
CSE211: Compiler Design
Oct. 6, 2022

• Topic:
• Symbol tables
• parsing with derivatives

• Questions:
• What is “scope”
• How do you parse a regular

expression?
• How do you parse a context free

grammar?

Logistics

• Homework 1 is released

• Please find a partner ASAP
• Someone will need to join as a third person. It is not fair to that team to have

someone join late

• Because of this, if you do not find a partner by the end of the day, I’ll assign a
partner.
• But please try to self organize

• Jeremy set up a class discord
• I will not moderate the discord
• Don’t cheat and be nice to each other

Logistics

• Pair programming assignment:
• Different from a group project
• Any work on the assignment must be done together!
• Help each other with understanding!

Logistics

• Office hours moved to Friday again this week so that you have a
chance to get started on the HW

• Sign up sheet will be released at 11 AM on Friday
• Look for a canvas announcement

Logistics

• Next week:
• I will be in Chicago for PACT
• Tuesdays lecture will be asynchronous
• Office hours will move to Friday again.

• The week after:
• I will be in Phoenix for the Khronos Group F2F
• Thursdays lecture will be asynchronous
• Office hours will be on Tuesday after class

• That should be all my travel for the quarter

I’ll send out an announcement
to remind you

Review

• What is a parser generator?

• How do you use a parser generator?

• What features do parser generators have that can make your life
easier?
• As a compiler writer?
• As a compiler user?

CSE211: Compiler Design
Oct. 6, 2022

• Topic:
• Symbol tables
• parsing with derivatives

• Questions:
• What is “scope”
• How do you parse a regular

expression?
• How do you parse a context free

grammar?

First topic of today: Scope

• What is scope?

• Can it be determined at compile time? Can it be determined at
runtime?

• C vs. Python

• Anyone have any interesting scoping rules they know of?

One consideration: Scope

• Lexical scope example

int x = 0;
int y = 0;
{
int y = 0;
x+=1;
y+=1;

}
x+=1;
y+=1; What are the final values in x and y?

How to track scope?

• Symbol table
• Global object, accessible (and mutable) by all production actions

• two methods:
• lookup(id) : lookup an id in the symbol table.
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id (or overwrite an
existing id) into the symbol table along with a set
of information about the id.

What information might we store about an id?

a very simple programming language

VARIABLE_NAME = “[a-z]+”
INCREMENT = “\+\+”
TYPE = “int”
LB = “{“
RB = “}”
SEMI = “;”

statements are either a declaration or an increment

int x;
x++;
int y;
y++;

a very simple programming language

VARIABLE_NAME = “[a-z]+”
INCREMENT = “\+\+”
TYPE = “int”
LB = “{“
RB = “}”
SEMI = “;”

statements are either a declaration or an increment

int x;
{
int y;
x++;
y++;

}
y++;

a very simple programming language

VARIABLE_NAME = “[a-z]+”
INCREMENT = “\+\+”
TYPE = “int”
LB = “{“
RB = “}”
SEMI = “;”

statements are either a declaration or an increment

int x;
{
int y;
x++;
y++;

}
y++;

How to track scope?

• SymbolTable ST;

declare_variable: TYPE VARIABLE_NAME SEMI
{}

Say we are matched string:
int x;

lookup(id) : lookup an id in the symbol table. Returns None if the
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.

How to track scope?

• SymbolTable ST;

declare_variable: TYPE VARIABLE_NAME SEMI
{ST.insert(C[1],C[0])}

Say we are matched string:
int x;

In this example we are storing a type

How to track scope?

• SymbolTable ST;

variable_inc: VARIABLE_NAME INCREMENT SEMI
{}

Say we are matched string:
x++;

lookup(id) : lookup an id in the symbol table. Returns None if the
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into
the symbol table along with a set of information about the id.

How to track scope?

• SymbolTable ST;

variable_inc: VARIABLE_NAME INCREMENT SEMI
{if not ST.lookup(x):

raise SymbolTableException;
else:

... // continue}

Say we are matched string:
x++;

How to track scope?

• SymbolTable ST;

statement : variable_inc
| declare_variable

statement_list : statement statement_list
| statement

How to track scope?

• SymbolTable ST;

statement : variable_inc
| declare_variable

statement_list : statement statement_list
| statement

adding in scope

How to track scope?

• SymbolTable ST;

statement : variable_inc
| declare_variable
| LBAR statement_list RBAR

statement_list : statement statement_list
| statement

How to track scope?

• SymbolTable ST;

statement : LBAR statement_list RBAR

start a new scope S remove the scope S

How to track scope?

• Symbol table
• four methods:
• lookup(id) : lookup an id in the symbol table.
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id into the symbol
table along with a set of information about the id.

• push_scope() : push a new scope to the symbol table

• pop_scope() : pop a scope from the symbol table

How to track scope?

• SymbolTable ST;

statement : LBAR statement_list RBAR

start a new scope S remove the scope S

Think about how to solve with production rules

How to implement a symbol table?

• Thoughts? What data structures are good at mapping strings?

• Symbol table
• four methods:
• lookup(id) : lookup an id in the symbol table.
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id into the symbol
table along with a set of information about the id.

• push_scope() : push a new scope to the symbol table

• pop_scope() : pop a scope from the symbol table

How to implement a symbol table?

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

HT 0base scope

How to implement a symbol table?

HT 0push_scope()

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

push_scope()

adds a new
Hash Table
to the top of the stack

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

insert(id,data)

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

insert(id,data)

insert (id -> data) at
top hash table

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

lookup(id)

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

lookup(id)

check here
first

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

lookup(id) then check
here

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

HT 1

pop_scope()

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

HT 0

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

How to implement a symbol table?

• Example

HT 0

int x = 0;
int y = 0;
{
int y = 0;
x++;
y++;

}
x++;
y++;

Stack of hash tables

Moving on

• Parsing with derivatives!

Parsing RE’s with Derivatives

• A simple regular expression matcher implementation
• Given an RE AST, you can check matches with very few lines of code

• Think recursively!

Language Derivatives

• A language is a (potentially infinite) set of strings {s1, s2, s3, s4, …}

• A language is regular if it can be captured using a regular expression

• Examples of regular languages:
• {“a”}, {“+”}, {“+”, ”-”, ”*”, ”\”}
• {“1”, “1+1”, “1+1+1”}
• {“”}, also called {𝜀}
• {}

Subtle distinction between {} and {𝜀}

Language Derivatives

• The Derivative of language L with respect to character c (noted 𝛿c(L)) is:

• We’ll go over some examples in the next slides

for all s in L, if s begins with c, then s[1:] is in 𝛿c(L)

Language Derivatives Examples

• L = {“a”}

• 𝛿a(L) = ?

• 𝛿b(L) = ?

Language Derivatives Examples

• L = {“+”, “-”, “*”, “/”}

• 𝛿+ (L) = ?

• 𝛿^ (L) = ?

• 𝛿* (L) = ?

Language Derivatives Examples

• L = {“1”, “1+1”, “1+1+1”, “1+1+1+1”, …}

• 𝛿+ (L) = {?}

• 𝛿1 (L) = {?}

• 𝛿1+ (L) = {?}

Language Derivatives Examples

• L = {“aaa”, “ab”, “ba”, “bba”}

• 𝛿a (L) = {?}

• 𝛿aa (L) = {?}

• 𝛿b (L) = {?}

• 𝛿ba (L) = {?}

Regular Expressions

Recall we defined regular expressions recursively:

The three base cases: a character literal
• The RE for a character “a” is given by “a”. It matches only

the character “a”
• The RE for the empty string is is given by “” or 𝜀
• The RE for the empty set is given by {}

Regular Expressions

three recursive definitions

• The concatenation of two REs x and y is given by x.y and matches the
strings of RE x concatenated with the strings of RE y

• The union of two REs x and y is given by x|y and matches the strings of
RE x or the strings of RE y

• The Kleene star of an RE x is given by x* and matches the strings of RE
x repeated 0 or more times

Regular expressions recursive definition

re =
|{}
| “”
| c (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Regular expressions recursive definition

re = a.b

=

“a” “b”

relhs . rerhs

re =
|{}
| “”
| c (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

parse tree for a regular expression

Operator Name Productions

| union : union PIPE concat
| concat

. concat : concat CONCAT starred
| starred

* starred : starred STAR
| unit

unit : CHAR
| “”

input: a.b |c*

Excluding special cases for {}

parse tree for a regular expression

union

union <|>

starred
concat

concat

concat

<CHAR, “c”>

unit <*>
starred

unit

<CHAR, “a”>

starred

unit

<CHAR ,”b”>

<.>

Operator Name Productions

| union : union PIPE concat
| concat

. concat : concat CONCAT starred
| starred

* starred : starred STAR
| unit

unit : CHAR
| “”

Excluding special cases for {}

input: a.b |c*

parse tree for a regular expression

union

union <|>

starred
concat

concat

concat

<CHAR, c>

unit <*>
starred

unit

<CHAR, a>

starred

unit

<CHAR ,b>

<.>

abstract syntax tree

<|>

<.>

<“a”> <“b”>

<*>

<“c”>

input: a.b |c*

parse tree for a regular expression

abstract syntax tree • re =
|{}
| “”
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

<|>

<.>

<“a”> <“b”>

<*>

<“c”>

input: a.b |c*

parse tree for a regular expression

abstract syntax tree

<|>

<.>

<“a”> <“b”>

<*>

<“c”>

relhs

relhs rerhs

rerhs

restarred

• re =
|{}
| “”
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

input: a.b |c*

parse tree for a regular expression

abstract syntax tree

<|>

<.>

<“a”> <“b”>

<*>

<“c”>

relhs

relhs rerhs

rerhs

restarred

each node is
also a regular expression!

• re =
|{}
| “”
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

input: a.b |c*

parse tree for a regular expression

abstract syntax tree

• In your homework you will
need to generate an RE AST
using production rules

• Question: given a regular
expression AST, how check if
a string is in the language?

• parsing with derivatives!

<|>

<.>

<“a”> <“b”>

<*>

<“c”>

relhs

relhs rerhs

rerhs

restarred

each node is
also a regular expression!

input: a.b |c*

Regular expressions are closed under derivatives

• Given a regular language L, any derivative of L is also a regular
language.

• Let’s try some!

Regular expressions are closed under derivatives

• re = a

• L = ?

• 𝛿a(L) = ?

• 𝛿a(re) = ?

• 𝛿b(re) = ?

Regular expressions are closed under derivatives

• re = a | b

• L = ?

• 𝛿a(re) = ?

• 𝛿b(re) = ?

Regular expressions are closed under derivatives

• re = a.a | a.b

• L = ?

• 𝛿a(re) = ?

• 𝛿b(re) = ?

Regular expressions are closed under derivatives

• re = (a.b.c)*

• L = ?

• 𝛿a(re) = ?

What is a method for computing the derivative?

Consider the base cases

• 𝛿c (re) = match re with:

• {}
return {}

• “”
return {}

• a (single character)
if a == c then return {𝜀}
else return {}

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

return ? ?

• restarred*
return ? ?

• relhs . rerhs
return ? ?

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Regular expressions are closed under derivatives

• re = a.a | a.b

• L = {“aa”, “ab”}

• 𝛿a(re) = {a, b} = a | b

• 𝛿b(re) = {}

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

return ? ?

• restarred*
return ? ?

• relhs . rerhs
return ? ?

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
return ? ?

• relhs . rerhs
return ? ?

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Regular expressions are closed under derivatives

• re = (a.b.c)*

• L = {“”, ”abc”, “abcabc”, “abcabcabc” …}

• 𝛿a(re) = {“bc”, “bcabc”, “bcabcabc”, ...} = b.c.(a.b.c)*

How do certain regular expressions combine?

• a | “” = ?
• a | {} = ?

• a . “” = ?
• a . {} = ?

• “” * = ?
• {} * = ?

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
return ? ?

• relhs . rerhs
return ? ?

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
return ? ?

• relhs . rerhs
return ? ?

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
return 𝛿c(restarred) . restarred*

• relhs . rerhs
return ? ?

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Regular expressions are closed under derivatives

• re = (a.b.c)*

• L = {“”, ”abc”, “abcabc”, “abcabcabc” …}

• 𝛿a(re) = {“bc”, “bcabc”, “bcabcabc”, ...} = b.c.(a.b.c)*

Derivative Recursive Cases

Let’s look at concatenation:

• 𝛿c (re) = match re with:

• relhs . rerhs
return ?? Example:

re = a.b

𝛿a(re) = b

Derivative Recursive Cases

Let’s look at concatenation:

• 𝛿c (re) = match re with:

• relhs . rerhs
return 𝛿c(relhs) . rerhs

Example:

re = a.b

𝛿a(re) = b

Derivative Recursive Cases

Let’s look at concatenation:

• 𝛿c (re) = match re with:

• relhs . rerhs
return 𝛿c(relhs) . rerhs

Example:

re = c*.a.b

𝛿a(re) = ?

What about?

Derivative Recursive Cases

Let’s look at concatenation:

• 𝛿c (re) = match re with:

• relhs . rerhs
return 𝛿c(relhs) . rerhs |

if “” in relhs then 𝛿c(rerhs) else {}

Example:

re = c*.a.b

𝛿a(re) = ?

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs
return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
return 𝛿c(restarred) . restarred*

• relhs . rerhs
return 𝛿c(relhs) . rerhs |

if “” in relhs then 𝛿c(rerhs) else {}

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Nullable operator

• NULL(re) =
if “” ∈ 𝑟𝑒 then: “”
else: {}

Nullable operator

• NULL(re) =
if “” ∈ 𝑟𝑒 then: “”
else: {}

implement over a RE abstract syntax tree

<|>

<.>

<“a”> <“b”>

<*>

< “c” >

• re =
|{}
| “”
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

What is a method for computing NULL?

Consider the base cases

• NULL(re) = match re with:

• {}
return {}

• “”
return “”

• a (single character)
return {}

• re =
|{}
| “”
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

What is a method for computing NULL?

Consider the recursive cases:

• NULL(re) = match re with:

• relhs | rerhs

return ??

• restarred*
return ??

• relhs . rerhs
return ??

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

What is a method for computing NULL?

Consider the recursive cases:

• NULL(re) = match re with:

• relhs | rerhs

return NULL(relhs) | NULL(rerhs)

• restarred*
return “”

• relhs . rerhs
return NULL(relhs) . NULL(rerhs)

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs
return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
return 𝛿c(restarred) . restarred*

• relhs . rerhs
return 𝛿c(relhs) . rerhs |

if 𝜀 in relhs then 𝛿c(rerhs) else {}

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs
return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
return 𝛿c(restarred) . restarred*

• relhs . rerhs
return 𝛿c(relhs) . rerhs |

NULL(relhs) . 𝛿c(rerhs)

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

L(re) = {.. s ..}

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

𝛿c1 (re)

L(𝛿c1 (re)) = {.. s[1:] ..}

L(re) = {.. s ..}

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

𝛿c1 (re) 𝛿c2 (𝛿c1 (re)) = 𝛿c1,c2 (re)

L(𝛿c1 (re)) = {.. s[1:] ..}

L(re) = {.. s ..}

L(𝛿c1,c2 (re)) = {.. s[2:] ..}

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

𝛿c1 (re) 𝛿c2 (𝛿c1 (re)) = 𝛿c1,c2 (re) 𝛿s(re)

L(𝛿c1 (re)) = {.. s[1:] ..} L(𝛿s(re)) = {.. 𝜀 ..}

L(re) = {.. s ..}

L(𝛿c1,c2 (re)) = {.. s[2:] ..}

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

𝛿c1 (re) 𝛿c2 (𝛿c1 (re)) = 𝛿c1,c2 (re)

NULL(𝛿s(re)) == “”

L(𝛿c1 (re)) = {.. s[1:] ..} L(𝛿s(re)) = {.. “” ..}

L(re) = {.. s ..}

L(𝛿c1,c2 (re)) = {.. s[2:] ..}

If this is true,
Then re matches s

𝛿s(re)

Have a good weekend!

Take a look at part 2 of the homework, you will be implementing a parsing
with derivative matcher.

Next week we start module 2!

