
CSE211: Compiler Design
Nov. 17, 2023

• Topic: SMP parallelism
• Candidate DOALL loops
• Safety checking

• Discussion questions:
• Do compilers automatically make your

code parallel?
• What are some difficulties in SMP

parallelism vs. ILP?

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Announcements

• Homework 3 is out
• Due on Nov. 29 (2 weeks to do it)
• Get a partner ASAP

• Start thinking about 2nd paper
• Getting close to the deadline to getting it approved

• Approved in ~1 week (Nov. 27)!
• Presentations must be ready by Dec. 6
• Deadline is to get final project APPROVED, not start

brainstorming

• One more homework

Announcements

• Grading:
• Working on grading HW 2

Review SMP parallelism

Limits of ILP?

• Pipelines?
• Only so much meaningful work to do per-

stage.
• Stage timing imbalance
• Staging overhead

• Superscalar width?
• Hardware checking becomes prohibitive:

Collectively the power consumption, complexity and gate
delay costs limit the achievable superscalar speedup to
roughly eight simultaneously dispatched instructions.

https://en.wikipedia.org/wiki/Superscalar_processor#Limitations

https://en.wikipedia.org/wiki/CPU_power_dissipation

K. Rupp, “40 Years of Mircroprocessor Trend Data,” https://www. karlrupp.net/2015/06/40-years-of-microprocessor-trend-data, 2015.

• Frequency scaling: Dennard’s scaling
• Mostly agreed that this is over

• Number of transistors: Moore’s law
• On its last legs?
• Intel delayed 7nm chips (out now?). Apple has a 5nm. Roadmaps go to 3nm,

or 1.8nm

• Chips are not increasing in raw frequency, and space is becoming
more valuable

Trends

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines
• Can provide (close to) linear speedups for

parallel applications

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines
• Can provide (close to) linear speedups for

parallel applications

• Cons: difficult to program!

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

SMP systems are widespread

• Laptops
• My laptop has 8 cores
• Most have at least 2
• New Macbook: 16 core

• Workstations:
• 2 - 64 cores (x86)
• ARM racks: 128

• Phones:
• iPhone: 2 big cores, 4 small cores
• Samsung: 1 + 3 + 4

*https://www.crn.com/news/components-
peripherals/ampere-s-new-128-core-altra-cpu-targets-
intel-amd-in-the-cloud

Can compilers help?

• Much like ILP: convert sequential streams of computation in to SMP
parallel code.

• Much harder constraints
• Correctness
• Performance

• For loops are a good target for compiler analysis

= = = = = =

For loops are great candidates for SMP
parallelism

for (int i = 0; i < 6; i++) {
 a[i] = b[i] + c[i]
}

+ + + + + +

b

c

a

core 1

= = = = = =

For loops are great candidates for SMP
parallelism

for (int i = 0; i < 6; i++) {
 a[i] = b[i] + c[i]
}

+ + + + + +

b

c

a

core 1 core 2

= = = = = =

For loops are great candidates for SMP
parallelism

for (int i = 0; i < 6; i++) {
 a[i] = b[i] + c[i]
}

+ + + + + +

b

c

a

core 1 core 2 core 3

SMP Parallelism in For Loops

• Given a nest of For loops, can we make the outer-most loop parallel?
• Safely
• Efficiently

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays
• Only side-effects are array writes
• Array bases are disjoint and constant
• Bounds and array indexes are a function of loop variables, input variables and

constants*
• Loops increment by 1 and start at 0

If the bounds and indexes are affine functions, then more analysis is possible, see dragon book

SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays
• Only side-effects are array writes
• Array bases are disjoint and constant
• Bounds and array indexes are a function of loop variables, input variables and

constants*
• Loops Increment by 1 and start at 0

for (int i = 0; i < dim1; i++) {
 for (int j = 0; j < dim3; j++) {
 for (int k = 0; k < dim2; k++) {
 a[i][j] += b[i][k] * c[k][j];
 }
 }
}

SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int i = 2; i < 100; i+=3) {
 a[i] = c[i + 128];
}

SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int i = 2; i < 100; i+=3) {
 a[i] = c[i + 128];
}

Make new loop bounds:
i = j

SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int j = 0; j < 32; j+=1) {
 a[j*3+2] = c[j*3+2 + 128];
}

Make new loop bounds:
i = j*3 + 2

subtract by constant to start at 0

SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int j = 0; j < 32; j+=1) {
 a[3*j + 2] = c[(3*j + 2) + 128];
}

for (int i = 2; i < 100; i+=3) {
 a[i] = c[i + 128];
}

SMP Parallelism in For Loops

• Given a nest of candidate For loops, determine if we can we make the
outer-most loop parallel?
• Safely
• efficiently

• Criteria: every iteration of the outer-most loop must be independent
• The loop can execute in any order, and produce the same result

• Such loops are called “DOALL” Loops. The can be flagged and handed
off to another pass that can finely tune the parallelism (number of
threads, chunking, etc)

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

• How do we check this?
• If the property doesn’t hold then there exists 2 iterations, such that if they are

re-ordered, it causes different outcomes for the loop.

• Write-Write conflicts: two distinct iterations write different values to the
same location

• Read-Write conflicts: two distinct iterations where one iteration reads from
the location written to by another iteration.

Safety Criteria

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

First example: write-write conflict

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

First example: write-write conflict

Calculate index based on i

Safety Criteria

Computation to store in the memory location

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

First example: write-write conflict

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for two distinct iterations:
ix != iy
Check:
index(ix) != index(iy)

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

First example: write-write conflict

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for two distinct iterations:
ix != iy
Check:
index(ix) != index(iy)

Because we start at 0 and increment by 1, we can use i to refer
to loop iterations

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

First example: write-write conflict

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

Why?
Because if
index(ix) == index(iy)
then:
a[index(ix)] will equal
either loop(ix) or loop(iy)
depending on the order

for two distinct iterations:
ix != iy
Check:
index(ix) != index(iy)

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

First example: write-write conflict

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

for (i = 0; i < 128; i++) {
 a[i]= i*2;
}

Examples:

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

for (i = 0; i < 128; i++) {
 a[i]= i*2;
}

for (i = 0; i < 128; i++) {
 a[i%64]= i*2;
}

Examples:

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
 a[write_index(i)] = a[read_index(i)] + loop(i);
}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy)

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
 a[write_index(i)] = a[read_index(i)] + loop(i);
}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy)

Why?

if ix iteration happens first, then
iteration iy reads an updated value.

if iy happens first, then it reads the
original value

Examples:

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

Examples:

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

for (i = 0; i < 128; i++) {
 a[i]= a[0]*2;
}

Examples:

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

for (i = 0; i < 128; i++) {
 a[i]= a[0]*2;
}

for (i = 1; i < 128; i++) {
 a[i]= a[0]*2;
}

Examples:

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

for (i = 0; i < 128; i++) {
 a[i]= a[0]*2;
}

for (i = 0; i < 128; i++) {
 a[i%64]= a[i]*2;
}

for (i = 1; i < 128; i++) {
 a[i]= a[0]*2;
}

Examples:

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

for (i = 0; i < 128; i++) {
 a[i]= a[0]*2;
}

for (i = 0; i < 128; i++) {
 a[i%64]= a[i]*2;
}

for (i = 1; i < 128; i++) {
 a[i]= a[0]*2;
}

for (i = 0; i < 128; i++) {
 a[i%64]= a[i+64]*2;
}

Automation?

• We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
write_index(ix) == write_index(iy)
write_index(ix) == read_index(iy)

write-write conflict
read-write conflict

Ask if these constraints are satisfiable (if so, it is not safe to parallelize)

Automation?

• We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix == iy
ix == iy

Automation?

• We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix == iy
ix == iy

We can feed these constraints to an SMT Solver!

SMT Solver

• Satisfiability Modulo Theories (SMT)
• Generalized SAT solver

• Solves many types of constraints over many domains
• Integers
• Reals
• Bitvectors
• Sets

• Complexity bounds are high (and often undecidable). In practice, they
work pretty well

Microsoft Z3

• State-of-the-art

• Python bindings

• Tutorials:
• Python: https://ericpony.github.io/z3py-tutorial/guide-examples.htm
• SMT LibV2: https://rise4fun.com/z3/tutorial

https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://rise4fun.com/z3/tutorial

Automation?

• We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix == iy
ix == iy

We can feed these constraints to an SMT Solver!

Another example:

for (i = 0; i < 128; i++) {
 a[i%64]= a[i]*2;
}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix % 64 == iy % 64

Write-write

Another example:

for (i = 0; i < 128; i++) {
 a[i%64]= a[i]*2;
}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix % 64 == ?

Write-read?

Another example:

for (i = 0; i < 128; i++) {
 a[i%64]= a[i+64]*2;
}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix % 64 == ?

Write-read?Write-write?

Another example:

for (i = 0; i < 128; i++) {
 a[i%64]= a[i+64]*2;
}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix % 64 == iy + 64

Write-read

General formula:
for (int i0 = init0; i0 < bound0(); i0++) {

 for (int i1 = init1(i0); i1 < bound1(i0); i1++) {

 ...

 for (int iN = initN(i0, i1, ...); iN < boundN(i0, i1 ...); iN++) {
 write(a, write_index(i0, i1 .. iN))
 read(a, read_index(i0, i1 .. iN));

 }

 }

}

General formula:
for (int i0 = init0; i0 < bound0(); i0++) {

 for (int i1 = init1(i0); i1 < bound1(i0); i1++) {

 ...

 for (int iN = initN(i0, i1, ...); iN < boundN(i0, i1 ...); iN++) {
 write(a, write_index(i0, i1 .. iN))
 read(a, read_index(i0, i1 .. iN));

 }

 }

}
1. Create two variables for each loop variable: i0x, i0y, i1x, i1y ...
Set outer loop: i0x != i0y

2. Constrain them to be inside their bounds:
for w in from (0,N): iwx,y >= initw(...), iwx,y < boundN(...)

3. Enumerate all pairs of potential write-write conflicts:
check: write_index(i0x ,i1x ...) == write_index (i0y ,i1y ...)

4. Do the same for write-read conflicts

General formula:
for (int i0 = init0; i0 < bound0(); i0++) {

 for (int i1 = init1(i0); i1 < bound1(i0); i1++) {

 ...

 for (int iN = initN(i0, i1, ...); iN < boundN(i0, i1 ...); iN++) {
 write(a, write_index(i0, i1 .. iN))
 read(a, read_index(i0, i1 .. iN));

 }

 }

}

What if we want
to parallelize
an inner loop?

1. Create two variables for each loop variable: i0x, i0y, i1x, i1y ...
Set outer loop: i0x != i0y

2. Constrain them to be inside their bounds:
for w in from (0,N): iwx,y >= initw(...), iwx,y < boundN(...)

3. Enumerate all pairs of potential write-write conflicts:
check: write_index(i0x ,i1x ...) == write_index (i0y ,i1y ...)

4. Do the same for write-read conflicts

Are data races ever okay?

• Thoughts?

Are data races ever okay?

• Consider this program:

int x = 0;
for (int i = 0; i < 1024; i++) {
 int tmp = *(&x);
 tmp += 1;
 *(&x) = tmp;
}

What can go wrong if we run the loop in parallel?

Horrible data races in the real world

Therac 25: a radiation therapy machine
• Between 1987 and 1989 a software bug caused 6 cases where

radiation was massively overdosed

• Patients were seriously injured and even died.

• Bug was root caused to be a data race.

• https://en.wikipedia.org/wiki/Therac-25

Horrible data races in the real world

2003 NE power blackout
• second largest power outage in history: 55 million people were

effected

• NYC was without power for 2 days, estimated 100 deaths

• Root cause was a data race

• https://en.wikipedia.org/wiki/Northeast_blackout_of_2003

But checking for data conflicts is hard...

• Tools are here to help (Professor Flanagan is famous in this area)

• My previous group:
• “Dynamic Race Detection for C++11” Lidbury and Donaldson
• Scalable (complete) race detection

• Firefox has ~40 data races
• Chromium has ~6 data races

Moving on to DSLs

Shifting our focus back to a single core

• Why?

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Shifting our focus back to a single core

• Why?

Shifting our focus back to a single core

• Why?

Shifting our focus back to a single core

• We need to consider single
threaded performance

• Good single threaded performance
can enable better parallel
performance
• Memory locality is key to good

parallel performance.

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Transforming Loops

• Locality is key for good (parallel) performance:

• What kind of locality are we talking about?

Transforming Loops

• Locality is key for good parallel performance:

• Two types of locality:
• Temporal locality
• Spatial locality

r1 = a[2];
...
r2 = a[2];

temporal locality

Transforming Loops

• Locality is key for good parallel performance:

• Two types of locality:
• Temporal locality
• Spatial locality

r1 = a[2];
...
r2 = a[3];

spatial locality

how far apart can memory locations be?

Transforming Loops

• Locality is key for good (parallel) performance:

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

good data locality: cores will
spend most of their time accessing
private caches

Transforming Loops

• Locality is key for good (parallel) performance:

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Bad data locality: cores will
pressure and thrash shared memory
resources

How multi dimensional arrays are stored:

How multi dimensional arrays are stored:

Row major

How multi dimensional arrays are stored:

Row major

How multi dimensional arrays are stored:

Row major

How multi dimensional
arrays are stored:

Column major?
Fortran
Matlab
R

How multi dimensional
arrays are stored:

Column major?
Fortran
Matlab
R

How multi dimensional arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[x,y];
x2 = a[x, y+1];

say x == y == 0

How multi dimensional arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[x,y];
x2 = a[x, y+1];

unrolled row major: still has locality

How multi dimensional arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[x,y];
x2 = a[x, y+1];

How multi dimensional
arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[x+1,y];
x2 = a[x+1, y+1];

unrolled
column
major:
Bad locality

How multi dimensional arrays are stored:

good pattern for column major
bad pattern for row major

x1 = a[x,y];
x2 = a[x+1, y];

say x == y == 0

How multi dimensional arrays are stored:

row major unrolled: bad spatial locality

good pattern for column major
bad pattern for row major

x1 = a[x,y];
x2 = a[x+1, y];

How multi dimensional
arrays are stored:

good pattern for column major
bad pattern for row major

x1 = a[x,y];
x2 = a[x+1, y];

unrolled
column
major:
good locality

How much does this matter?

for (int x = 0; x < x_size; x++) {
 for (int y = 0; y < y_size; y++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

for (int y = 0; y < y_size; y++) {
 for (int x = 0; x < x_size; x++) {
 a[x,y] = b[x,y] + c[x,y];
 }
}

which will be faster?
by how much?

Demo

Next class

• Topics:
• Restructuring loops

• Remember:
• Homework 2 due tomorrow
• Midterm due on Friday
• Office hours tomorrow 3-5

