CSE211: Compiler Design

Nov. 17/, 2023

* Topic: SMP parallelism
e Candidate DOALL loops
 Safety checking

* Discussion questions:

* Do compilers automatically make your
code parallel?

* What are some difficulties in SMP
parallelism vs. ILP?

Cco C1 C2 C3
L1 L1 L1 L1
cache cache cache cache
v i v i
L2 cache
DRAM

Announcements

e Homework 3 is out

 Due on Nov. 29 (2 weeks to do it)
* Get a partner ASAP

e Start thinking about 2" paper

* Getting close to the deadline to getting it approved
* Approved in ~1 week (Nov. 27)!
* Presentations must be ready by Dec. 6

e Deadline is to get final project APPROVED, not start
brainstorming

* One more homework

Announcements

* Grading:
* Working on grading HW 2

Review SMP parallelism

Limits of ILP?

* Pipelines?
* Only so much meaningful work to do per-
stage.
e Stage timing imbalance
* Staging overhead

e Superscalar width?
* Hardware checking becomes prohibitive:

Collectively the power consumption, complexity and gate
delay costs limit the achievable superscalar speedup to
roughly eight simultaneously dispatched instructions.

https://en.wikipedia.org/wiki/Superscalar_processoritLimitations

Instruction Fetch

Instruction Decode

Register Fetch
ID

Execute
Address Calc.

EX

Memory Access

MEM

ai/4

Next SEQ PC

RS1

RS2

X3/ail
1

Next SEQ PC

Next PC —
—l—o =
c'—‘
>

Waw / x3

am / Waw

!}

Write Back

WB

https://en.wikipedia.org/wiki/CPU_power_dissipation

107 o Number'of Logical Coresv @
e Transistors (thousands) g ¢
1 O6 » Typical Power, (Watts) 'o::. i
a Frequency (MHz) .‘; oo
105 ¢ Single Thread Perf (Specint x 1k) '-._‘.,_'_._: '
X o dt » ¢
09“. ’ ¢ ‘00 :’ "
4 ooae 0
10 e .f " R N
R VT R TV W
103 o0 &, QQA“:‘LA A
° 2IVES P
1 02 @ R | ¢ Laaw **}#E:&#**f: # *lt
A *
o A:: *‘* **;: }*: L e _ - .. l‘
101 = T it""'.'i- -
g X 4 : x Tk) * * = .
L A x Cl]
100 - == - EEE E E EE— .
1970 1980 1990 2000 2010

K. Rupp, “40 Years of Mircroprocessor Trend Data,” https://www. karlrupp.net/2015/06/40-years-of-microprocessor-trend-data, 2015.

Trends

* Frequency scaling: Dennard’s scaling
* Mostly agreed that this is over

* Number of transistors: Moore’s law
* On its last legs?

* Intel delayed 7nm chips (out now?). Apple has a 5nm. Roadmaps go to 3nm,
or 1.8nm

* Chips are not increasing in raw frequency, and space is becoming
more valuable

Symmetric Multiprocessing (SMP)

e Collection of “identical” cores

» Shared memory (access to all system
resources)

* Managed by a single OS

* Pros:
* Simple(r) HW design
e Great for multitasking machines

Cco C1 C2 C3
L1 L1 L1 L1
cache cache cache cache
v i v i
L2 cache

A4

DRAM

Symmetric Multiprocessing (SMP)

Mm
* Collection of “identical” cores @ C (’ F. 8
* Shared memory (access to all system
resources) co C1 C2 C3

* Managed by a single OS

y \ 4 y

L1 L1 L1 L1
cache cache cache cache
* Pros: i i
* Simple(r) HW design
L2 cache

* Great for multitasking machines

A4

DRAM

Symmetric Multiprocessing (SMP)

|H

e Collection of “identical” cores

» Shared memory (access to all system
resources)

* Managed by a single OS

* Pros:
* Simple(r) HW design
e Great for multitasking machines

e Can provide (close to) linear speedups for
parallel applications

O PyTorch

Cco C1 C2 C3
L1 L1 L1 L1
cache cache cache cache
v i v i
L2 cache

A4

DRAM

Symmetric Multiprocessing (SMP)

e Collection of “identical” cores

» Shared memory (access to all system
resources)

* Managed by a single OS

* Pros:
* Simple(r) HW design
e Great for multitasking machines

e Can provide (close to) linear speedups for
parallel applications

* Cons: difficult to program!

Cco C1 C2 C3
L1 L1 L1 L1
cache cache cache cache
v i v i
L2 cache

A4

DRAM

SMP systems are widespread

* Laptops
* My laptop has 8 cores
* Most have at least 2
* New Macbook: 16 core

* Workstations:
e 2 -64 cores (x86)
e ARM racks: 128

* Phones:
* iPhone: 2 big cores, 4 small cores
e Samsung:1+3+4

*https://www.crn.com/news/components-
peripherals/ampere-s-new-128-core-altra-cpu-targets-
intel-amd-in-the-cloud

Can compilers help?

* Much like ILP: convert sequential streams of computation in to SMP
parallel code.

e Much harder constraints

* Correctness
* Performance

* For loops are a good target for compiler analysis

For loops are great candidates for SMP
parallelism

. . core 1
for (int 1

= 0; 1 < 6; 1++) |
ali] = b[i] [1]

+ cf1

}

For loops are great candidates for SMP
parallelism

, , core 1l core 2
for (i1nt 1

= 0; 1 < 6; 1i++) {
ali] = b[i] [1]

+ cf1

}

For loops are great candidates for SMP
parallelism

. . corel core 2 core 3
for (i1nt 1

= 0; 1 < 6; 1i++) {
ali] = b[i] [1]

+ cfi

}

SMP Parallelism in For Loops

* Given a nest of For loops, can we make the outer-most loop parallel?
e Safely
 Efficiently

* We will consider a special type of for loop, common in scientific
applications:
* Operates on N dimensional arrays
Only side-effects are array writes
Array bases are disjoint and constant

* Bounds and array indexes are a function of loop variables, input variables and
constants™

* Loops increment by 1 and startat O

If the bounds and indexes are affine functions, then more analysis is possible, see dragon book

SMP Parallelism in For Loops

* We will consider a special type of for loop, common in scientific
applications:

* Operates on N dimensional arrays
Only side-effects are array writes
* Array bases are disjoint and constant

Bounds and array indexes are a function of loop variables, input variables and
constants™

Loops Increment by 1 and start at O

for (int 1
for (int

= i < diml; i++) {
J

for (nt
J

O Jj < dim3; J++) |
= 0; k < dim2; k++) {
] += bli][k] * cl[k]lI[J];

SMP Parallelism in For Loops

* We will consider a special type of for loop, common in scientific
applications:
e Operates on N dimensional arrays (only side-effects are array writes)
* Array bases are disjoint and constant

* Bounds, indexes are a function of loop variables, input variables and constants
* Loops Increment by 1 and startat 0

for (int 1 = 2; 1 < 100; 1+=3) {
ali] = cl[1 + 128];

SMP Parallelism in For Loops

* We will consider a special type of for loop, common in scientific
applications:
e Operates on N dimensional arrays (only side-effects are array writes)
* Array bases are disjoint and constant

* Bounds, indexes are a function of loop variables, input variables and constants
* Loops Increment by 1 and startat 0

Make new loop bounds:
i=]j
for (int 1 = 2; 1 < 100; 1+=3) {
ali] = c[1 + 128];

SMP Parallelism in For Loops

* We will consider a special type of for loop, common in scientific
applications:
e Operates on N dimensional arrays (only side-effects are array writes)
* Array bases are disjoint and constant

* Bounds, indexes are a function of loop variables, input variables and constants
* Loops Increment by 1 and startat 0

Make new loop bounds:
i=j*3+2
for (int 73 = 0; 7 < 32; J+=1) {
a[j*3+2] = c[j*3+2 + 128];
} subtract by constant to start at 0

SMP Parallelism in For Loops

* We will consider a special type of for loop, common in scientific
applications:

e Operates on N dimensional arrays (only side-effects are array writes)
* Array bases are disjoint and constant

* Bounds, indexes are a function of loop variables, input variables and constants
* Loops Increment by 1 and startat 0

for (int i = 2; i < 100; i+=3) { for (int 3 = 0; § < 32; J+=1) f{
a[i] = c[i + 128]; a[3*+2] = c[(3*+2) + 128];
} }

SMP Parallelism in For Loops

* Given a nest of candidate For loops, determine if we can we make the
outer-most loop parallel?

» Safely
 efficiently

* Criteria: every iteration of the outer-most loop must be independent
* The loop can execute in any order, and produce the same result

* Such loops are called “DOALL” Loops. The can be flagged and handed
off to another pass that can finely tune the parallelism (number of
threads, chunking, etc)

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent

e How do we check this?

* If the property doesn’t hold then there exists 2 iterations, such that if they are
re-ordered, it causes different outcomes for the loop.

 Write-Write conflicts: two distinct iterations write different values to the
same location

e Read-Write conflicts: two distinct iterations where one iteration reads from
the location written to by another iteration.

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

First example: write-write conflict

for (1 = 0; 1 < size; i++) {
alindex(1)] = loop(1);

}

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

First example: write-write conflict
for (1 = 0; 1 < size; i++) {

alindex(1)] = loop(1);

}

Calculate index based on i

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

First example: write-write conflict

for (1 = 0; 1 < size; i++) {
alindex(1)] = loop(1);

}

Computation to store in the memory location

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

First example: write-write conflict

for (1 = 0; 1 < size; i++) {
alindex(1)] = loop(1);

for two distinct iterations:

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

First example: write-write conflict

for (1 = 0; 1 < size; i++) {
alindex(1)] = loop(1);
}
for two distinct iterations:
i, =1 Because we start at 0 and increment by 1, we can use i to refer
Check: ! to loop iterations

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

First example: write-write conflict

for (1 = 0; 1 < size; i++) {
alindex(1)] = loop(1);
} Why?
o _ Because if

for two distinct iterations: index (i.) == index (i.)
1o 1= 1y then: '
Check: alindex (i,)] will equal
index (1,) != 1ndex(1y)

either Loop (i,) or loop(i,)
depending on the order

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

for (1 = 0; 1 < size; i++) {
alindex(1)] = loop(1);

}

Examples:

for (1 = 0; 1 < 128; 1++) {
ali]= 1*2;

J

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

for (1 = 0; 1 < size; i++) {
alindex(1)] = loop(1);
}
Examples:
for (1 = 0; 1 < 128; 1i1++) { for (1 = 0; 1 < 128; 1i++) {
ali]= 1*2; ali%s04d]= 1*2;

J }

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent

for (1 = 0; 1 < size; 1i++) {
alwrite i1ndex(1)] = al[read i1ndex(1)] + loop(1);

Read-write conflicts:

for two distinct iteration variables:
i, =i,
Check:

write index (i) != read index(i,)

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent

for (1 = 0; 1 < size; 1i++) {
alwrite i1ndex(1)] = al[read i1ndex(1)] + loop(1);

Why?
Read-write conflicts:

if 1, iteration happens first, then

for two distinct iteration variables: iteration i, reads an updated value.
i, !'= 1,

Check: if 1, happens first, then it reads the
write index(i,) != read index (iy) original value

Examples:

1< 128; 1i++) |

for (1 = 0;
alil]l*2;

ali]l=

}

Examples:

for (1 = 0; 1 < 128; 1++) {
ali]l= al1]*2;

for (1 = 0; 1 < 128; 1i++) {
ali]l]= al[0]*2;

Examples:

for (1 = 0; 1 < 128; 1++) {
ali]l= al1]*2;

for (1 = 0; 1 < 128; 1++) { for (1
alil= al[0]*2; ali]=

1; 1 < 128; 1i++) {
al0]*2;

Examples:

for (1 = 0; 1 < 128; 1++) {
ali]l= al1]*2;

for (1 = 0; 1 < 128; i++) { for (i = 1; 1 < 128; i++) {
ali]l= al[0]*2; ali]= al[0]*2;

} }

for (1 = 0; 1 < 128; 1i1++) {
al[i1%64]= ali]*2;

Examples:

for (1 = 0; 1 < 128; 1++) {
ali]l= al1]*2;

for (1 = 0; 1 < 128; 1i++) { for (1 = 1; 1 < 128; i++) {
ali]l= al[0]*2; ali]l= a[0]*2;

} }

for (1 = 0; 1 < 128; 1i1++) { for (1 = 0; 1 < 128; 1i++) {
ali%so0d]= al[li]*2; ali1%s04d]= a[i1+64]*2

Automation?

* We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (1 = 0; 1 < 128; 1i++) {
alil= al1]l*2;
}
twointegers: 1, != 1,
i, >=
i, < 128
i, >=
i, < 128
write-write conflict write index(iy) == write index(iy)
read-write conflict write index(i,) == read index (i)

Ask if these constraints are satisfiable (if so, it is not safe to parallelize)

Automation?

* We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

1 < 128; i++) |

for (1 = 0;
alil]*2;

ali]=
}
two integers: i, !'= 1i
i, >= 0
< 128
>= 0
< 128

X

KK b

i

b

Automation?

* We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

1< 128; i++) |

for (1 = 0;
alil]*2;

ali]l=

two integers: i, !'= 1i
1, >= 0
< 128
>= 0
< 128

Y

X

KK b

i
Il
Il
|_|

X
|
|

|_|

We can feed these constraints to an SMT Solver!

SMT Solver

» Satisfiability Modulo Theories (SMT)

 Generalized SAT solver

* Solves many types of constraints over many domains
* Integers
* Reals
* Bitvectors
* Sets

* Complexity bounds are high (and often undecidable). In practice, they
work pretty well

Microsoft Z3

* State-of-the-art
* Python bindings

e Tutorials:

* Python: https://ericpony.github.io/z3py-tutorial/guide-examples.htm
e SMT LibV2: https://rise4fun.com/z3/tutorial

https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://rise4fun.com/z3/tutorial

Automation?

* We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

1< 128; i++) |

for (1 = 0;
alil]*2;

ali]l=

two integers: i, !'= 1i
1, >= 0
< 128
>= 0
< 128

Y

X

KK b

i
Il
Il
|_|

X
|
|

|_|

We can feed these constraints to an SMT Solver!

Another example:

two integers: i, !'= 1i

1

1
1
1
1

X

X

KK

b

Write-write

>= 0

< 128

>= 0

< 128

s 064 == 1,

o
C)

Y

64

Another example:

Write-read?

twointegers: 1, != 1,

i, >= 0
i, < 128
} i, >= 0
i
i

KK

< 128
S 64 == 7

b

Another example:

twointegers: 1, != 1,

< 128; 1++) A i>= 0

i, < 128
} i, >= 0
i
i

KK

< 128
$ 64 == 7

b

Write-write? Write-read?

Another example:

twointegers: 1, != 1,

< 128; 1++) A i>= 0

i, < 128

} i, >= 0
1

i

KK

< 128
5 64 == 1, + 64

b

Write-read

General formula:

for (int 10 = init0; i0 < boundO(); 10++) {

for (int 11 = initl(10); 11 < boundl (10); 11++) {

for (int 1IN = initN(i0, 11, ...); 1N < boundN (10, 11
write(a, write index (10, 1l .. 1N))
read(a, read index(i0, 11 .. 1iN));

.

iN++)

General formula:

for (int 10 = init0; i0 < boundO(); 10++) {

for (int 11 = initl(10); 11 < boundl (10); 11++) {

for (int iN = initN(i0, i1, ...); iN < boundN(i0O, il L) AN++)
write(a, write index (10, 1l .. 1N))
read(a, read index(i0, 11 .. 1iN));
}
} 1. Create two variables for each loop variable: 10,, 10,, 1i1,, 1il,
} Set outer loop: 10, != 10,

2. Constrain them to be inside their bounds:

for w in from (O,N):iw >= initw(...), 1w

Xry Xry

3. Enumerate all pairs of potential write-write conflicts:

4. Do the same for write-read conflicts

check: write index(i0O, ,1il, ...) == write index (i0, ,11,

< boundN(...)

General formula:

for (int 10 = init0; i0 < boundO(); 10++) {

for (int 11 = initl(10); 11 < boundl (10); 11++) {

for (int iN = initN(i0, i1, ...); iN < boundN(i0O, il L) AN++)
write(a, write index (10, 1l .. 1N))
read(a, read index(i0, 11 .. 1iN));
}
} 1. Create two variables for each loop variable: 10,, 10,, 1i1,, 1il,
} Set outer loop: 10, != 10,

2. Constrain them to be inside their bounds:

What if we want for w in from (0,N):iw,,, >= initw(...), 1w, , < boundN(...)
to parallelize
an inner loop? 3. Enumerate all pairs of potential write-write conflicts:

check: write index(i0O, ,1il, ...) == write index (i0, ,11,

4. Do the same for write-read conflicts

Are data races ever okay?

* Thoughts?

Are data races ever okay?

* Consider this program:

int x = 0;

for (int 1 = 0; 1 < 1024; i++) |
int tmp = *(&x);
tmp += 1;
*(&x) = tmp;

What can go wrong if we run the loop in parallel?

December 28, 2011
Volume 9, issue 12

PDF

You Don’t Know Jack about Shared
Variables or Memory Models

Data races are evil.

Hans-). Boehm, HP Laboratories, Sarita V. Adve, University of lllinois at Urbana-

Champaign

The final count
can also be too high. Consider a case in which the count is bigger than a machine
word. To avoid dealing with binary numbers, assume we have a decimal machine
in which each word holds three digits, and the counter x can hold six digits. The
compiler translates x++ to something like

tmp hi = x _hi;
tmp lo = x_lo;
(tmp_hi, tmp lo)++;
x _hi = tmp hi;

X lo = tmp_lo;

Now assume that x
is 999 (i.e., x_ hi = 0,and x_1o = 999), and two threads, a blue and a red one,
each increment x as follows (remember that each thread has its own copy of the
machine registers tmp hi and tmp_ 1lo):

tmp hi = x hi;
tmp lo = x lo;

(tmp hi, tmp lo)++; //tmp hi =1, tmp lo = 0

X hi = tmp hi; //x hi =1, x 1o = 999, x = 1999
X++; //red runs all steps
//x_ hi = 2, x 1o =0, x = 2000

»

|_l

o]

I

tmp lo; //x hi =2, x 1o =0

Horrible data races in the real world

Therac 25: a radiation therapy machine

* Between 1987 and 1989 a software bug caused 6 cases where
radiation was massively overdosed

* Patients were seriously injured and even died.
* Bug was root caused to be a data race.

* https://en.wikipedia.org/wiki/Therac-25

Horrible data races in the real world

2003 NE power blackout

e second largest power outage in history: 55 million people were
effected

* NYC was without power for 2 days, estimated 100 deaths
* Root cause was a data race

* https://en.wikipedia.org/wiki/Northeast blackout of 2003

But checking for data conflicts is hard...

* Tools are here to help (Professor Flanagan is famous in this area)

* My previous group:
* “Dynamic Race Detection for C++11” Lidbury and Donaldson

 Scalable (complete) race detection

* Firefox has ~40 data races
e Chromium has ~6 data races

Moving on to DSLs

Shifting our focus back to a single core

* Why?

Cco C1 C2 C3
L1 L1 L1 L1
cache cache cache cache
I '

L2 cache

DRAM

Shifting our focus back to a single core

* Why?

Shifting our focus back to a single core

* Why?

1 Introduction

“You can have a second computer once you’ve
shown you know how to use the first one.”

—Paul Barham

scalable system cores | twitter | uk-2007-05
GraphChi [12] 2 3160s 6972s
Stratosphere [8] 16 2250s -
X-Stream [21] 16 1488s -
Spark [10] 128 857s 1759s
Giraph [10] 128 596s 1235s
GraphLab [10] 128 249s 833s
GraphX [10] 128 419s 462s
Single thread (SSD) 1 300s 651s
Single thread (RAM) 1 275s -

Table 2: Reported elapsed times for 20 PageRank it-
erations, compared with measured times for single-
threaded implementations from SSD and from RAM.
GraphChi and X-Stream report times for 5 Page-
Rank iterations, which we multiplied by four.

Shifting our focus back to a single core

* We need to consider single
threaded performance

e Good single threaded performance
can enable better parallel
performance

* Memory locality is key to good
parallel performance.

CcO

C1

L1
cache

C2

L1

cache

C3

L1
cache

L1
cache

L2 cache

A4

DRAM

Transforming Loops

* Locality is key for good (parallel) performance:

* What kind of locality are we talking about?

Transforming Loops

* Locality is key for good parallel performance:

* Two types of locality:
* Temporal locality
e Spatial locality

temporal locality

rl =

r2 =

Transforming Loops

* Locality is key for good parallel performance:

* Two types of locality:
* Temporal locality
e Spatial locality

how far apart can memory locations be?

spatial locality

rl

r2

Transforming Loops

* Locality is key for good (parallel) performance:

good data locality: cores will
spend most of their time accessing
private caches

CcO

L1
cache

C3

C1 C2
L1 L1
cache cache
i v

L1
cache

L2 cache

DRAM

Transforming Loops

* Locality is key for good (parallel) performance:

Bad data locality: cores will
pressure and thrash shared memory
resources

Co C1 C2 C3
L1 L1 L1 L1
cache —egCiTe Cacire=——| cache
i \4 I)
\ L2 cache /

How multi dimensional arrays are stored:

How multi dimensional arrays are stored:

Row major

)
//
‘// >
—
//
//
/)
/
4/
//
.K/ >

How multi dimensional arrays are stored:

Row major

How multi dimensional arrays are stored:

Row major

How multi dimensional
arrays are stored:

Column major?
Fortran

Matlab

How multi dimensional
arrays are stored:

Column major?
Fortran

Matlab

How multi dimensional arrays are stored:

sayx==y==0

x1l = alx,v];
X2 = al[lx, y+1];

good pattern for row major
bad pattern for column major

How multi dimensional arrays are stored:

unrolled row major: still has locality

x1
X2

alx,yl;
alx, y+1];

good pattern for row major
bad pattern for column major

How multi dimensional arrays are stored:

x1l = alx,v];
X2 = al[lx, y+1];

good pattern for row major
bad pattern for column major

How multi dimensional
arrays are stored:

unrolled
column
major:
Bad locality
x1l = al[x+l,v];
X2 = al[x+tl, y+1];

good pattern for row major
bad pattern for column major

How multi dimensional arrays are stored:

o I

x1l = alx,v];
X2 = al[x+tl, vl;

good pattern for column major
bad pattern for row major

How multi dimensional arrays are stored:

row major unrolled: bad spatial locality

good pattern for column major
bad pattern for row major

x1
X2

alx,yl;
alx+l, vl

How multi dimensional
arrays are stored:

unrolled
column
major:
good locality
X1 = alx,vy];
X2 = al[x+tl, vl;

good pattern for column major

bad pattern for row major

How much does this matter?

for (int x = 0; x < x size; x++)
for (int y = 0; yv < y size; y++) {
a[x] = b[XIYJ + C[XIY:';
}

} which will be faster?

by how much?

y size; y++) |
< X size; x++) | Demo
blx,y] + clx,vy];

for (int y = 0;
for (i1nt x =
]

}

Next class

* Topics:
e Restructuring loops

e Remember:
e Homework 2 due tomorrow
* Midterm due on Friday
e Office hours tomorrow 3-5

