

* Special symbols: Where x is any symbol

* Top: T

e Bottom : L For Loop unrolling

take the symbols to be integers
* Meet operator: A
Simple meet operations for integers:
ifc, I=¢:

Ci N C_l - J.

else:
GAC=C

A Si m p ‘ e ‘attice Lattices are an abstract algebra

construct, with a few properties:

* A set of symbols: {c;, ¢, C3 ...} LAx=1
TAX=X

* Special symbols: Where x is any symbol

*Top: T :
. Bottom : L For Loop unrolling
take the symbols to be integers
* Meet operator: A representing the GCD

¢\ ¢;=GCD(¢;)

Another lattice

* Given loop code:
* |Is it possible to unroll the loop N times?

x0

x1

|
D
~e

4

X2

x3 = phi (x0,x1,x2);

(
For(i = 0

}

;1 < x3; 14+4)

{

Another lattice

* Value ranges

Track if 1, 7,k are guaranteed
to be between 0 and 1024.

Meet operator takes a union
of possible ranges.

int * x = 1int[1024];
x[1] = x[73] + x[k];

Have a nice weekend!

* See you in office hours or in a week!

