
CSE211: Compiler Design
Nov. 15, 2023

• Topic: SMP parallelism
• Candidate DOALL loops
• Safety checking

• Discussion questions:
• What parallel frameworks have you used?
• Do you achieve linear speedup?
• When is it safe to parallelize for loops?

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Announcements

• Homework 2 is out
• Due on *Wednesday*
• I have office hours today
• Rithik has office hours tomorrow

• Start thinking about 2nd paper
• Start thinking about final project
• Deadline is to get final project APPROVED, not start

brainstorming

• Homework 3 is assigned on Wednesday

Announcements

• Grading:
• HW 1 grades and midterm are completely finished

• Come see us during office hours if you have questions
• Please make some time to see Rithik (for HW 1 or midterm)

or me (midterm) if you lost any points that you don’t think
you should have.
• We released the tests so you can see what you

passed/failed

• Paper report *nearly* finished
• 2 week deadline to discuss grades

Review ILP

Finding dependencies in the compiler

• What type of instructions can be done in parallel?

x = z + w;
a = b + c;

two instructions can be executed in
parallel if they are independent

Two instructions are independent if the
operand registers are disjoint from the result
registers

x = z + w;
a = b + x;

instructions that are not independent
cannot be executed in parallel

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r2Data Dependencies

Control dependencies

x = z + w;
if (x > 100)
 a = b + c;

Instructions in different CFG nodes
have control-dependencies

x = z + w;
if (x > 100)

a = b + c;

...

Memory dependencies

a[i] = z + w;
x = a[i]

a[i] = z + w;
a[i] = a + b;

x = a[i]
a[i] = z + w;

True dependence:
Read-after-write

Output dependence:
Write-after-write

anti-dependence:
Write-after-read

reg_a_i = z + w;
a[i] = a + b;

x = a[i]
reg_a_i = z + w;
...
a[i] = reg_a_i;

Dependencies can be
removed

Dependencies can be
delayed

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instrX0;
instrX1;
instr2;
instrX2;
instrX3;
instr3;

If there are non-dependent
instructions from other places in
the program that we can interleave
then we can get back performance!

How can hardware execute ILP?

• Executing multiple instructions at once:

• Superscalar architecture:
• Several sequential operations are issued in parallel
• hardware detects dependencies

instr0;
instr1;
instr2;

issue-width is maximum number of instructions that can be issued in parallel

if instr0 and instr1 are independent, they will be issued in parallel

What does this look like in the real world?

• Intel Haswell (2013):
• Issue width of 4
• 14-19 stage pipeline
• OoO execution

• Intel Nehalem (2008)
• 20-24 stage pipeline
• Issue width of 2-4
• OoO execution

• ARM
• V7 has 3 stage pipeline; Cortex V8 has 13
• Cortex V8 has issue width of 2
• OoO execution

• RISC-V
• Ariane and Rocket are In-Order
• 3-6 stage pipelines
• some super scaler

implementations
(BOOM)

Other examples?

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i,2);
...
SEQ(i,N); // end iteration for i
SEQ(i+1,1);
SEQ(i+1,2);
...
SEQ(i+1, N); // end iteration for i + 1

}

Let SEQ(i,j) be the jth
instruction of SEQ(i).
Let each instruction chain have N
instructions

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i+1,1);
SEQ(i,2);
SEQ(i+1,2);

 ...
SEQ(i,N);
SEQ(i+1, N);

}

They can be interleaved

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE; i++) {
 a[0] = REDUCE(a[0], a[i]);
}

If the reduction operator is associative, we can do better!

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
a[0] = REDUCE(a[0], a[i]);
a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);

}

a[0] = REDUCE(a[0], a[SIZE/2])

independent
instructions
can be done
in parallel!

CSE211: Compiler Design
Nov. 15, 2023

• Topic: SMP parallelism
• Candidate DOALL loops
• Safety checking

• Discussion questions:
• What parallel frameworks have you used?
• Do you achieve linear speedup?
• When is it safe to parallelize for loops?

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Limits of ILP?

• Pipelines?
• Only so much meaningful work to do per-

stage.
• Stage timing imbalance
• Staging overhead

• Superscalar width?
• Hardware checking becomes prohibitive:

Limits of ILP?

• Pipelines?
• Only so much meaningful work to do per-

stage.
• Stage timing imbalance
• Staging overhead

• Superscalar width?
• Hardware checking becomes prohibitive:

Collectively the power consumption, complexity and gate
delay costs limit the achievable superscalar speedup to
roughly eight simultaneously dispatched instructions.

https://en.wikipedia.org/wiki/Superscalar_processor#Limitations

https://en.wikipedia.org/wiki/CPU_power_dissipation

K. Rupp, “40 Years of Mircroprocessor Trend Data,” https://www. karlrupp.net/2015/06/40-years-of-microprocessor-trend-data, 2015.

• Frequency scaling: Dennard’s scaling
• Mostly agreed that this is over

• Number of transistors: Moore’s law
• On its last legs?
• Intel delayed 7nm chips (out now?). Apple has a 5nm. Roadmaps go to 3nm,

or 1.8nm

• Chips are not increasing in raw frequency, and space is becoming
more valuable

Trends

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines
• Can provide (close to) linear speedups for

parallel applications

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines
• Can provide (close to) linear speedups for

parallel applications

• Cons: difficult to program!

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

SMP systems are widespread

• Laptops
• My laptop has 8 cores
• Most have at least 2
• New Macbook: 16 core

• Workstations:
• 2 - 64 cores
• ARM racks: 128

• Phones:
• iPhone: 2 big cores, 4 small cores
• Samsung: 1 + 3 + 4

*https://www.crn.com/news/components-
peripherals/ampere-s-new-128-core-altra-cpu-targets-
intel-amd-in-the-cloud

SMP systems are widespread

*https://www.crn.com/news/components-
peripherals/ampere-s-new-128-core-altra-cpu-targets-
intel-amd-in-the-cloud

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

• Laptops
• My laptop has 8 cores
• Most have at least 2
• New Macbook: 10 core

• Workstations:
• 2 - 64 cores
• ARM racks: 128

• Phones:
• iPhone: 2 big cores, 4 small cores
• Samsung: 1 + 3 + 4

Potential for Parallel Speedup

• Amdahl's law

• Speedup(c) = !
!"# $!"

• Where c is the number of cores and p is the percentage of the
program execution time that would be improved by parallelism

• Assumes linear speedups

from wikipedia

Can compilers help?

• Much like ILP: convert sequential streams of computation in to SMP
parallel code.

• Much harder constraints
• Correctness
• Performance

• For loops are a good target for compiler analysis

= = = = = =

For loops are great candidates for SMP
parallelism

for (int i = 0; i < 6; i++) {
 a[i] = b[i] + c[i]
}

+ + + + + +

b

c

a

core 1

= = = = = =

For loops are great candidates for SMP
parallelism

for (int i = 0; i < 6; i++) {
 a[i] = b[i] + c[i]
}

+ + + + + +

b

c

a

core 1 core 2

= = = = = =

For loops are great candidates for SMP
parallelism

for (int i = 0; i < 6; i++) {
 a[i] = b[i] + c[i]
}

+ + + + + +

b

c

a

core 1 core 2 core 3

SMP Parallelism in For Loops

• Given a nest of For loops, can we make the outer-most loop parallel?
• Safely
• Efficiently

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays
• Only side-effects are array writes
• Array bases are disjoint and constant
• Bounds and array indexes are a function of loop variables, input variables and

constants*
• Loops increment by 1 and start at 0

If the bounds and indexes are affine functions, then more analysis is possible, see dragon book

SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays
• Only side-effects are array writes
• Array bases are disjoint and constant
• Bounds and array indexes are a function of loop variables, input variables and

constants*
• Loops Increment by 1 and start at 0

for (int i = 0; i < dim1; i++) {
 for (int j = 0; j < dim3; j++) {
 for (int k = 0; k < dim2; k++) {
 a[i][j] += b[i][k] * c[k][j];
 }
 }
}

SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int i = 2; i < 100; i+=3) {
 a[i] = c[i + 128];
}

SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int i = 2; i < 100; i+=3) {
 a[i] = c[i + 128];
}

Make new loop bounds:
i = j

SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int j = 0; j < 32; j+=1) {
 a[j*3+2] = c[j*3+2 + 128];
}

Make new loop bounds:
i = j*3 + 2

subtract by constant to start at 0

SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int j = 0; j < 32; j+=1) {
 a[3*j + 2] = c[(3*j + 2) + 128];
}

for (int i = 2; i < 100; i+=3) {
 a[i] = c[i + 128];
}

SMP Parallelism in For Loops

• Given a nest of candidate For loops, determine if we can we make the
outer-most loop parallel?
• Safely
• efficiently

• Criteria: every iteration of the outer-most loop must be independent
• The loop can execute in any order, and produce the same result

• Such loops are called “DOALL” Loops. The can be flagged and handed
off to another pass that can finely tune the parallelism (number of
threads, chunking, etc)

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

• How do we check this?
• If the property doesn’t hold then there exists 2 iterations, such that if they are

re-ordered, it causes different outcomes for the loop.

• Write-Write conflicts: two distinct iterations write different values to the
same location

• Read-Write conflicts: two distinct iterations where one iteration reads from
the location written to by another iteration.

Safety Criteria

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

First example: write-write conflict

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

First example: write-write conflict

Calculate index based on i

Safety Criteria

Computation to store in the memory location

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

First example: write-write conflict

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for two distinct iterations:
ix != iy
Check:
index(ix) != index(iy)

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

First example: write-write conflict

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for two distinct iterations:
ix != iy
Check:
index(ix) != index(iy)

Because we start at 0 and increment by 1, we can use i to refer
to loop iterations

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

First example: write-write conflict

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

Why?
Because if
index(ix) == index(iy)
then:
a[index(ix)] will equal
either loop(ix) or loop(iy)
depending on the order

for two distinct iterations:
ix != iy
Check:
index(ix) != index(iy)

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

First example: write-write conflict

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

for (i = 0; i < 128; i++) {
 a[i]= i*2;
}

Examples:

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
 a[index(i)] = loop(i);
}

for (i = 0; i < 128; i++) {
 a[i]= i*2;
}

for (i = 0; i < 128; i++) {
 a[i%64]= i*2;
}

Examples:

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
 a[write_index(i)] = a[read_index(i)] + loop(i);
}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy)

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
 a[write_index(i)] = a[read_index(i)] + loop(i);
}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy)

Why?

if ix iteration happens first, then
iteration iy reads an updated value.

if iy happens first, then it reads the
original value

Examples:

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

Examples:

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

for (i = 0; i < 128; i++) {
 a[i]= a[0]*2;
}

Examples:

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

for (i = 0; i < 128; i++) {
 a[i]= a[0]*2;
}

for (i = 1; i < 128; i++) {
 a[i]= a[0]*2;
}

Examples:

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

for (i = 0; i < 128; i++) {
 a[i]= a[0]*2;
}

for (i = 0; i < 128; i++) {
 a[i%64]= a[i]*2;
}

for (i = 1; i < 128; i++) {
 a[i]= a[0]*2;
}

Examples:

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

for (i = 0; i < 128; i++) {
 a[i]= a[0]*2;
}

for (i = 0; i < 128; i++) {
 a[i%64]= a[i]*2;
}

for (i = 1; i < 128; i++) {
 a[i]= a[0]*2;
}

for (i = 0; i < 128; i++) {
 a[i%64]= a[i+64]*2;
}

Automation?

• We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
write_index(ix) == write_index(iy)
write_index(ix) == read_index(iy)

write-write conflict
read-write conflict

Ask if these constraints are satisfiable (if so, it is not safe to parallelize)

Automation?

• We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix == iy
ix == iy

Automation?

• We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix == iy
ix == iy

We can feed these constraints to an SMT Solver!

SMT Solver

• Satisfiability Modulo Theories (SMT)
• Generalized SAT solver

• Solves many types of constraints over many domains
• Integers
• Reals
• Bitvectors
• Sets

• Complexity bounds are high (and often undecidable). In practice, they
work pretty well

Microsoft Z3

• State-of-the-art

• Python bindings

• Tutorials:
• Python: https://ericpony.github.io/z3py-tutorial/guide-examples.htm
• SMT LibV2: https://rise4fun.com/z3/tutorial

https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://rise4fun.com/z3/tutorial

Automation?

• We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
 a[i]= a[i]*2;
}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix == iy
ix == iy

We can feed these constraints to an SMT Solver!

Another example:

for (i = 0; i < 128; i++) {
 a[i%64]= a[i+64]*2;
}

Another example:

for (i = 0; i < 128; i++) {
 a[i%64]= a[i+64]*2;
}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix % 64 == iy % 64

Another example:

for (i = 0; i < 128; i++) {
 a[i%64]= a[i+64]*2;
}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix % 64 == iy % 64

what about write-read?

Another example:

for (i = 0; i < 128; i++) {
 a[i%64]= a[i+64]*2;
}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix % 64 == iy + 64

General formula:
for (int i0 = init0; i0 < bound0(); i0++) {

 for (int i1 = init1(i0); i1 < bound1(i0); i1++) {

 ...

 for (int iN = initN(i0, i1, ...); iN < boundN(i0, i1 ...); iN++) {
 write(a, write_index(i0, i1 .. iN))
 read(a, read_index(i0, i1 .. iN));

 }

 }

}

General formula:
for (int i0 = init0; i0 < bound0(); i0++) {

 for (int i1 = init1(i0); i1 < bound1(i0); i1++) {

 ...

 for (int iN = initN(i0, i1, ...); iN < boundN(i0, i1 ...); iN++) {
 write(a, write_index(i0, i1 .. iN))
 read(a, read_index(i0, i1 .. iN));

 }

 }

}
1. Create two variables for each loop variable: i0x, i0y, i1x, i1y ...
Set outer loop: i0x != i0y

2. Constrain them to be inside their bounds:
for w in from (0,N): iwx,y >= initw(...), iwx,y < boundN(...)

3. Enumerate all pairs of potential write-write conflicts:
check: write_index(i0x ,i1x ...) == write_index (i0y ,i1y ...)

4. Do the same for write-read conflicts

General formula:
for (int i0 = init0; i0 < bound0(); i0++) {

 for (int i1 = init1(i0); i1 < bound1(i0); i1++) {

 ...

 for (int iN = initN(i0, i1, ...); iN < boundN(i0, i1 ...); iN++) {
 write(a, write_index(i0, i1 .. iN))
 read(a, read_index(i0, i1 .. iN));

 }

 }

}

What if we want
to parallelize
an inner loop?

1. Create two variables for each loop variable: i0x, i0y, i1x, i1y ...
Set outer loop: i0x != i0y

2. Constrain them to be inside their bounds:
for w in from (0,N): iwx,y >= initw(...), iwx,y < boundN(...)

3. Enumerate all pairs of potential write-write conflicts:
check: write_index(i0x ,i1x ...) == write_index (i0y ,i1y ...)

4. Do the same for write-read conflicts

Are data races ever okay?

• Thoughts?

Are data races ever okay?

• Consider this program:

int x = 0;
for (int i = 0; i < 1024; i++) {
 int tmp = *(&x);
 tmp += 1;
 *(&x) = tmp;
}

What can go wrong if we run the loop in parallel?

Horrible data races in the real world

Therac 25: a radiation therapy machine
• Between 1987 and 1989 a software bug caused 6 cases where

radiation was massively overdosed

• Patients were seriously injured and even died.

• Bug was root caused to be a data race.

• https://en.wikipedia.org/wiki/Therac-25

Horrible data races in the real world

2003 NE power blackout
• second largest power outage in history: 55 million people were

effected

• NYC was without power for 2 days, estimated 100 deaths

• Root cause was a data race

• https://en.wikipedia.org/wiki/Northeast_blackout_of_2003

But checking for data conflicts is hard...

• Tools are here to help (Professor Flanagan is famous in this area)

• My previous group:
• “Dynamic Race Detection for C++11” Lidbury and Donaldson
• Scalable (complete) race detection

• Firefox has ~40 data races
• Chromium has ~6 data races

Next class

• Topics:
• Restructuring loops

• Remember:
• Homework 2 due tomorrow
• Midterm due on Friday
• Office hours tomorrow 3-5

