
CSE211: Compiler Design 
Nov. 13, 2023

• Topic: More ILP!
• loop unrolling
• reductions

• Discussion questions (review):
• What is instruction level parallelism?
• How can modern processors exploit ILP?

MIPS pipeline image from: 
https://commons.wikimedia.org/wiki/Pipeline_(computer_hardware)



Announcements

• Homework 2 is out
• Due on *Wednesday*
• I have office hours today
• Rithik has office hours tomorrow

• Start thinking about 2nd paper 
• Start thinking about final project 
• Deadline is to get final project APPROVED, not start 

brainstorming

• Homework 3 is assigned on Wednesday



Announcements

• Grading:
• HW 1 grades and midterm are completely finished

• Come see us during office hours if you have questions
• Please make some time to see Rithik (for HW 1 or midterm) 

or me (midterm) if you lost any points that you don’t think 
you should have.
• We released the tests so you can see what you 

passed/failed

• Paper report *nearly* finished
• 2 week deadline to discuss grades



Review ILP



Instruction-level Parallelism (ILP)

• Parallelism from a single stream of instructions.
• Output of program must match exactly a sequential execution!

• Widely applicable: 
• most mainstream programming languages are sequential
• most deployed hardware has components to execute ILP

• Can benefit from a combination of hardware and software scheduling

• While it can be done by hand, it’s less tedious to implement in a compiler



Finding dependencies in the compiler

• What type of instructions can be done in parallel?

x = z + w;
a = b + c;

two instructions can be executed in 
parallel  if they are independent

Two instructions are independent if the 
operand registers are disjoint from the result 
registers

x = z + w;
a = b + x;

instructions that are not independent 
cannot be executed in parallel



Finding dependencies in the compiler

• What type of instructions can be done in parallel?

x = z + w;
a = b + c;

two instructions can be executed in 
parallel  if they are independent

Two instructions are independent if the 
operand registers are disjoint from the result 
registers

x = z + w;
a = b + x;

instructions that are not independent 
cannot be executed in parallel

Easier with:
+ within a basic block
+ using SSA form

Harder with:
- memory locations

Many times, dependencies can be 
easily tracked in the compiler:



Different types of dependencies

• Data Dependence
• Control Dependence
• Memory Dependence



How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model 
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

MIPS pipeline image from: 
https://commons.wikimedia.org/wiki/Pipeline_(computer_hardware)
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How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model 
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr2; instr1;instr3;



How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model 
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

6 cycles for 3 independent 
instructions

Converges to 1 instruction per cycle



How can hardware execute ILP?

• Executing multiple instructions at once:

• Superscalar architecture:
• Several sequential operations are issued in parallel
• hardware detects dependencies

instr0;
instr1;
instr2;

issue-width is maximum number of instructions that can be issued in parallel

if instr0 and instr1 are independent, they will be issued in parallel



What does this look like in the real world?

• Intel Haswell (2013): 
• Issue width of 4
• 14-19 stage pipeline
• OoO execution

• Intel Nehalem (2008)
• 20-24 stage pipeline
• Issue width of 2-4
• OoO execution

• ARM
• V7 has 3 stage pipeline; Cortex V8 has 13
• Cortex V8 has issue width of 2
• OoO execution

• RISC-V
• Ariane and Rocket are In-Order
• 3-6 stage pipelines
• some super scaler 

implementations
(BOOM)

Other examples?



What does this mean for compiler writers?

• We should have an abstract and parametrized performance model for 
instruction scheduling (the order of instructions)

• Try not to place dependent instructions in sequence

• Above all, instructions must respect sequential semantics!



Four compiler techniques for better ILP

• Priority topological ordering 

• Anticipatable expressions 

• Independent for loops

• Reduction for loops



Priority Topological Ordering 
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x  = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

First, consider optimizing
for superscalar
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Priority Topological Ordering 
of DDGs for Pipelining
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Priority Topological Ordering 
of DDGs for Pipelining

r2 = 4 * a;
r1 = b * b;
r3 = r2 * c;
r4 = r1 – r3;
r0 = neg(b);
r5 = sqrt(r4);
r7 = 2 * a;
r6 = r0 – r5;
r8 = r6 / r7;
x  = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Ties are broken with the
node that has the least
parents

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

final



In practice

•  real machines are both pipelined and super scalar

• general algorithm for optimal schedules is expensive 

• compilers use heuristics:
• breaking ties in priority ordering
• abstract performance models



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

An expression e is “anticipable” at a basic block bx if for all 
paths that leave bx , e is evaluated



Anticipable Expressions

x = z + w;
if (x > 100) {
   ...
   a = b + c;
   ...
}
else {
   ...
   a = b + c;
   ...
}

x = z + w;
if (x > 100)

...
a = b + c;
...

...

if else

...
a = b + c;
...
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Anticipable Expressions

x = z + w;
a = b + c;
if (x > 100) {
   ...
   a = b + c;
   ...
}
else {
   ...
   a = b + c;
   ...
}

x = z + w;
a = b + c;
if (x > 100)

...
a = b + c;
...

...

if else

...
a = b + c;
...

antExpr = {a=b+c}

also called ”Upward code motion”



Using Loop Unrolling to Exploit ILP

• for loops with independent chains of computation

for (int i = 0; i < SIZE; i++) {
    SEQ(i);
}

where: SEQ(i) = instr1;
         instr2;
         ...

a[i] = instrN;

and let instr(N) depends on instr(N-1)

loops only write to memory 
addressed by the loop variable



Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
    SEQ(i);
    SEQ(i+1);
}

Saves one addition and one comparison per loop, but doesn’t help with ILP

If you know that SIZE 
is divisible by 2



Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i);
SEQ(i+1);

}
Let green highlights indicate 
instructions from iteration i.

Let blue highlights indicate 
instructions from iteration i + 1.



Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i);
SEQ(i+1);

}
Let SEQ(i,j) be the jth instruction of 
SEQ(i). 

Let each instruction chain have N 
instructions



Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i,2);
...
SEQ(i,N); // end iteration for i 
SEQ(i+1,1);
SEQ(i+1,2);
...
SEQ(i+1, N); // end iteration for i + 1

}

Let SEQ(i,j) be the jth 
instruction of SEQ(i). 
Let each instruction chain have N 
instructions



Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i+1,1);
SEQ(i,2);
SEQ(i+1,2);

    ...
SEQ(i,N);
SEQ(i+1, N);

}

They can be interleaved



Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i+1,1);
SEQ(i,2);
SEQ(i+1,2);

    ...
SEQ(i,N);
SEQ(i+1, N);

}

They can be interleaved

two instructions can be pipelined, or executed
on a superscalar processor



Loop Unrolling for Reduction Loops

• Prior approach examined loops with independent iterations and 
chains of dependent computations

• Now we will look at reduction loops:
• Entire computation is dependent
• Typically short bodies (addition, multiplication, max, min)

1 2 3 4 5 6
addition: 21

max: 6

min: 1



Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE; i++) {
    a[0] = REDUCE(a[0], a[i]);
}

If the reduction operator is associative, we can do better!



Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8
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Do addition reduction in base memory location
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• Consider size 2:
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Add together base locations



Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

36 2 3 4 26 6 7 8

Add together base locations



Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
    a[0] = REDUCE(a[0], a[i]);
    a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);
}

a[0] = REDUCE(a[0], a[SIZE/2])



Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
    a[0] = REDUCE(a[0], a[i]);

a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);
}

a[0] = REDUCE(a[0], a[SIZE/2])



Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
a[0] = REDUCE(a[0], a[i]);
a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);

}

a[0] = REDUCE(a[0], a[SIZE/2])

independent
instructions
can be done
in parallel!



Watch out!

• Our abstraction: separate dependent instructions as far as possible

• Pros:
• Simple

• Cons:
• Can lead to register spilling, causing expensive loads

consider instr1 and instr2 have a data dependence, and instrX’s are independent

instr1;
instrX0;
instrX1;
...
instr2;

independent instructions. If they overwrite the register storing instr1’s result, then it will have to 
be stored to memory and retrieved before instr2



Watch out!

• Our abstraction: separate dependent instructions as far as possible

• Pros:
• Simple

• Cons:
• Can lead to register spilling, causing expensive loads

Solutions include using a resource model to guide the topological ordering. Highly 
architecture dependent. Algorithms become more expensive

Typically doesn’t show up in basic block analysis. In loop unrolling, it will influence the 
number of unrolls you do.



Priority Topological Ordering 
of DDGs

r7 = 2 * a;
r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r8 = r6 / r7;
x  = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2



Discussion

• Where is parallelism most commonly found?
• Non-numeric applications are thought to have lots of dependencies:

• I/O (file, network, user), 
• OS, event-driven
• [source needed]

• numeric applications have less dependencies:
• media processing (image, video, sound)
• machine-learning

• More and more, numeric applications are moving to accelerators



Modern SoC

• From David Brooks lab at 
Harvard:

http://vlsiarch.eecs.harvard.
edu/research/accelerators/di
e-photo-analysis/

• Compilers will need to be 
able to map software 
efficiently to a range of 
different accelerators

http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/
http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/
http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/


Current tensions

• Simple cores with accelerators/GPUs?
• Less need for pipelines, OoO, and superscalar
• Hard to port legacy code

• Complicated cores
• area/power hungry
• great for legacy code

• Where do compilers fit in?



Moving on to Symmetric Multiprocessing 
(SMP)



Limits of ILP?

• Pipelines?
• Only so much meaningful work to do per-

stage. 
• Stage timing imbalance
• Staging overhead

• Superscalar width?
• Hardware checking becomes prohibitive:



Limits of ILP

• Pipelines?
• Only so much meaningful work to do per-

stage. 
• Stage timing imbalance
• Staging overhead

• Superscalar width?
• Hardware checking becomes prohibitive:

Collectively the power consumption, complexity and gate 
delay costs limit the achievable superscalar speedup to 
roughly eight simultaneously dispatched instructions.

https://en.wikipedia.org/wiki/Superscalar_processor#Limitations

https://en.wikipedia.org/wiki/CPU_power_dissipation


K. Rupp, “40 Years of Mircroprocessor Trend Data,” https://www. karlrupp.net/2015/06/40-years-of-microprocessor-trend-data, 2015.



• Frequency scaling: Dennard’s scaling
• Mostly agreed that this is over

• Number of transistors: Moore’s law
• On its last legs?
• Intel delayed 7nm chips (out now?). Apple has a 5nm. Roadmaps go to 3nm, 

or 1.8nm

• Chips are not increasing in raw frequency, and space is becoming 
more valuable

Trends



Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system 

resources)
• Managed by a single OS

• Pros: 
• Simple(r) HW design
• Great for multitasking machines

C1 C2 C3C0

L1 
cache

L1 
cache

L1 
cache

L1 
cache

L2 cache

DRAM
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parallel applications
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Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system 

resources)
• Managed by a single OS

• Pros: 
• Simple(r) HW design
• Great for multitasking machines
• Can provide (close to) linear speedups for 

parallel applications

• Cons: difficult to program!

C1 C2 C3C0

L1 
cache

L1 
cache

L1 
cache

L1 
cache

L2 cache

DRAM



SMP systems are widespread

• Laptops
• My laptop has 8 cores
• Most have at least 2
• New Macbook: 16 core

• Workstations:
• 2 - 64 cores
• ARM racks: 128

• Phones: 
• iPhone: 2 big cores, 4 small cores
• Samsung: 1 + 3 + 4

*https://www.crn.com/news/components-
peripherals/ampere-s-new-128-core-altra-cpu-targets-
intel-amd-in-the-cloud



SMP systems are widespread

*https://www.crn.com/news/components-
peripherals/ampere-s-new-128-core-altra-cpu-targets-
intel-amd-in-the-cloud

C1 C2 C3C0

L1 
cache

L1 
cache

L1 
cache

L1 
cache

L2 cache

DRAM

• Laptops
• My laptop has 8 cores
• Most have at least 2
• New Macbook: 10 core

• Workstations:
• 2 - 64 cores
• ARM racks: 128

• Phones: 
• iPhone: 2 big cores, 4 small cores
• Samsung: 1 + 3 + 4



Potential for Parallel Speedup

• Amdahl's law

• Speedup(c) = !
!"# $!"

• Where c is the number of cores and p is the percentage of the 
program execution time that would be improved by parallelism

• Assumes linear speedups



from wikipedia



Can compilers help?

• Much like ILP: convert sequential streams of computation in to SMP 
parallel code.

• Much harder constraints
• Correctness
• Performance

• For loops are a good target for compiler analysis



= = = = = =

For loops are great candidates for SMP 
parallelism

for (int i = 0; i < 6; i++) {
   a[i] = b[i] + c[i]
}

+ + + + + +

b

c

a

core 1
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For loops are great candidates for SMP 
parallelism

for (int i = 0; i < 6; i++) {
   a[i] = b[i] + c[i]
}

+ + + + + +

b

c

a

core 1 core 2 core 3



See you on Next time!

• DOALL For loops


