
CSE211: Compiler Design

Sept. 29, 2022

 Topic: Parsing overview 2 (production rules)

Questions:

- What are the limitations of tokens for parsing?
- What is a context free grammar? Is it more or less powerful than a regular expression?

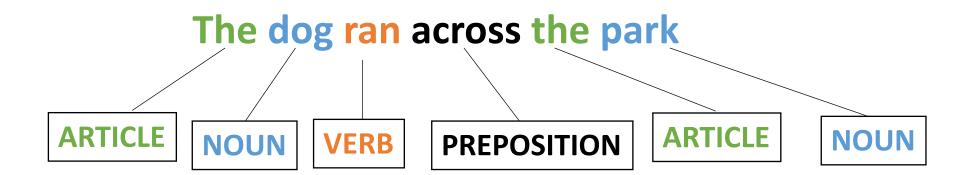
Logistics

- Everyone should be on canvas
 - No one should be on a waitlist
- Everyone should be on the class Piazza
 - according to my math, we have about 7 people missing
 - please sign up
- Please make sure to record attendance for today!

Logistics

- Assignment 1 will be released next Tuesday by the end of the day
 - You will have 2 weeks to do it

- Two parts:
 - A very simple interpreter for a very simple language
 - A regular expression matcher using parsing with derivatives
- We will use PLY as our parser generator
 - If you want to use something different, e.g. Antlr, lex, yacc, let me me know!


Logistics

- First office hours will be tomorrow 3-5 pm
- Sign up sheet will be released at noon tomorrow
 - Look for a canvas announcement

Review

• What is a scanner?

• splits an input into tokens (e.g. parts of speech)

My Old Computer Crashed


```
[(ARTICLE, "my") (ADJECTIVE, "old") (NOUN, "Computer") (VERB, "Crashed")]
```

Splits an input sentence it into lexemes

$$(5 + 4) * 8$$


```
[[(LPAR, "(") (NUM, "5") (PLUS, "+") (NUM, "4") (RPAR, ")") (TIMES, "*") (NUM, "
```

Splits an input sentence it into lexemes

(5 + 4) * 8

What if we wanted to tokenize this arithmetic sentence?

(5 + 4) * 8

What if we wanted to tokenize this arithmetic sentence?

Dealing with a stream of input

How does this input get tokenized?

Tokens:

$$ID = "[a-z]"$$

$$OP = "+|++"$$

Dealing with a stream of input

How to fix it?

Tokens:

$$ID = "[a-z]"$$

$$OP = "+|++"$$

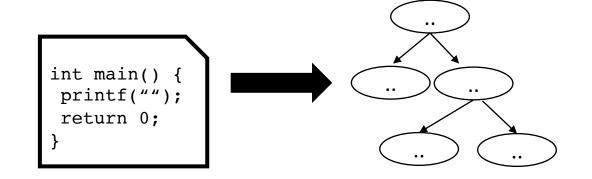
Dealing with streams

- Scanners will always return the token with the longest match
 - If you are implementing a scanner, you need to ensure this!
 - If you are using a scanner, you can depend on this!
- Streaming RE matchers (e.g. re.match) are not guaranteed to return the longest match when using a union
 - What about using *?

Dealing with subset

how to tokenize this input?

if


Tokens:

$$ID = "[a-z]+"$$

CSE211: Compiler Design

Sept. 29, 2022

 Topic: Parsing overview 2 (production rules)

Questions:

- What are the limitations of tokens for parsing?
- What is a context free grammar? Is it more or less powerful than a regular expression?

• What about a mathematical sentence (expression)?

limited to non-negative integers and just using + and *

• What about a mathematical sentence (expression)?

limited to non-negative integers and just using + and *

First lets define tokens:

• What about a mathematical sentence (expression)?

limited to non-negative integers and just using + and *

- First lets define tokens:
 - NUM = '[0-9]+'
 - PLUS = '\+'
 - TIMES = '*'

• What about a mathematical sentence (expression)?

limited to non-negative integers and just using + and *

- First lets define tokens:
 - NUM = '[0-9]+'
 - PLUS = '\+'
 - TIMES = '*'

What should our language look like?

Where are we going to run into issues?

Matching () using a regular expression

 there is a formal proof available that regex CANNOT match ()'s: pumping lemma

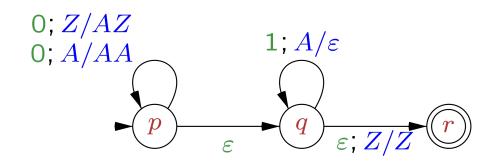
- Informal argument:
 - Try matching $\binom{n}{n}$ using Kleene star
 - Impossible!

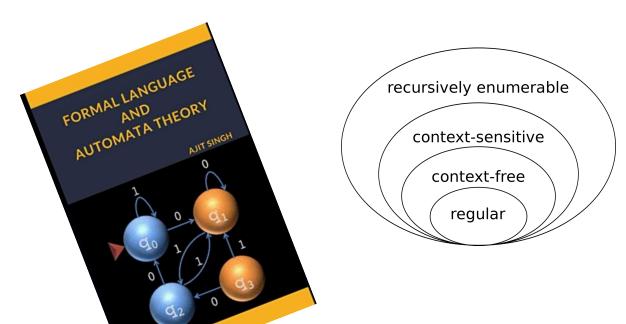
 We are going to need a more powerful language description framework!

Matching () using a regular expression

 there is a formal proof available that regex CANNOT match ()'s: pumping lemma

- Informal argument:
 - Try matching $\binom{n}{n}$ using Kleene star
 - Impossible!


https://stackoverflow.com/questions/1 732348/regex-match-open-tags-exceptxhtml-self-contained-tags


(previously) 2nd most upvoted post on stackoverflow

 We are going to need a more powerful language description framework!

Context Free Grammars

- Backus–Naur form (BNF)
 - A syntax for representing context free grammars
 - Naturally creates tree-like structures
- More powerful than regular expressions

- cproduction name> : <token list>
 - Example: sentence: ARTICLE NOUN VERB
- cproduction name> : <token list> | <token list>
 - Example:

sentence: ARTICLE ADJECTIVE NOUN VERB | ARTICLE NOUN VERB

Convention: Tokens in all caps, production rules in lower case

Production rules can reference other production rules

non_adjective_sentence: ARTICLE NOUN VERB

adjective_sentence: ARTICLE ADJECTIVE NOUN VERB

sentence: ARTICLE ADJECTIVE* NOUN VERB

sentence: ARTICLE ADJECTIVE* NOUN VERB

We cannot do the star in production rules

- Production rules can be recursive
 - Imagine a list of adjectives:
 "The small brown energetic dog barked"

sentence: ARTICLE adjective_list NOUN VERB

- First lets define tokens:
 - NUM = [0-9]+
 - PLUS = '\+'
 - TIMES = '*'

How can we make BNF production rules for this?

- First lets define tokens:
 - NUM = [0-9]+
 - PLUS = '\+'
 - TIMES = '*'

expression: NUM

| expression PLUS expression

| expression TIMES expression

- First lets define tokens:
 - NUM = [0-9]+
 - PLUS = '\+'
 - TIMES = '*'

Let's add () to the language!

expression: NUM

| expression PLUS expression

expression TIMES expression

- First lets define tokens:
 - NUM = [0-9]+
 - PLUS = '\+'
 - TIMES = '*'
 - LPAREN = '\('
 - RPAREN = '\)'

What other syntax like () are used in programming languages?

expression: NUM

| expression PLUS expression

| expression TIMES expression

| LPAREN expression RPAREN

How to determine if a string matches a CFG?

Parse trees

 A string is accepted by a BNF form if and only if there exists a parse tree.

input: 5

Parse trees

 A string is accepted by a BNF form if and only if there exists a parse tree.

```
expr: NUM
| expr PLUS expr
| expr TIMES expr
| LPAREN expr RPAREN
```

Parse trees

 A string is accepted by a BNF form if and only if there exists a parse tree.

```
expr: NUM

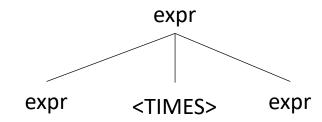
| expr PLUS expr
| expr TIMES expr
| LPAREN expr RPAREN
```

 A string is accepted by a BNF form if and only if there exists a parse tree.

 A string is accepted by a BNF form if and only if there exists a parse tree.

input: 5*6

 A string is accepted by a BNF form if and only if there exists a parse tree.


 A string is accepted by a BNF form if and only if there exists a parse tree.

input: 5*6

expr : NUM
| expr PLUS expr

expr TIMES expr

| LPAREN expr RPAREN

 A string is accepted by a BNF form if and only if there exists a parse tree.

expr
expr
</ri>
expr

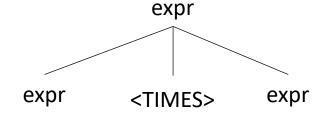
<NUM, 5>
<NUM, 6>

input: 5*6

 A string is accepted by a BNF form if and only if there exists a parse tree.

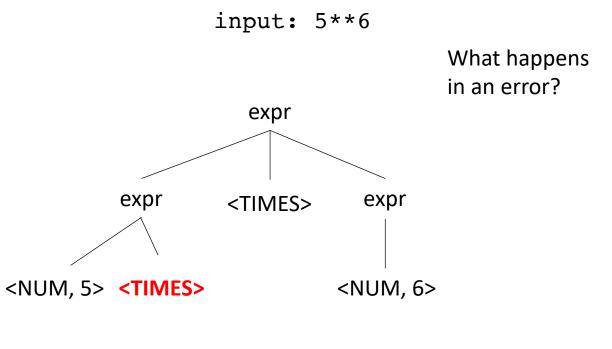
input: 5**6

expr: NUM


| expr PLUS expr
| expr TIMES expr

| LPAREN expr RPAREN

 A string is accepted by a BNF form if and only if there exists a parse tree.


 input: 5**6

What happens in an error?

 A string is accepted by a BNF form if and only if there exists a parse tree.

expr : NUM
| expr PLUS expr
| expr TIMES expr
| LPAREN expr RPAREN

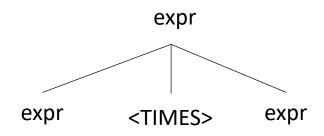
Not possible!

 A string is accepted by a BNF form if and only if there exists a parse tree.

```
input: (1+5)*6
```

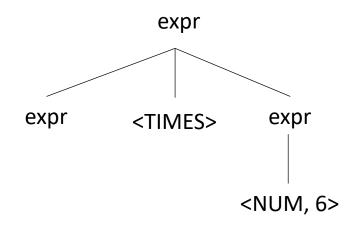
 A string is accepted by a BNF form if and only if there exists a parse tree.

```
input: (1+5)*6
```

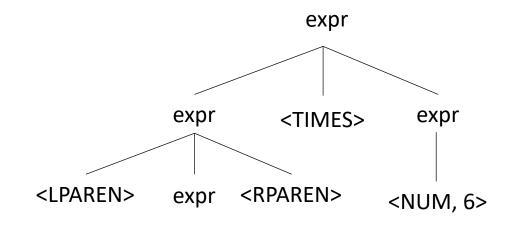

```
expr : NUM expr PLUS expr
```

| expr TIMES expr

| LPAREN expr RPAREN


 A string is accepted by a BNF form if and only if there exists a parse tree.

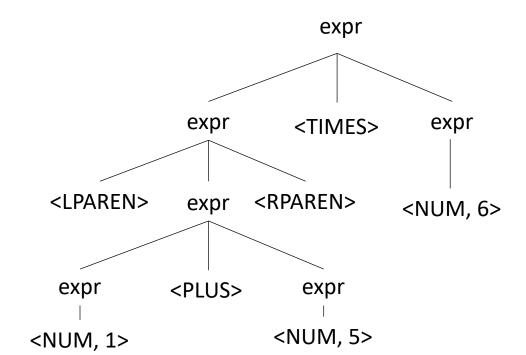
input: (1+5)*6


 A string is accepted by a BNF form if and only if there exists a parse tree.

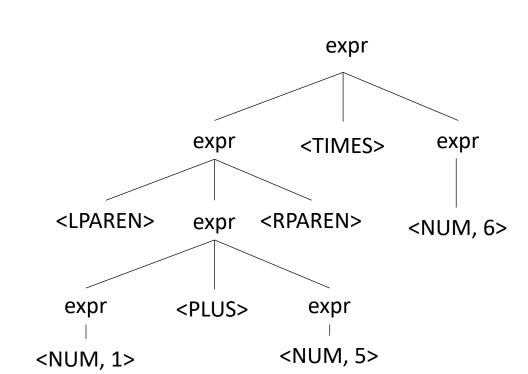
input: (1+5)*6

 A string is accepted by a BNF form if and only if there exists a parse tree.

input: (1+5)*6


 A string is accepted by a BNF form if and only if there exists a parse tree.

input: (1+5)*6

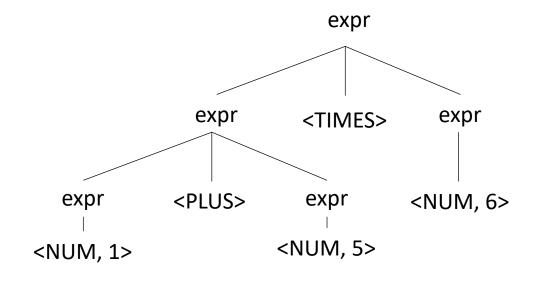


 A string is accepted by a BNF form if and only if there exists a parse tree.

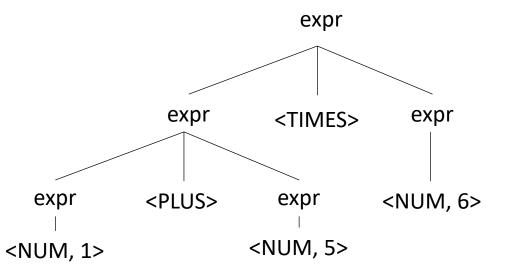
input: (1+5)*6

• Reverse question: given a parse tree: how do you create a string?

input: ?


Ambiguous grammars

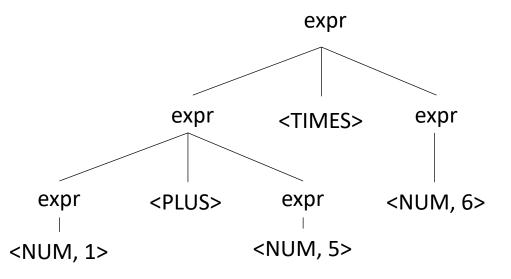
"I saw a person on a hill with a telescope."


What does it mean??

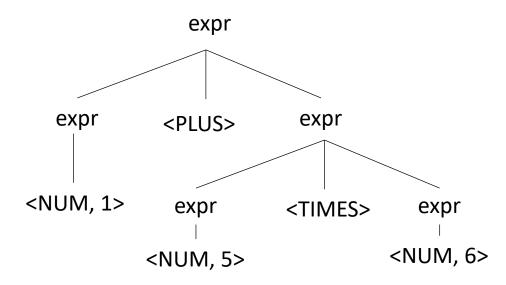
• Try making a parse tree from: 1 + 5 * 6

• Try making a parse tree from: 1 + 5 * 6

•input: 1 + 5 * 6

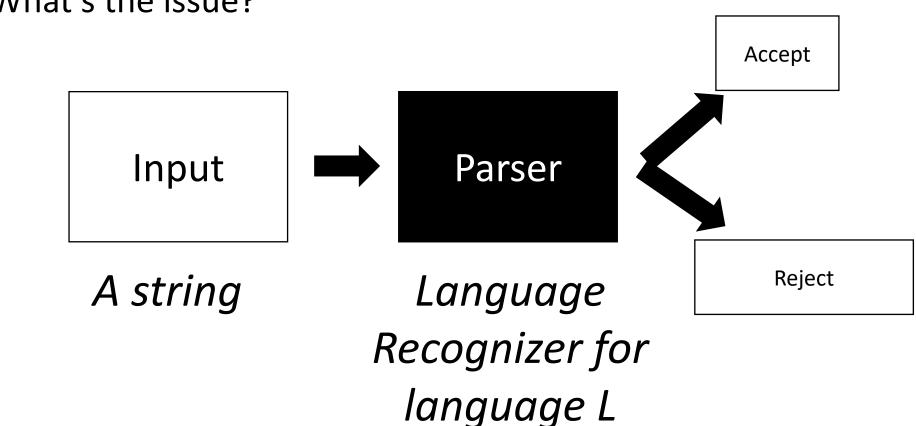

expr: NUM

expr PLUS expr

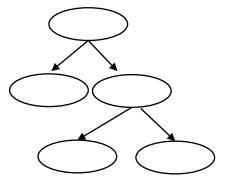

| expr TIMES expr

| LPAREN expr RPAREN

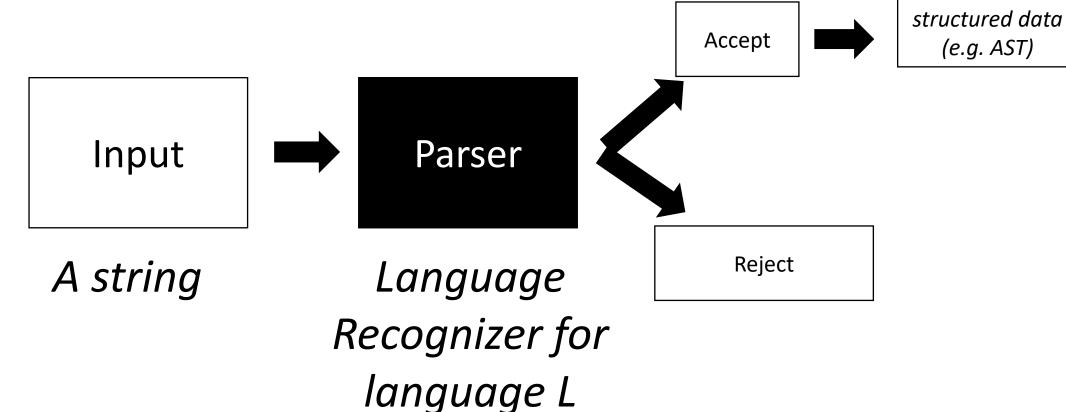
•input: 1 + 5 * 6



expr : NUM
| expr PLUS expr
| expr TIMES expr
| LPAREN expr RPAREN


Ambiguous grammars

• What's the issue?


Ambiguous grammars

continue to the rest of compilation

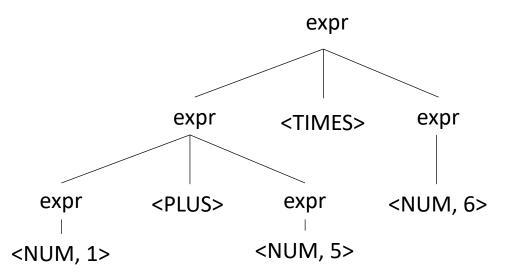
(e.g. AST)

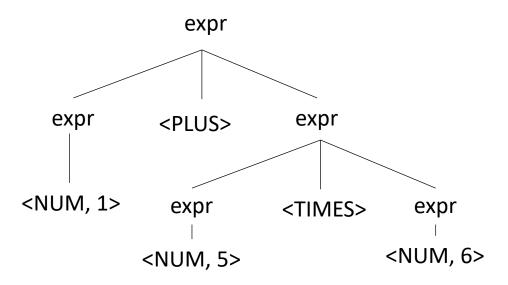
What's the issue?

Meaning into structure

Structural meaning defined to be a post-order traversal

Meaning into structure


- Structural meaning defined to be a post-order traversal
 - Children return values to their parent
 - Nodes are only evaluated once all their children have been evaluated
 - Evaluated from left to right
 - Also called "Natural Order"


Meaning into structure

- Structural meaning defined to be a post-order traversal
 - Children return values to their parent
 - Nodes are only evaluated once all their children have been evaluated
 - Evaluated from left to right
 - Also called "Natural Order"
- Can also encode the order of operation

Ambiguous grammars

•input: 1 + 5 * 6

Avoiding Ambiguity

How to avoid ambiguity related to precedence?

• Define precedence: ambiguity comes from conflicts. Explicitly define how to deal with conflicts, e.g. write* has higher precedence than +

• Some parser generators support this, e.g. Yacc

Avoiding Ambiguity

 How to avoid ambiguity related to precedence?

- Second way: new production rules
 - One rule for each level of precedence
 - lowest precedence at the top
 - highest precedence at the bottom
- Lets try with expressions and the following:
 - + * ()

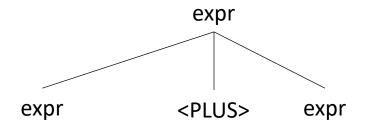
Avoiding Ambiguity

 How to avoid ambiguity related to precedence?

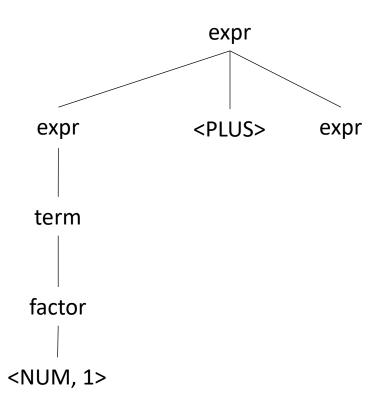
- Second way: new production rules
 - One rule for each level of precedence
 - lowest precedence at the top
 - highest precedence at the bottom
- Lets try with expressions and the following:

Precedence increases going down

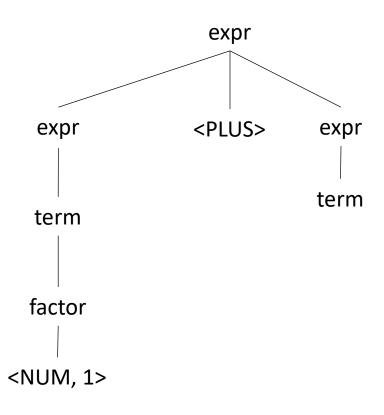
Operator	Name	Productions
+	expr	: expr PLUS expr term
*	term	: term TIMES term factor
()	factor	: LPAREN expr RPAREN NUM

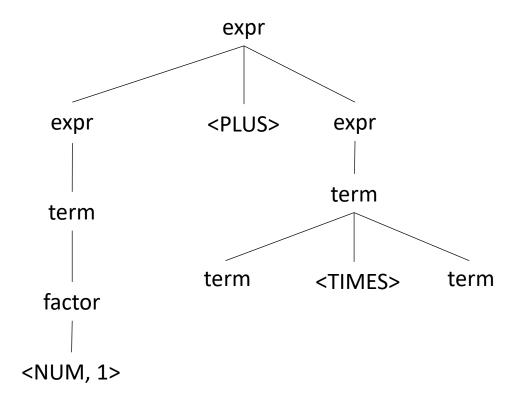

Operator	Name	Productions
+	expr	: expr PLUS expr term
*	term	: term TIMES term factor
()	factor	: LPAREN expr RPAREN NUM

input: 1+5*6

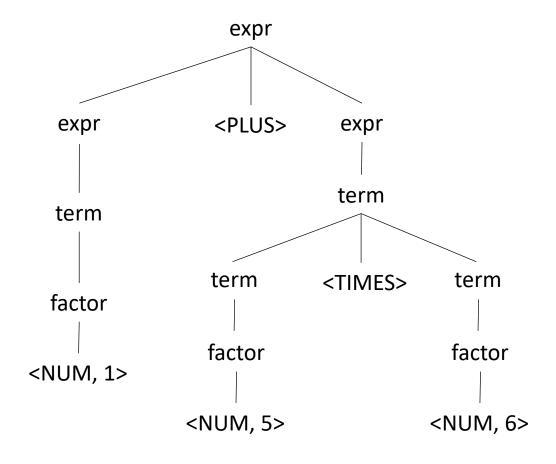

expr

Operator	Name	Productions
+	expr	: expr PLUS expr term
*	term	: term TIMES term factor
()	factor	: LPAREN expr RPAREN NUM


Operator	Name	Productions
+	expr	: expr PLUS expr term
*	term	: term TIMES term factor
()	factor	: LPAREN expr RPAREN NUM


Operator	Name	Productions
+	expr	: expr PLUS expr term
*	term	: term TIMES term factor
()	factor	: LPAREN expr RPAREN NUM

Operator	Name	Productions
+	expr	: expr PLUS expr term
*	term	: term TIMES term factor
()	factor	: LPAREN expr RPAREN NUM


Operator	Name	Productions
+	expr	: expr PLUS expr term
*	term	: term TIMES term factor
()	factor	: LPAREN expr RPAREN NUM

Now lets create a parse tree

input: 1+5*6

Operator	Name	Productions
+	expr	: expr PLUS expr term
*	term	: term TIMES term factor
()	factor	: LPAREN expr RPAREN NUM

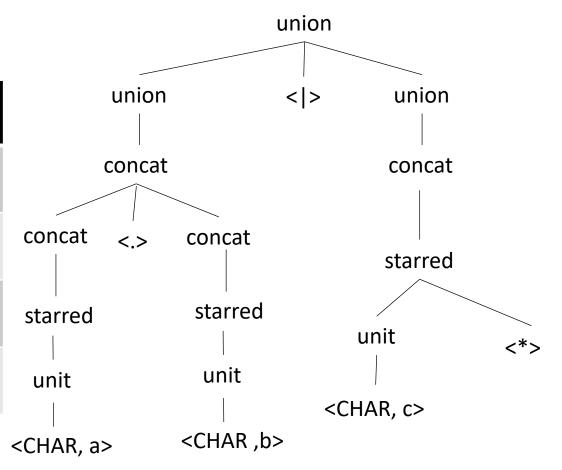
Let's try it for regular expressions, {| . * ()} (where . is concat)

Operator	Name	Productions

Let's try it for regular expressions, {| . * ()} (where . is concat)

Operator	Name	Productions
1	union	: union PIPE union concat
	concat	: concat DOT concat starred
*	starred	: starred STAR unit
()	unit	: LPAREN union RPAREN CHAR

Let's try it for regular expressions, {| . * ()}

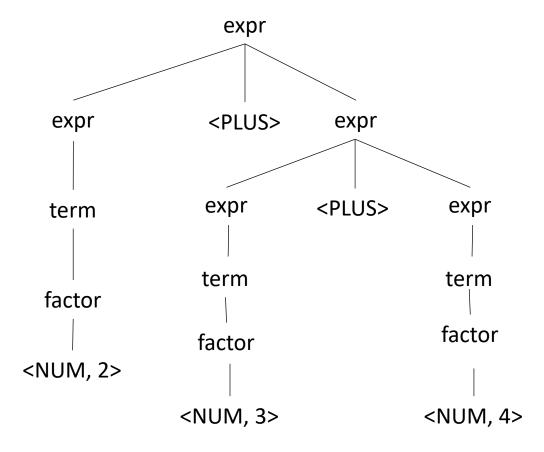

Operator	Name	Productions
I	union	: union PIPE union concat
	concat	: concat DOT concat starred
*	starred	: starred STAR unit
()	unit	: LPAREN union RPAREN CHAR

input: a.b | c*

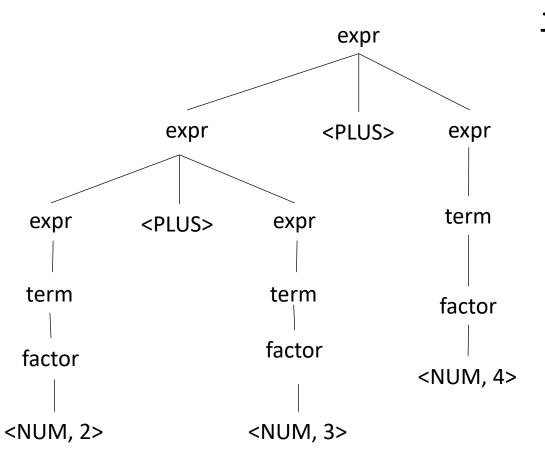
Let's try it for regular expressions, {| . * ()}

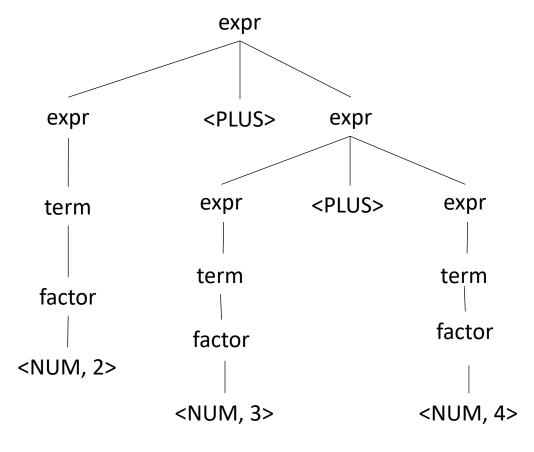
Operator	Name	Productions
	union	: union PIPE union concat
	concat	: concat DOT concat starred
*	starred	: starred STAR unit
()	unit	: LPAREN union RPAREN CHAR

input: a.b | c*

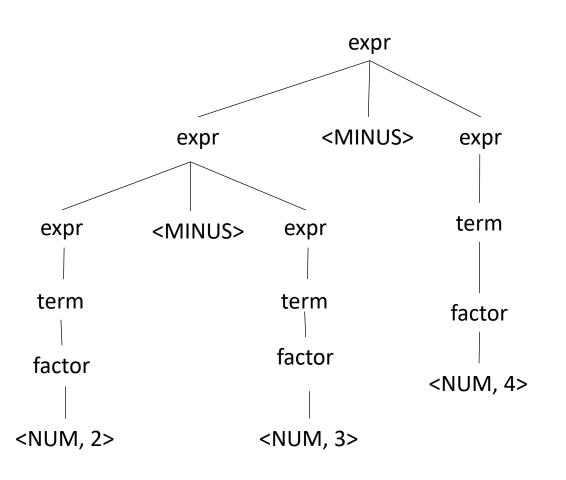


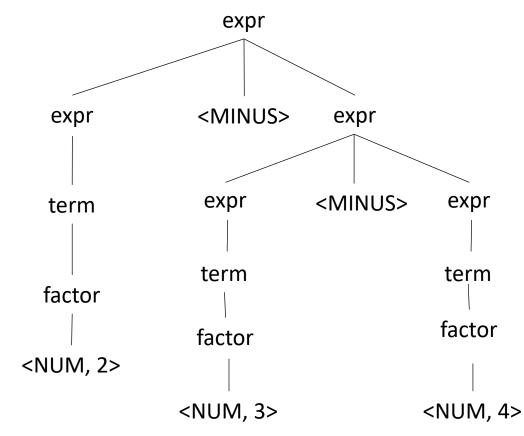
Let's make some more parse trees


Operator	Name	Productions
+	expr	: expr PLUS expr term
*	term	: term TIMES term factor
()	factor	: LP expr RP NUM


Let's make some more parse trees

Operator	Name	Productions
+	expr	: expr PLUS expr term
*	term	: term TIMES term factor
()	factor	: LP expr RP NUM


This is ambiguous, is it an issue?



What about for a different operator?

What about for a different operator?

Associativity

The order in which we evaluate the same operator

Sometimes it doesn't matter:

- Integer arithmetic
- Integer multiplication
- What else?

Good test:

• ((a OP b) OP c) == (a OP (b OP c))

What about floating point arithmetic?

Associativity

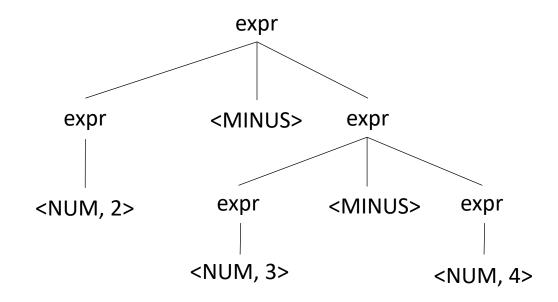
The order in which we evaluate the same operator

- left to right (left-associative)
 - 2-3-4 is evaluated as ((2-3) 4)
 - What other operators are left-associative

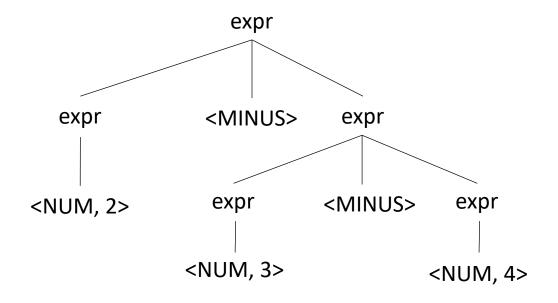
- right-to-left (right-associative)
 - Any operators you can think of?

Associativity

The order in which we evaluate the same operator

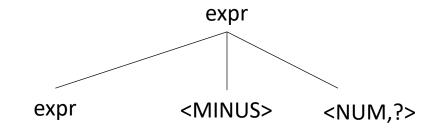

- left to right (left-associative)
 - 2-3-4 is evaluated as ((2-3) 4)
 - What other operators are left-associative

- right-to-left (right-associative)
 - Any operators you can think of?
 - Assignment, power operator

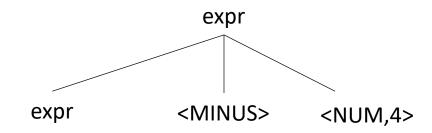

How to encode associativity?

- Like precedence, some tools (e.g. YACC) allow associativity specification through keywords:
 - "+": left, "^": right
- Like precedence, we can also encode it into the production rules

Operator	Name	Productions
-	expr	: expr MINUS expr NUM

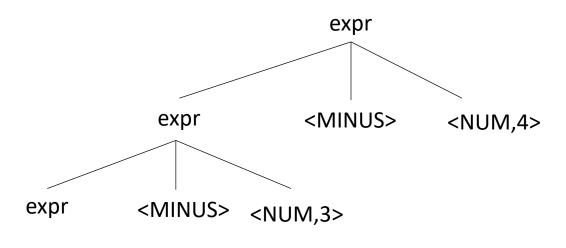


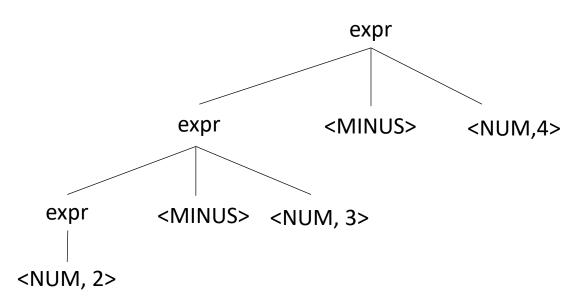
Operator	Name	Productions
-	expr	: expr MINUS NUM NUM


No longer allowed

input: 2-3-4

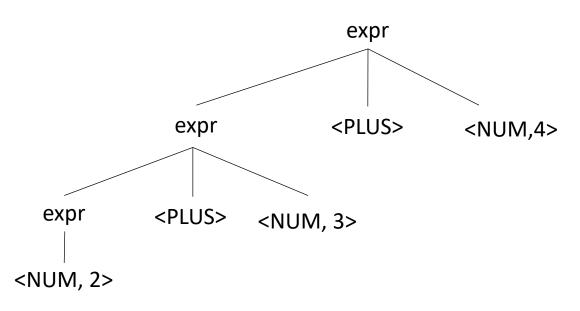
Operator	Name	Productions
-	expr	: expr MINUS NUM NUM


Lets start over


Operator	Name	Productions
-	expr	: expr MINUS NUM NUM

input:
$$2-3-4$$

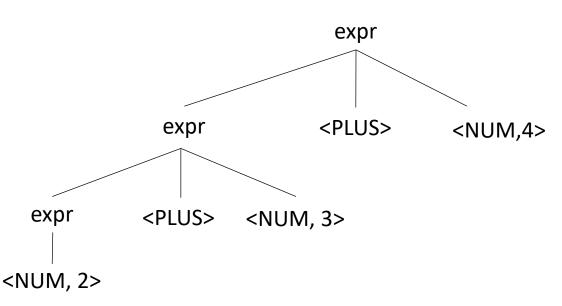
Operator	Name	Productions
-	expr	: expr MINUS NUM NUM


Operator	Name	Productions
-	expr	: expr MINUS NUM NUM

Should you have associativity when its not required?

Benefits?
Drawbacks?

Operator	Name	Productions
+	expr	: expr PLUS NUM NUM



Should you have associativity when its not required?

Benefits?
Drawbacks?

OperatorNameProductions+expr: expr PLUS NUM
| NUM

input: 2+3+4

Good design principle to avoid ambiguous grammars, even when strictly not required too.

Helps with debugging, etc. etc.

Many tools will warn if it detects ambiguity

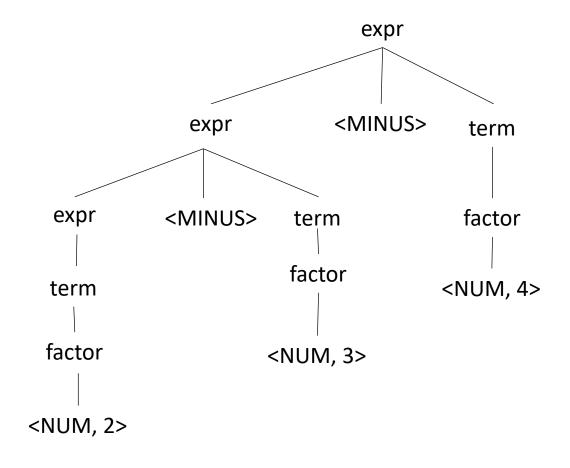
Let's make a richer grammar

Let's add minus, division and power to our grammar

Operator	Name	Productions

Tokens:

Let's make a richer grammar


Let's add minus, division and power to our grammar

Operator	Name	Productions
+,-	expr	: expr PLUS term expr MINUS term term
*,/	term	: term TIMES pow term DIV pow pow
^	pow	: factor CARROT pow factor
()	factor	: LPAR expr RPAR NUM

Tokens: NUM = [0-9]+ PLUS = '\+' TIMES = '*' LP = '\(' RP = \)' MINUS = '-' DIV = '/' CARROT =' \^'

Let's make a richer grammar

Operator	Name	Productions
+,-	expr	: expr PLUS term expr MINUS term term
*,/	term	: term TIMES pow term DIV pow pow
^	pow	: factor CARROT pow factor
()	factor	: LPAR expr RPAR NUM

What do these look like in real-world languages?

C++:
 https://en.cppreference.com/w/cpp/language/operator_precedence

 Python: https://docs.python.org/3/reference/expressions.html#operatorprecedence

https://www.geeksforgeeks.org/precedence-and-associativity-of-operators-in-python/

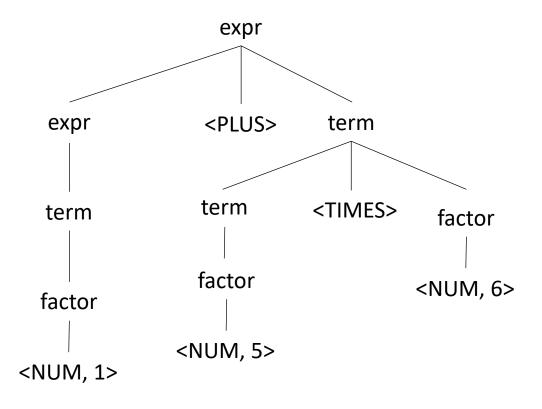
Production rules in a compiler

Great to check if a string is grammatically correct

• But can the production rules actually help us with compilation??

Production actions

- Each production option is associated with a code block
 - It can use values from its children
 - it returns a value to its parent
 - Executed in a post-order traversal (natural order traversal)

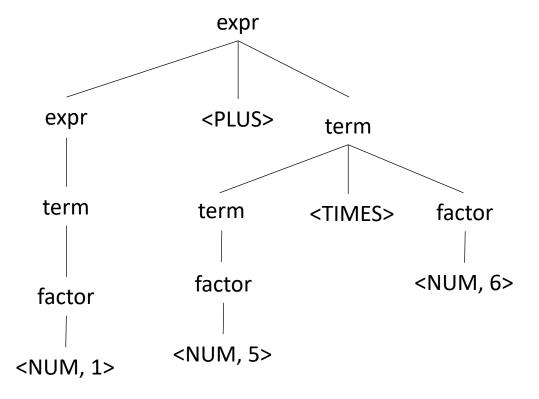

Production actions

Example: executing a mathematical expression during parsing

Children values are passed in as an array C, indexed from left to right

Operator	Name	Productions	Actions
+,-	expr	: expr PLUS term expr MINUS term term	<pre>{} {} {}</pre>
*,/	term	: term TIMES factor : term DIV factor factor	<pre>{} {} {}</pre>
()	factor	: LPAR expr RPAR NUM	<pre>{} {}</pre>

input: 1+5*6


Production actions

Example: executing a mathematical expression during parsing

Children values are passed in as an array C, indexed from left to right

Operator	Name	Productions	Actions
+,-	expr	: expr PLUS term expr MINUS term term	{ret C[0] + C[2]} {ret C[0] - C[2]} {ret C[0]}
*,/	term	: term TIMES factor : term DIV factor factor	{ret C[0] * C[2]} {ret C[0] / C[2]} {ret C[0]}
()	factor	: LPAR expr RPAR NUM	<pre>{ret C[1]} {ret int(C[0])}</pre>

input: 1+5*6

We have just implemented a simple arithmetic interpreter! Could this be in a compiler?

Next week

We will look at LEX and YACC

Homework will be released on Tuesday

Enjoy your weekend!