CSE211: Compiler Design

 Oct. 18, 2022- Topic: global optimizations
- Questions: how can we reason about arbitrary CFGs?

Announcements

- Office hours Today:
- 3:30-5:30 PM
- Moved to remote
- Homework 1:
- Due today (at 11:59 pm)
- Likely won't be available for help after office hours
- Homework 2:
- I will try to release it today
- Possible for delays
- I will send out the pair programming sign up sheet
- Try to find a partner by the end of the week so that you can start!

Announcements

- Thursday will be asynchronous
- Plan on asynchronous
- Unless I'm sick, then we'll do remote, like today. I'll let you know ASAP
- Thanks for being patient with the uncertainty!

Announcements

- Mark your attendance for today after you watch the recording (or if you are attending live)
- Please try to keep on top of this.
- We have put attendance in up until now. Let us know within 1 week if there are any issues.
- Only mark Oct. 20 attendance after you watch the lectures.

Guest lecture confirmed

- Felix Klock
- Principle Engineer at AWS
- Big contributor to Rust
- wants to tell us about work on incremental compilation
- Nov. 29 (Felix will be remote, but we will stream his lecture in the classroom)

Review regional optimizations

If all of these are basic blocks then the CFG looks like:

Loop unrolling:

What could change this CFG?

Loop unrolling:

Assume we
know that the loop will iterate an even number of times:

Loop unrolling:

Loop unrolling:

Assume we
know that the loop will iterate an even number of times:

What have we saved here?

Loop unrolling:

Assume we
know that the loop will iterate an even number of times:

What have we saved here?

Code placement:

- Back to if/else
- Eventually we will straight line the code:

Code placement:

- Back to if/else
- Eventually we will straight line the code:


```
else:
r3 = ...;
br end_if;
```

end_if:
r4 = ...;
br next_lbl

```
start:
```

r0 = ...;
r1 = ...;
br r0, if, else;

```
if:
r2 = ...;
```

```
end_if:
r4 = ...;
br next_lbl
```

```
else:
r3 = ...;
br end_if;
```

If we know that one branch is taken more often than the other...
say the branch is true most often

CSE211: Compiler Design

 Oct. 18, 2022- Topic: global optimizations
- Questions: how can we reason about arbitrary CFGs?

CSE211: Compiler Design

 Oct. 18, 2022- Topic: global optimizations
- Questions: how can we reason about arbitrary CFGs?

Global optimizations

- Difference between regional:
- handle arbitrary CFGs, cannot rely on structure!
- Algorithms become more general
- Potential for more optimizations
- Highly suggest reading for this part of the class
- Chapter 9 of EAC

First concept:

- Dominance in a CFG
- Builds up a framework for reasoning
- Building block for many algorithms
- Global local value numbering
- Conversion to SSA

Dominance

- a block b_{x} dominates block b_{y} iff every path from the start to block b_{x} goes through b_{y}
- definition:
- dominance (includes itself)
- strict dominance (does not include itself)

```
start:
r0 = ...;
r1 = ...;
br r0, if, else;
```


Dominance

- a block b_{x} dominates block b_{y} iff every path from the start to block b_{x} goes through b_{y}
- definition:
- dominance (includes itself)
- strict dominance (does not include itself)
start:
start:
r0 = ...;
r0 = ...;
r1 = ...;
r1 = ...;
br r0, if, else;
br r0, if, else;
- Can we use this notion to extend local value numbering?

Node	Dominators
B0	
B1	
B2	
B3	
B4	
B5	
B6	
B7	
B8	

Node	Dominators
BO	B0
B1	BO, B1
B2	$B 0, B 1, B 2$
B3	$B 0, B 1, B 3$
B4	$B 0, B 1, B 3, B 4$
B5	$B 0, B 1, B 5$
B6	$B 0, B 1, B 5, B 6$
B7	$B 0, B 1, B 5, B 7$
B8	$B 0, B 1, B 5, B 8$

Computing dominance

- Iterative fixed point algorithm
- Initial state, all nodes start with all other nodes are dominators:
- $\operatorname{Dom}(n)=N$
- Dom(start) $=\{$ start $\}$
iteratively compute:

$$
\operatorname{Dom}(n)=\{n\} \cup\left(\cap_{m \text { in preds }(n)} \operatorname{Dom}(m)\right)
$$

Building intuition behind the math

- This algorithm is vertex centric
- local computations consider only a target node and its immediate neighbors
- At least one node is instantiated with ground truth:
- starting node dominator is itself
- Information flows through the graph as nodes are updated

For example: Bellman Ford Shortest path

- Root node is initialized to 0
- Every node determines new distances based on incoming distances.
- When distances stop updating, the algorithm is converged

Now lets think about dominance

- Root node is initialized to itself
- Every node determines new dominators based on parent dominators

Now lets think about dominance

- Root node is initialized to itself
- Every node determines new dominators based on parent dominators
$D=\{x, y\}$

$$
D=\{a, x, y\}
$$

Now lets think about dominance

- Root node is initialized to itself
- Every node determines new dominators based on parent dominators
update:
intersection of parent values
$D=\{x, y\}$

$$
D=\{a, x, y\}
$$

$$
\operatorname{Dom}(n)=\{n\} \cup\left(\bigcap_{p \text { in } \operatorname{preds}(n)} \operatorname{Dom}(p)\right)
$$

Now lets think about dominance

- Root node is initialized to itself
- Every node determines new dominators based on parent dominators
update:
intersection of parent values
$D=\{x, y\}$

$$
D=\{x, y, z\}
$$

$$
\operatorname{Dom}(n)=\{n\} \cup\left(\bigcap_{p \text { in } p r e d s}(n) \operatorname{Dom}(p)\right)
$$ parents to children.

Lets try it

Node	Initial	Iteration 1
B0	B0	
B1	N	
B2	N	
B3	N	
B4	N	
B5	N	
B6	N	
B7	N	
B8	N	

How can we optimize the algorithm?

Node	Initial	Iteration 1	Iteration 2	Iteration 3
B0	B0	B0
B1	N	B0, B1
B2	N	B0,B1,B2
B3	N	B0,B1, B2,B3	B0,B1, B3	...
B4	N	B0,B1,B2,B3, B4	B0,B1,B3,B4	...
B5	N	B0,B1,B5
B6	N	B0,B1, B5, B6
B7	N	B0,B1,B5,B6,B7	B0,B1,B5, B7	...
B8	N	B0,B1,B5,B8	...	\cdots

How can we optimize the algorithm?

Node	Initial	Iteration 1	Iteration 2	Iteration 3
B0	B0	B0
B1	N	B0, 1 1
B2	N	B0,B1,B2
B3	N	B0,B1, B2, B3	B0, B1, B3	...
B4	N	B0,B1, B2, B3, B4	B0,B1, B3, B4	...
B5	N	B0,B1,B5
B6	N	B0,B1, B5, B6	\ldots	...
B7	N	B0,B1,B5,B6,B7	B0,B1,B5, B7	...
B8	N	B0,B1,B5, B8

This can be any order...
How can we optimize the order?

Given this intuition, what ordering would be best?

- Root node is initialized to itself
- Every node determines new dominators based on parent dominators
update:
intersection of parent values
$D=\{x, y\}$

$$
D=\{x, y, z\}
$$

$$
D=\{a, x, y\}
$$

Forward flow, as updates flow from parents to children.

$$
\operatorname{Dom}(n)=\{n\} \cup\left(\bigcap_{p \text { in } \operatorname{preds}(n)} \operatorname{Dom}(p)\right)
$$

How can we optimize the algorithm?

Node	New Order
B0	
B1	
B2	
B3	
B4	
B5	
B6	
B7	
B8	

Reverse
post-order (rpo),
where parents are visited first

How can we optimize the algorithm?

Node	Initial	Iteration 1	Iteration 2	Iteration 3
B0	B0			
B1	N			
B2	N			
B5	N			
B6	N			
B8	N			
B7	N			
B3	N			
B4	N			

How can we optimize the algorithm?

Node	Initial	Iteration 1	Iteration 2	Iteration 3
B0	B0	B0		
B1	N	BO,B1		
B2	N	B0,B1,B2		
B5	N	B0,B1,B5		
B6	N	B0,B1,B5,B6		
B8	N	B0,B1,B5,B8		
B7	N	B0,B1,B5,B7		
B3	N	$B 0, B 1, B 3$		
B4	N	$B 0, B 1, B 4$		

How can we optimize the algorithm?

Node	Initial	Iteration 1	Iteration 2	Iteration 3
B0	B0	B0	\ldots	
B1	N	B0,B1	\ldots	
B2	N	B0,B1,B2	\ldots	
B5	N	B0,B1,B5	\ldots	
B6	N	B0,B1,B5,B6	\ldots	
B8	N	B0,B1,B5,B8	\ldots	
B7	N	$B 0, B 1, B 5, B 7$	\ldots	
B3	N	$B 0, B 1, B 3$	\ldots	
B4	N	$B 0, B 1, B 4$	\ldots	

A quick aside about graph algorithms:

- Does node ordering matter in SSSP?
- Yes! Dijkstra's algorithm uses a priority queue
- Prioritize nodes with the lowest value

Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

```
x = 5
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```


Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

```
x=5 & Live variables:?
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```


Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

```
x = 5 & p
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```


Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

```
x = 5 p Live variables: ?
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```


Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

```
x = 5 p Live variables: x,z,w
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```


Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

```
x = 5
if (z):
    y = 6 p Live variables: ?
else:
    y = x
print(y)
print(w)
```


Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

```
//start & P}\mathrm{ Live variables: ?
x = 5
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```


Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

```
//start & p}\mathrm{ Live variables: w
x = 5
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```


Another analysis: Live Variable Analysis

- A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined
- examples:

Accessing an uninitialized variable!

```
//start & p}\mathrm{ Live variables: w
x = 5
if (z):
    y = 6
else:
    y = x
print(y)
print(w)
```


Live variable analysis in the CFG:

For each block B_{x} : we want to compute LiveOut: The set of variables that are live at the end of B_{x}

Live variable analysis in the CFG:

Live variable analysis in the CFG:

Live variable analysis in the CFG:

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is satisfies these two conditions

- it is read and it is not written to
- it is read before it is written to

Block	VarKill	UEVar
B0		
B1		
B2		
B3		
B4		

Live variable analysis in the CFG:

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is satisfies these two conditions

- it is read and it is not written to
- it is read before it is written to

Block	VarKill	UEVar
B0	i	
B1	$\}$	
B2	s	
B3	s, i	
B4	$\}$	

Live variable analysis in the CFG:

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is satisfies these two conditions

- it is read and it is not written to
- it is read before it is written to

Block	VarKill	UEVar
B0	i	$\}$
B1	$\}$	i
B2	s	$\}$
B3	s, i	s, i
B4	$\}$	s

Live variable analysis in the CFG:

- Initial condition: LiveOut(n) = \{\} for all nodes
- Ground truth, no variables are live at the exit of the program, i.e. end node $\mathrm{n}_{\text {end }}$ has LiveOut $\left(\mathrm{n}_{\text {end }}\right)=\{ \}$

Live variable analysis in the CFG:

- Initial condition: LiveOut(n) = $\}$ for all nodes
- Ground truth, no variables are live at the exit of the program, i.e. end node $\mathrm{n}_{\mathrm{end}}$ has LiveOut $\left(\mathrm{n}_{\mathrm{end}}\right)=\{ \}$

Now we can perform the iterative fixed point computation:

$$
\operatorname{LiveOut}(n)=U_{s \text { in succ(n) }}(\operatorname{UEVar}(s) \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)}))
$$

Live variable analysis in the CFG:

$$
\operatorname{LiveOut}(n)=U_{s \text { in succ(n) }}(\text { UEVar(s) } \cup(\operatorname{LiveOut(s)} \cap \overline{\operatorname{VarKill(s)})})
$$

Backwards flow analysis because values flow from successors

Live variable analysis in the CFG:

$$
\operatorname{LiveOut}(n)=U_{s \text { in } \operatorname{succ}(n)}(\operatorname{UEVar(s)} \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)}))
$$

any variable in UEVar(s) is live at n

Live variable analysis in the CFG:

$$
\operatorname{LiveOut}(n)=U_{s \text { in succ(n) }}(\operatorname{UEVar}(s) \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)}))
$$

variables that are not overwritten in s

Live variable analysis in the CFG:

$$
\operatorname{LiveOut}(n)=U_{s \text { in succ(n) }}(\operatorname{UEVar}(s) \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)}))
$$

variables that are live at the end of s

Live variable analysis in the CFG:

$$
\operatorname{LiveOut}(n)=U_{s \text { in succ(n) }}(\text { UEVar(s) } \cup(\operatorname{LiveOut(s)} \cap \overline{\operatorname{VarKill}(s)}))
$$

variables that are live at the end of s, and not overwritten by s

Live variable analysis in the CFG:

$$
\operatorname{LiveOut}(n)=U_{s \text { in succ(n) }}(\text { UEVar(s) } \cup(\operatorname{LiveOut(s)} \cap \overline{\operatorname{VarKill(s)})})
$$

LiveOut is a union
rather than an intersection

$$
\operatorname{Dom}(n)=\{n\} \cup\left(\bigcap_{p \text { in } \operatorname{preds}(n)} \operatorname{Dom}(p)\right)
$$

Consider the language we use for each:

- Dominance of node b_{x} contains b_{y} if:
- every path from the start to b_{x} goes through b_{y}
- LiveOut of node b_{x} contains variable y if:
- some path from b_{x} contains a usage of y

$$
\begin{aligned}
\operatorname{LiveOut}(n)=U_{\text {sinsucc(} n)}(& \operatorname{UEVar}(s) \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)})) \\
\operatorname{Dom}(n) & =\{n\} \cup\left(\bigcap_{\text {pin preds }(n)} \operatorname{Dom}(p)\right)
\end{aligned}
$$

Consider the language we use for each:

- Dominance of node b_{x} contains b_{y} if:
- every path from the start to b_{x} goes through b_{y}
- LiveOut of node b_{x} contains variable y if:
- some path from b_{x} contains a usage of y
- Some vs. Every

$$
\begin{aligned}
\operatorname{LiveOut}(n)=U_{\text {sin succ(n) }}(& \operatorname{UEVar}(s) \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)})) \\
\operatorname{Dom}(n) & =\{n\} \cup\left(\bigcap_{\text {pin preds(n) }} \operatorname{Dom}(p)\right)
\end{aligned}
$$

Node ordering for backwards flow

- Reverse post-order was good for forward flow:
- Parents are computed before their children
- For backwards flow: use reverse post-order of the reverse CFG
- Reverse the CFG
- perform a reverse post-order
- Different from post order?

Example

post order: D, C, B, A

acks: thanks to this blog post for the example!
https://eli.thegreenplace.net/2015/directed-graph-traversal-orderings-and-applications-to-data-flow-analysis/

Example

post order: D, C, B, A
rpo on reverse CFG: D, B, C, A
reverse CFG

Example

post order: $\mathrm{D}, \mathrm{C}, \mathrm{B}, \mathrm{A}$

rpo on reverse CFG: D, B, C, A

rpo on reverse CFG computes B before C, thus, C can see updated information from B

Example

post order: D, C, B, A

updates in backwards flow

rpo on reverse CFG: D, B, C, A

rpo on reverse CFG computes B before C, thus, C can see updated information from B

Show PyCFG example from homework

- run the print_dot.py command on some test cases to see the output

Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten
UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:

$$
s=a[x]+1 ;
$$

Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten
UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:

$$
s=a[x]+1 ;
$$

UEVar needs to assume $a[x]$ is any memory location that it cannot prove non-aliasing

$$
\text { LiveOut }(n)=U_{s \text { in } \operatorname{succ}(n)}(\operatorname{UEVar}(s) \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)}))
$$

Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten
UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:

$$
\mathrm{a}[\mathrm{x}]=\mathrm{s}+1 ;
$$

Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten
UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:
$a[x]=s+1$;
VarKill also needs to know about aliasing

Demo

- Godbolt demo

Sound vs. Complete

- Sound: Any property the analysis says is true, is true. However, there may be false positives
- Complete: Any error the analysis reports is actually an error. The analysis cannot prove a property though.

$$
\operatorname{LiveOut}(n)=U_{\text {sin succ(n) }}(\operatorname{UEVar}(s) \cup(\text { LiveOut(s) } \cap \overline{\operatorname{VarKill}(s)}))
$$

How to instantiate the UEVar and VarKill for sound/complete analysis w.r.t. memory?

$$
a[x]=s+1 ; \quad s=a[x]+1 ;
$$

Live variable limitations

Imprecision can come from CFG construction:
consider:
br $1<0$, dead_branch, alive_branch

Live variable limitations

Imprecision can come from CFG construction:
consider:
br $1<0$, dead_branch, alive_branch
could come from arguments, etc.

Live variable limitations

Imprecision can come from CFG construction:
consider first class labels (or functions):
br label_reg
need to branch to all possible
where label_reg is a register that contains a register basic blocks!

The Data Flow Framework

```
LiveOut(n) = U S in succ(n)
```

$$
f(x)=O p_{v \text { in }(\text { succ } / \text { preds })} c_{0}(v) o p_{1}\left(f(v) o p_{2} c_{2}(v)\right)
$$

Available Expressions

AvailExpr $(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \overline{\operatorname{ExprKill}(p)})$

An expression e is "available" at the beginning of a basic block b_{x} if for all paths to b_{x}, e is evaluated and none of its arguments are overwritten

Available Expressions

AvailExpr $(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \overline{\operatorname{ExprKill}(p)})$
Forward Flow

Available Expressions

AvailExpr $(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \overline{\operatorname{ExprKill}(p)})$
intersection implies "must" analysis

Available Expressions

AvailExpr $(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \operatorname{ExprKill}(p))$

DEExpr(p) is all Downward Exposed Expressions in p. That is expressions that are evaluated AND operands are not redefined

Available Expressions

AvailExpr $(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup($ AvailExpr $(p) \cap \overline{\operatorname{ExprKill}(p)})$

AvailExpr(p) is any expression that is available at p

Available Expressions

$\operatorname{AvailExpr}(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \overline{\operatorname{ExprKill}(p)})$

ExprKill(p) is any expression that p killed, i.e. if one or more of its operands is redefined in p

Available Expressions

$\operatorname{AvailExpr}(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \operatorname{ExprKill}(p))$

Any expression
that is available (and not killed)
the parents, along with expressions exposed by all the parents.

Available Expressions

$\operatorname{AvailExpr}(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \overline{\operatorname{ExprKill}(p)})$

Application: you can add availExpr(n) to local optimizations in n, e.g. local value numbering

Anticipable Expressions

AntOut $(n)=\bigcap_{\text {sin succ }} \operatorname{UEExpr}(s) \cup($ AntOut $(s) \cap \overline{\operatorname{ExprKill}(s)})$

An expression e is "anticipable" at a basic block b_{x} if for all paths that leave b_{x}, e is evaluated

Anticipable Expressions

AntOut $(n)=\cap_{\text {sinsucc }} U E E x p r(s) \cup($ AntOut(s) $\cap \overline{\text { ExprKill(s) })}$

Backwards flow

Anticipable Expressions

AntOut $(n)=\bigcap_{\text {sin succ }} U E \operatorname{Expr}(s) \cup(\operatorname{AntOut}(s) \cap \overline{\operatorname{ExprKill}(s)})$
"must" analysis

Anticipable Expressions

AntOut $(n)=\bigcap_{\text {sin succ }} \operatorname{UEExpr}(s) \cup(\operatorname{AntOut}(s) \cap \overline{\operatorname{ExprKill}(s)})$

UEExpr(p) is all Upward Exposed Expressions in p. That is expressions that are computed in p before operands are overwritten.

Anticipable Expressions

AntOut $(n)=\cap_{\text {sinsucc }}$ UEExpr(s) $\cup($ AntOut(s) $\cap \overline{\text { ExprKill(s) }})$

Anticipable Expressions

AntOut $(n)=\bigcap_{\text {sin succ }} \operatorname{UEExpr}(s) \cup(\operatorname{AntOut}(s) \cap \overline{\operatorname{ExprKill}(s)})$

Anticipable Expressions

AntOut $(n)=\bigcap_{\text {sin succ }} \cup E \operatorname{Expr}(s) \cup($ AntOut $(s) \cap \overline{\operatorname{ExprKill}(s)})$

Anticipable Expressions

AntOut $(n)=\bigcap_{\text {sin succ }} U E \operatorname{Expr}(s) \cup(\operatorname{AntOut}(s) \cap \overline{\operatorname{ExprKill}(s)})$

Application: you can hoist AntOut expressions to compute as early as possible
potentially try to reduce code size: -Oz

More flow algorithms:

Check out chapter 9 in EAC: Several more algorithms.
"Reaching definitions" have applications in memory analysis

Have a nice weekend!

- See you in office hours or in a week!

