
CSE211: Compiler Design
Nov. 13, 2023

• Topic: More ILP!
• loop unrolling
• reductions

• Discussion questions (review):
• What is instruction level parallelism?
• How can modern processors exploit ILP?

MIPS pipeline image from:
https://commons.wikimedia.org/wiki/Pipeline_(computer_hardware)

Announcements

• Homework 2 is out
• Due on *Wednesday*
• I have office hours today
• Rithik has office hours tomorrow

• Start thinking about 2nd paper
• Start thinking about final project
• Deadline is to get final project APPROVED, not start

brainstorming

• Homework 3 is assigned on Wednesday

Announcements

• Grading:
• HW 1 grades and midterm are completely finished

• Come see us during office hours if you have questions
• Please make some time to see Rithik (for HW 1 or midterm)

or me (midterm) if you lost any points that you don’t think
you should have.
• We released the tests so you can see what you

passed/failed

• Paper report *nearly* finished
• 2 week deadline to discuss grades

Review ILP

Instruction-level Parallelism (ILP)

• Parallelism from a single stream of instructions.
• Output of program must match exactly a sequential execution!

• Widely applicable:
• most mainstream programming languages are sequential
• most deployed hardware has components to execute ILP

• Can benefit from a combination of hardware and software scheduling

• While it can be done by hand, it’s less tedious to implement in a compiler

Finding dependencies in the compiler

• What type of instructions can be done in parallel?

x = z + w;
a = b + c;

two instructions can be executed in
parallel if they are independent

Two instructions are independent if the
operand registers are disjoint from the result
registers

x = z + w;
a = b + x;

instructions that are not independent
cannot be executed in parallel

Finding dependencies in the compiler

• What type of instructions can be done in parallel?

x = z + w;
a = b + c;

two instructions can be executed in
parallel if they are independent

Two instructions are independent if the
operand registers are disjoint from the result
registers

x = z + w;
a = b + x;

instructions that are not independent
cannot be executed in parallel

Easier with:
+ within a basic block
+ using SSA form

Harder with:
- memory locations

Many times, dependencies can be
easily tracked in the compiler:

Different types of dependencies

• Data Dependence
• Control Dependence
• Memory Dependence

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

MIPS pipeline image from:
https://commons.wikimedia.org/wiki/Pipeline_(computer_hardware)

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr1;
instr2;
instr3;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr2;
instr3;

instr1;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr3;

instr1;instr2;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

instr2; instr1;instr3;

How can hardware execute ILP?

• Pipeline parallelism

• Abstract mental model
for compiler:
• N-stage pipeline
• N instructions can be in-flight
• Dependencies stall pipeline

stage 1 stage 2 stage 3

6 cycles for 3 independent
instructions

Converges to 1 instruction per cycle

How can hardware execute ILP?

• Executing multiple instructions at once:

• Superscalar architecture:
• Several sequential operations are issued in parallel
• hardware detects dependencies

instr0;
instr1;
instr2;

issue-width is maximum number of instructions that can be issued in parallel

if instr0 and instr1 are independent, they will be issued in parallel

What does this look like in the real world?

• Intel Haswell (2013):
• Issue width of 4
• 14-19 stage pipeline
• OoO execution

• Intel Nehalem (2008)
• 20-24 stage pipeline
• Issue width of 2-4
• OoO execution

• ARM
• V7 has 3 stage pipeline; Cortex V8 has 13
• Cortex V8 has issue width of 2
• OoO execution

• RISC-V
• Ariane and Rocket are In-Order
• 3-6 stage pipelines
• some super scaler

implementations
(BOOM)

Other examples?

What does this mean for compiler writers?

• We should have an abstract and parametrized performance model for
instruction scheduling (the order of instructions)

• Try not to place dependent instructions in sequence

• Above all, instructions must respect sequential semantics!

Four compiler techniques for better ILP

• Priority topological ordering

• Anticipatable expressions

• Independent for loops

• Reduction for loops

Priority Topological Ordering
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

First, consider optimizing
for superscalar

Priority Topological Ordering
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Label nodes with the maximum
distance to a source

0

0

0

0

1

2

3

4

5

Priority Topological Ordering
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Break ties in topological
order using this number

Label nodes with the maximum
distance to a source

0

0

0

0

1

2

3

4

5

Priority Topological Ordering
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Break ties in topological
order using this number

0

0

0

0

1

2

3

4

5

Label nodes with the maximum
distance to a source

Priority Topological Ordering
of DDGs for Pipelining

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r7 = 2 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

superscalar should
move independent
instructions as high
as possible. What about
pipelining?

Priority Topological Ordering
of DDGs for Pipelining

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

superscalar should
move independent
instructions as high
as possible. What about
pipelining?

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

superscalar should
move independent
instructions as high
as possible. What about
pipelining?

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r2 = 4 * a;
r0 = neg(b);
r1 = b * b;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

superscalar should
move intendent
instructions as high
as possible. What about
pipelining?

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r2 = 4 * a;
r0 = neg(b);
r1 = b * b;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Ties are broken with the
node that has the least
parents

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r2 = 4 * a;
r1 = b * b;
r3 = r2 * c;
r0 = neg(b);
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Ties are broken with the
node that has the least
parents

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

Priority Topological Ordering
of DDGs for Pipelining

r2 = 4 * a;
r1 = b * b;
r3 = r2 * c;
r4 = r1 – r3;
r0 = neg(b);
r5 = sqrt(r4);
r7 = 2 * a;
r6 = r0 – r5;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Ties are broken with the
node that has the least
parents

6

5

4

3

2

1

2

3

5

label each node with
a distance from the root.
Schedule each node according
to the level

final

In practice

• real machines are both pipelined and super scalar

• general algorithm for optimal schedules is expensive

• compilers use heuristics:
• breaking ties in priority ordering
• abstract performance models

Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

An expression e is “anticipable” at a basic block bx if for all
paths that leave bx , e is evaluated

Anticipable Expressions

x = z + w;
if (x > 100) {
 ...
 a = b + c;
 ...
}
else {
 ...
 a = b + c;
 ...
}

x = z + w;
if (x > 100)

...
a = b + c;
...

...

if else

...
a = b + c;
...

Anticipable Expressions

x = z + w;
if (x > 100) {
 ...
 a = b + c;
 ...
}
else {
 ...
 a = b + c;
 ...
}

x = z + w;
if (x > 100)

...
a = b + c;
...

...

if else

...
a = b + c;
...

antExpr = {a=b+c}

Anticipable Expressions

x = z + w;
a = b + c;
if (x > 100) {
 ...
 a = b + c;
 ...
}
else {
 ...
 a = b + c;
 ...
}

x = z + w;
a = b + c;
if (x > 100)

...
a = b + c;
...

...

if else

...
a = b + c;
...

antExpr = {a=b+c}

also called ”Upward code motion”

Using Loop Unrolling to Exploit ILP

• for loops with independent chains of computation

for (int i = 0; i < SIZE; i++) {
 SEQ(i);
}

where: SEQ(i) = instr1;
 instr2;
 ...

a[i] = instrN;

and let instr(N) depends on instr(N-1)

loops only write to memory
addressed by the loop variable

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
 SEQ(i);
 SEQ(i+1);
}

Saves one addition and one comparison per loop, but doesn’t help with ILP

If you know that SIZE
is divisible by 2

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i);
SEQ(i+1);

}
Let green highlights indicate
instructions from iteration i.

Let blue highlights indicate
instructions from iteration i + 1.

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i);
SEQ(i+1);

}
Let SEQ(i,j) be the jth instruction of
SEQ(i).

Let each instruction chain have N
instructions

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i,2);
...
SEQ(i,N); // end iteration for i
SEQ(i+1,1);
SEQ(i+1,2);
...
SEQ(i+1, N); // end iteration for i + 1

}

Let SEQ(i,j) be the jth
instruction of SEQ(i).
Let each instruction chain have N
instructions

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i+1,1);
SEQ(i,2);
SEQ(i+1,2);

 ...
SEQ(i,N);
SEQ(i+1, N);

}

They can be interleaved

Using Loop Unrolling to Exploit ILP

• Simple loop unrolling:

for (int i = 0; i < SIZE; i+=2) {
SEQ(i,1);
SEQ(i+1,1);
SEQ(i,2);
SEQ(i+1,2);

 ...
SEQ(i,N);
SEQ(i+1, N);

}

They can be interleaved

two instructions can be pipelined, or executed
on a superscalar processor

Loop Unrolling for Reduction Loops

• Prior approach examined loops with independent iterations and
chains of dependent computations

• Now we will look at reduction loops:
• Entire computation is dependent
• Typically short bodies (addition, multiplication, max, min)

1 2 3 4 5 6
addition: 21

max: 6

min: 1

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE; i++) {
 a[0] = REDUCE(a[0], a[i]);
}

If the reduction operator is associative, we can do better!

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

1 2 3 4 5 6 7 8

Do addition reduction in base memory location

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

10 2 3 4 26 6 7 8

Do addition reduction in base memory location

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

10 2 3 4 26 6 7 8

Add together base locations

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

10 2 3 4 26 6 7 8

Add together base locations

Loop Unrolling for Reduction Loops

• chunk array in equal sized partitions and do local reductions
• Consider size 2:

36 2 3 4 26 6 7 8

Add together base locations

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
 a[0] = REDUCE(a[0], a[i]);
 a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);
}

a[0] = REDUCE(a[0], a[SIZE/2])

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
 a[0] = REDUCE(a[0], a[i]);

a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);
}

a[0] = REDUCE(a[0], a[SIZE/2])

Loop Unrolling for Reduction Loops

• Simple implementation:

for (int i = 1; i < SIZE/2; i++) {
a[0] = REDUCE(a[0], a[i]);
a[SIZE/2] = REDUCE(a[SIZE/2], a[(SIZE/2)+i]);

}

a[0] = REDUCE(a[0], a[SIZE/2])

independent
instructions
can be done
in parallel!

Watch out!

• Our abstraction: separate dependent instructions as far as possible

• Pros:
• Simple

• Cons:
• Can lead to register spilling, causing expensive loads

consider instr1 and instr2 have a data dependence, and instrX’s are independent

instr1;
instrX0;
instrX1;
...
instr2;

independent instructions. If they overwrite the register storing instr1’s result, then it will have to
be stored to memory and retrieved before instr2

Watch out!

• Our abstraction: separate dependent instructions as far as possible

• Pros:
• Simple

• Cons:
• Can lead to register spilling, causing expensive loads

Solutions include using a resource model to guide the topological ordering. Highly
architecture dependent. Algorithms become more expensive

Typically doesn’t show up in basic block analysis. In loop unrolling, it will influence the
number of unrolls you do.

Priority Topological Ordering
of DDGs

r7 = 2 * a;
r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r8 = r6 / r7;
x = r8; x

r8

r6 r7

r0 r5

r4

r1 r3

r2

Discussion

• Where is parallelism most commonly found?
• Non-numeric applications are thought to have lots of dependencies:

• I/O (file, network, user),
• OS, event-driven
• [source needed]

• numeric applications have less dependencies:
• media processing (image, video, sound)
• machine-learning

• More and more, numeric applications are moving to accelerators

Modern SoC

• From David Brooks lab at
Harvard:

http://vlsiarch.eecs.harvard.
edu/research/accelerators/di
e-photo-analysis/

• Compilers will need to be
able to map software
efficiently to a range of
different accelerators

http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/
http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/
http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/

Current tensions

• Simple cores with accelerators/GPUs?
• Less need for pipelines, OoO, and superscalar
• Hard to port legacy code

• Complicated cores
• area/power hungry
• great for legacy code

• Where do compilers fit in?

Moving on to Symmetric Multiprocessing
(SMP)

Limits of ILP?

• Pipelines?
• Only so much meaningful work to do per-

stage.
• Stage timing imbalance
• Staging overhead

• Superscalar width?
• Hardware checking becomes prohibitive:

Limits of ILP

• Pipelines?
• Only so much meaningful work to do per-

stage.
• Stage timing imbalance
• Staging overhead

• Superscalar width?
• Hardware checking becomes prohibitive:

Collectively the power consumption, complexity and gate
delay costs limit the achievable superscalar speedup to
roughly eight simultaneously dispatched instructions.

https://en.wikipedia.org/wiki/Superscalar_processor#Limitations

https://en.wikipedia.org/wiki/CPU_power_dissipation

K. Rupp, “40 Years of Mircroprocessor Trend Data,” https://www. karlrupp.net/2015/06/40-years-of-microprocessor-trend-data, 2015.

• Frequency scaling: Dennard’s scaling
• Mostly agreed that this is over

• Number of transistors: Moore’s law
• On its last legs?
• Intel delayed 7nm chips (out now?). Apple has a 5nm. Roadmaps go to 3nm,

or 1.8nm

• Chips are not increasing in raw frequency, and space is becoming
more valuable

Trends

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines
• Can provide (close to) linear speedups for

parallel applications

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system

resources)
• Managed by a single OS

• Pros:
• Simple(r) HW design
• Great for multitasking machines
• Can provide (close to) linear speedups for

parallel applications

• Cons: difficult to program!

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

SMP systems are widespread

• Laptops
• My laptop has 8 cores
• Most have at least 2
• New Macbook: 16 core

• Workstations:
• 2 - 64 cores
• ARM racks: 128

• Phones:
• iPhone: 2 big cores, 4 small cores
• Samsung: 1 + 3 + 4

*https://www.crn.com/news/components-
peripherals/ampere-s-new-128-core-altra-cpu-targets-
intel-amd-in-the-cloud

SMP systems are widespread

*https://www.crn.com/news/components-
peripherals/ampere-s-new-128-core-altra-cpu-targets-
intel-amd-in-the-cloud

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

• Laptops
• My laptop has 8 cores
• Most have at least 2
• New Macbook: 10 core

• Workstations:
• 2 - 64 cores
• ARM racks: 128

• Phones:
• iPhone: 2 big cores, 4 small cores
• Samsung: 1 + 3 + 4

Potential for Parallel Speedup

• Amdahl's law

• Speedup(c) = !
!"# $!"

• Where c is the number of cores and p is the percentage of the
program execution time that would be improved by parallelism

• Assumes linear speedups

from wikipedia

Can compilers help?

• Much like ILP: convert sequential streams of computation in to SMP
parallel code.

• Much harder constraints
• Correctness
• Performance

• For loops are a good target for compiler analysis

= = = = = =

For loops are great candidates for SMP
parallelism

for (int i = 0; i < 6; i++) {
 a[i] = b[i] + c[i]
}

+ + + + + +

b

c

a

core 1

= = = = = =

For loops are great candidates for SMP
parallelism

for (int i = 0; i < 6; i++) {
 a[i] = b[i] + c[i]
}

+ + + + + +

b

c

a

core 1 core 2

= = = = = =

For loops are great candidates for SMP
parallelism

for (int i = 0; i < 6; i++) {
 a[i] = b[i] + c[i]
}

+ + + + + +

b

c

a

core 1 core 2 core 3

See you on Next time!

• DOALL For loops

