CSE211: Compiler Design Oct. 18, 2022

- **Topic:** global optimizations
- Questions: how can we reason about arbitrary CFGs?

Announcements

- Office hours Today:
 - 3:30 5:30 PM
 - Moved to remote
- Homework 1:
 - Due today (at 11:59 pm)
 - Likely won't be available for help after office hours
- Homework 2:
 - I will try to release it today
 - Possible for delays
 - I will send out the pair programming sign up sheet
 - Try to find a partner by the end of the week so that you can start!

Announcements

- Thursday will be asynchronous
 - Plan on asynchronous
 - Unless I'm sick, then we'll do remote, like today. I'll let you know ASAP
 - Thanks for being patient with the uncertainty!

Announcements

- Mark your attendance for today after you watch the recording (or if you are attending live)
 - Please try to keep on top of this.
 - We have put attendance in up until now. Let us know within 1 week if there are any issues.
- Only mark Oct. 20 attendance after you watch the lectures.

Guest lecture confirmed

- Felix Klock
 - Principle Engineer at AWS
 - Big contributor to Rust
 - wants to tell us about work on incremental compilation
- Nov. 29 (Felix will be remote, but we will stream his lecture in the classroom)

Review regional optimizations

Code placement:

- Back to if/else
- Eventually we will straight line the code:

Code placement:

- Back to if/else
- Eventually we will straight line the code:

If we know that one branch is taken more often than the other... say the branch is true most often

CSE211: Compiler Design Oct. 18, 2022

- **Topic:** global optimizations
- Questions: how can we reason about arbitrary CFGs?

CSE211: Compiler Design Oct. 18, 2022

- **Topic:** global optimizations
- Questions: how can we reason about arbitrary CFGs?

Quick note: Global vs. Regional vs. Local - What do they all mean?

Global optimizations

- Difference between regional:
 - handle arbitrary CFGs, cannot rely on structure!
 - Algorithms become more general
 - Potential for more optimizations
- Highly suggest reading for this part of the class
 - Chapter 9 of EAC

First concept:

- Dominance in a CFG
- Builds up a framework for reasoning
- Building block for many algorithms
 - Global local value numbering
 - Conversion to SSA

Dominance

- a block b_x dominates block b_y iff every path from the start to block b_x goes through b_y
- definition:
 - dominance (includes itself)
 - strict dominance (does not include itself)

Dominance

- a block b_x dominates block b_y iff every path from the start to block b_x goes through b_y
- definition:
 - dominance (includes itself)
 - strict dominance (does not include itself)
- Can we use this notion to extend local value numbering?

Node	Dominators
B0	
B1	
B2	
B3	
B4	
B5	
B6	
B7	
B8	

Node	Dominators
BO	ВО
B1	B0, B1
B2	B0, B1, B2
B3	B0, B1, B3
B4	B0, B1, B3, B4
B5	B0, B1, B5
B6	B0, B1, B5, B6
B7	B0, B1, B5, B7
B8	B0, B1, B5, B8

Concept introduced in 1959, algorithm not not given until 10 years later

Computing dominance

- Iterative fixed point algorithm
- Initial state, all nodes start with all other nodes are dominators:
 - *Dom(n)* = *N*
 - Dom(start) = {start}

iteratively compute:

$$Dom(n) = \{n\} \cup (\bigcap_{\min preds(n)} Dom(m))$$

Building intuition behind the math

- This algorithm is vertex centric
 - local computations consider only a target node and its immediate neighbors
- At least one node is instantiated with ground truth:
 - starting node dominator is itself
- Information flows through the graph as nodes are updated

For example: Bellman Ford Shortest path

- Root node is initialized to 0
- Every node determines new distances based on incoming distances.
- When distances stop updating, the algorithm is converged

- Root node is initialized to itself
- Every node determines new dominators based on parent dominators

Root node is initialized to itself

update:

• Every node determines new dominators based on parent dominators

Root node is initialized to itself

update:

• Every node determines new dominators based on parent dominators

 $Dom(n) = \{n\} \cup (\bigcap_{p \text{ in preds}(n)} Dom(p))$

- Root node is initialized to itself
- Every node determines new dominators based on parent dominators

Lets try it

Node	Initial	Iteration 1
во	ВО	
B1	Ν	
B2	Ν	
B3	Ν	
B4	Ν	
B5	Ν	
B6	Ν	
В7	Ν	
B8	Ν	

 $Dom(n) = \{n\} \cup (\bigcap_{p \text{ in } preds(n)} Dom(p))$

Lets try it

Node	Initial	Iteration 1	Iteration 2	Iteration 3
ВО	B0	ВО		
B1	Ν	B0,B1		
B2	N	B0,B1,B2		
B3	Ν	B0,B1,B2,B3		
B4	N	B0,B1,B2,B3,B4		
B5	Ν	B0,B1,B5		
B6	N	B0,B1,B5,B6		
B7	Ν	B0,B1,B5,B6,B7		
B8	N	B0,B1,B5,B8		

Lets try it

Node	Initial	Iteration 1	Iteration 2	Iteration 3
ВО	B0	ВО		
B1	N	B0,B1		
B2	N	B0,B1,B2		
B3	N	B0,B1,B2,B3	B0,B1,B3	
B4	N	B0,B1,B2,B3,B4	B0,B1,B3,B4	
B5	N	B0,B1,B5		
B6	N	B0,B1,B5,B6		
B7	Ν	B0,B1,B5,B6,B7	B0,B1,B5,B7	
B8	N	B0,B1,B5,B8		

How can we optimize the algorithm?

Node	Initial	Iteration 1	Iteration 2	Iteration 3
во	B0	ВО		
B1	Ν	B0,B1		
B2	Ν	B0,B1,B2		
B3	Ν	B0,B1,B2,B3	B0,B1,B3	
B4	Ν	B0,B1,B2,B3,B4	B0,B1,B3,B4	
B5	Ν	B0,B1,B5		
B6	Ν	B0,B1,B5,B6		
В7	Ν	B0,B1,B5,B6,B7	B0,B1,B5,B7	
B8	Ν	B0,B1,B5,B8		

How can we optimize the algorithm?

Node	Initial	Iteration 1	Iteration 2	Iteration 3
<mark>B0</mark>	B0	ВО		
<mark>B1</mark>	Ν	B0,B1		
<mark>B2</mark>	N	B0,B1,B2		•••
<mark>B3</mark>	Ν	B0,B1,B2,B3	B0,B1,B3	
<mark>B4</mark>	N	B0,B1,B2,B3,B4	B0,B1,B3,B4	•••
<mark>B5</mark>	Ν	B0,B1,B5		•••
<mark>B6</mark>	N	B0,B1,B5,B6		
<mark>B7</mark>	Ν	B0,B1,B5,B6,B7	B0,B1,B5,B7	
<mark>B8</mark>	N	B0,B1,B5,B8		

How can we optimize the order?

Given this intuition, what ordering would be best?

- Root node is initialized to itself
- Every node determines new dominators based on parent dominators

How can we optimize the algorithm?

Node	New Order
B0	
B1	
B2	
B3	
B4	
B5	
B6	
B7	
B8	

Reverse post-order (rpo), where parents are visited first

How can we optimize the algorithm?

Node	Initial	Iteration 1	Iteration 2	Iteration 3
во	BO			
B1	Ν			
B2	N			
B5	N			
B6	N			
B8	Ν			
В7	N			
B3	N			
B4	N			

How can we optimize the algorithm?

Node	Initial	Iteration 1	Iteration 2	Iteration 3
во	B0	ВО		
B1	N	B0,B1		
B2	N	B0,B1,B2		
B5	N	B0,B1,B5		
B6	N	B0,B1,B5,B6		
B8	Ν	B0,B1,B5,B8		
В7	N	B0,B1,B5,B7		
В3	Ν	B0,B1,B3		
B4	N	B0,B1,B4		

How can we optimize the algorithm?

Node	Initial	Iteration 1	Iteration 2	Iteration 3
ВО	BO	ВО		
B1	N	B0,B1		
B2	N	B0,B1,B2		
B5	Ν	B0,B1,B5		
B6	N	B0,B1,B5,B6		
B8	Ν	B0,B1,B5,B8		
В7	N	B0,B1,B5,B7		
B3	N	B0,B1,B3		
B4	N	B0,B1,B4		

A quick aside about graph algorithms:

- Does node ordering matter in SSSP?
- Yes! Dijkstra's algorithm uses a priority queue
- Prioritize nodes with the lowest value

Traversal order in graph algorithms is a big research area!

Update: for all parents p: min(p + d)

the next iteration, another parent may have found a shorter path.

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

• examples:

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

• examples:

x = 5
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

• examples:

p Live variables: ?
x = 5
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

• examples:

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

• examples:

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

• examples:

x = 5 p Live variables: x,z,w
if (z):
 y = 6
else:
 y = x
print(y)
print(w)

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

• examples:

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

• examples:

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

• examples:

• A variable v is live at some point p in the program if there exists a path from p to some use of v where v has not been redefined

• examples:

Accessing an uninitialized variable!

For each block B_x : we want to compute LiveOut: The set of variables that are live at the end of B_x

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is satisfies these two conditions

- it is read and it is not written to
- it is read before it is written to

Block	VarKill	UEVar
BO		
B1		
B2		
B3		
B4		

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is satisfies these two conditions

- it is read and it is not written to
- it is read before it is written to

Block	VarKill	UEVar
ВО	i	
B1	{}	
B2	S	
B3	s,i	
B4	{}	

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is satisfies these two conditions

- it is read and it is not written to
- it is read before it is written to

Block	VarKill	UEVar
ВО	i	{}
B1	{}	i
B2	S	{}
В3	s,i	s,i
B4	{}	S

- Initial condition: LiveOut(n) = {} for all nodes
 - Ground truth, no variables are live at the exit of the program, i.e. end node n_{end} has LiveOut(n_{end})= {}

- Initial condition: LiveOut(n) = {} for all nodes
 - Ground truth, no variables are live at the exit of the program, i.e. end node n_{end} has LiveOut(n_{end})= {}

Now we can perform the iterative fixed point computation:

 $LiveOut(n) = \bigcup_{s \text{ in succ}(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$

Backwards flow analysis because values flow from successors

 $LiveOut(n) = \bigcup_{s \text{ in } succ(n)} \left(\frac{UEVar(s)}{UEVar(s)} \cup (LiveOut(s) \cap VarKill(s)) \right)$

any variable in UEVar(s) is live at n

 $LiveOut(n) = \bigcup_{s \text{ in succ}(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$

variables that are not overwritten in s

 $LiveOut(n) = \bigcup_{s \text{ in } succ(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$

variables that are live at the end of s

 $LiveOut(n) = \bigcup_{s \text{ in } succ(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$

variables that are live at the end of s, and not overwritten by s

 $LiveOut(n) = \bigcup_{s \text{ in succ}(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$

LiveOut is a union rather than an intersection

$$Dom(n) = \{n\} \cup \left(\bigcap_{p \text{ in } preds(n)} Dom(p)\right)$$

Consider the language we use for each:

- **Dominance** of node b_x contains b_y if:
 - every path from the start to b_x goes through b_y
- LiveOut of node b_x contains variable y if:
 - some path from b_x contains a usage of y

 $LiveOut(n) = \bigcup_{s \text{ in succ(n)}} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$ $Dom(n) = \{n\} \cup (\bigcap_{p \text{ in preds(n)}} Dom(p))$

Consider the language we use for each:

- **Dominance** of node b_x contains b_y if:
 - every path from the start to b_x goes through b_y
- LiveOut of node b_x contains variable y if:
 - **some** path from b_x contains a usage of y
- Some vs. Every

 $LiveOut(n) = \bigcup_{s \text{ in succ}(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$ $Dom(n) = \{n\} \cup (\bigcap_{p \text{ in preds}(n)} Dom(p))$

Block	VarKill	UEVar	~VarKill	LiveOut I ₀
Bstart	{}	{}	i,s	
BO	i	{}	S	
B1	{}	i	i,s	
B2	S	{}	i	
B3	i,s	i,s	{}	
B4	{}	S	i,s	
Bend	{}	{}	i,s	

Block	VarKill	UEVar	~VarKill	LiveOut I ₀	LiveOut I ₁
Bstart	{}	{}	i,s	{}	
BO	i	{}	S	{}	
B1	{}	i	i,s	{}	
B2	S	{}	i	{}	
B3	i,s	i,s	{}	{}	
B4	{}	S	i,s	{}	
Bend	{}	{}	i,s	{}	

Block	VarKill	UEVar	~VarKill	LiveOut I ₀	LiveOut I ₁	LiveOut I ₂
Bstart	{}	{}	i,s	{}	{}	
BO	i	{}	S	{}	i	
B1	{}	i	i,s	{}	i,s	
B2	S	{}	i	{}	i,s	
B3	i,s	i,s	{}	{}	i,s	
B4	{}	S	i,s	{}	{}	
Bend	{}	{}	i,s	{}	{}	

	Block	VarKill	UEVar	~VarKill	LiveOut I ₀	LiveOut I ₁	LiveOut I ₂	l ₃
•	Bstart	{}	{}	i,s	{}	{}	{}	
1	BO	i	{}	S	{}	i	i,s	
	B1	{}	i	i,s	{}	i,s	i,s	
	B2	S	{}	i	{}	i,s	i,s	
	B3	i,s	i,s	{}	{}	i,s	i,s	
	B4	{}	S	i,s	{}	{}	{}	
	Bend	{}	{}	i,s	{}	{}	{}	

	Block	VarKill	UEVar	~VarKill	LiveOut I ₀	LiveOut I ₁	LiveOut I ₂	l ₃
•	Bstart	{}	{}	i,s	{}	{}	{}	<mark>s</mark>
i	B0	i	{}	S	{}	i	i,s	i,s
	B1	{}	i	i,s	{}	i,s	i,s	i,s
	B2	S	{}	i	{}	i,s	i,s	i,s
	B3	i,s	i,s	{}	{}	i,s	i,s	i,s
	B4	{}	S	i,s	{}	{}	{}	{}
	Bend	{}	{}	i,s	{}	{}	{}	{}

Node ordering for backwards flow

- Reverse post-order was good for forward flow:
 - Parents are computed before their children
- For backwards flow: use reverse post-order of the reverse CFG
 - Reverse the CFG
 - perform a reverse post-order
- Different from post order?
Example

post order: D, C, B, A

acks: thanks to this blog post for the example! https://eli.thegreenplace.net/2015/directed-graph-traversal-orderings-and-applications-to-data-flow-analysis/

Example

post order: D, C, B, A

rpo on reverse CFG: D, B, C, A

post order: D, C, B, A

rpo on reverse CFG: D, B, C, A

rpo on reverse CFG computes B before C, thus, C can see updated information from B

rpo on reverse CFG computes B before C, thus, C can see updated information from B

Show PyCFG example from homework

• run the print_dot.py command on some test cases to see the output

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:

s = a[x] + 1;

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:

s = a[x] + 1;

UEVar needs to assume a[x] is any memory location that it cannot prove non-aliasing

 $LiveOut(n) = \bigcup_{s \text{ in succ}(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:

a[x] = s + 1;

 $LiveOut(n) = \bigcup_{s \text{ in succ}(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:

a[x] = s + 1;

VarKill also needs to know about aliasing

 $LiveOut(n) = \bigcup_{s \text{ in succ}(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$

Demo

• Godbolt demo

Sound vs. Complete

- Sound: Any property the analysis says is true, is true. However, there may be false positives
- Complete: Any error the analysis reports is actually an error. The analysis cannot prove a property though.

 $LiveOut(n) = \bigcup_{s \text{ in succ}(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$

How to instantiate the UEVar and VarKill for sound/complete analysis w.r.t. memory?

$$a[x] = s + 1;$$

$$s = a[x] + 1;$$

Imprecision can come from CFG construction:

consider:

br 1 < 0, dead_branch, alive_branch</pre>

Imprecision can come from CFG construction:

consider:

br 1 < 0, dead_branch, alive_branch</pre>

could come from arguments, etc.

Imprecision can come from CFG construction:

consider first class labels (or functions):

br label_reg

where label_reg is a register that contains a register

need to branch to all possible basic blocks!

The Data Flow Framework

 $LiveOut(n) = \bigcup_{s \text{ in succ}(n)} (UEVar(s) \cup (LiveOut(s) \cap VarKill(s)))$

$f(x) = Op_{v \text{ in (succ | preds)}} c_0(v) op_1 (f(v) op_2 c_2(v))$

AvailExpr(n)= $\bigcap_{p \text{ in preds}} DEExpr(p) \cup (AvailExpr(p) \cap ExprKill(p))$

An expression e is "available" at the beginning of a basic block b_x if for all paths to b_x , e is evaluated and none of its arguments are overwritten

AvailExpr(n)= ∩_{p in preds} DEExpr(p) ∪ (AvailExpr(p) ∩ ExprKill(p))

Forward Flow

AvailExpr(n)= $\bigcap_{p \text{ in preds}} DEExpr(p) \cup (AvailExpr(p) \cap ExprKill(p))$

intersection implies "must" analysis

AvailExpr(n)= $\bigcap_{p \text{ in preds}} \frac{\text{DEExpr(p)}}{\text{DEExpr(p)}} \cup (\text{AvailExpr(p)} \cap \text{ExprKill(p)})$

DEExpr(p) is all Downward Exposed Expressions in p. That is expressions that are evaluated AND operands are not redefined

AvailExpr(n)= $\bigcap_{p \text{ in preds}} DEExpr(p) \cup (AvailExpr(p) \cap ExprKill(p))$

AvailExpr(p) is any expression that is available at p

AvailExpr(n)= $\bigcap_{p \text{ in preds}} DEExpr(p) \cup (AvailExpr(p) \cap ExprKill(p))$

ExprKill(p) is any expression that p killed, i.e. if one or more of its operands is redefined in p

AvailExpr(n)= $\bigcap_{p \text{ in preds}} DEExpr(p) \cup (AvailExpr(p) \cap ExprKill(p))$

AvailExpr(n)= $\bigcap_{p \text{ in preds}} DEExpr(p) \cup (AvailExpr(p) \cap ExprKill(p))$

Application: you can add availExpr(n) to local optimizations in n, e.g. local value numbering

AntOut(n)= $\bigcap_{s \text{ in succ}} UEExpr(s) \cup (AntOut(s) \cap ExprKill(s))$

An expression e is "anticipable" at a basic block b_x if for all paths that leave b_x , e is evaluated

$AntOut(n) = \bigcap_{s \text{ in succ}} UEExpr(s) \cup (AntOut(s) \cap ExprKill(s))$

Backwards flow

AntOut(n)= $\bigcap_{s \text{ in succ}} UEExpr(s) \cup (AntOut(s) \cap ExprKill(s))$

"must" analysis

AntOut(n)= $\bigcap_{s \text{ in succ}} UEExpr(s) \cup (AntOut(s) \cap ExprKill(s))$

UEExpr(p) is all Upward Exposed Expressions in p. That is expressions that are computed in p before operands are overwritten.

AntOut(n)= $\bigcap_{s \text{ in succ}} UEExpr(s) \cup (AntOut(s) \cap ExprKill(s))$

AntOut(n)= $\bigcap_{s \text{ in succ}} UEExpr(s) \cup (AntOut(s)) \cap ExprKill(s))$

$AntOut(n) = \bigcap_{s \text{ in succ}} UEExpr(s) \cup (AntOut(s) \cap ExprKill(s))$

AntOut(n)= $\bigcap_{s \text{ in succ}} UEExpr(s) \cup (AntOut(s) \cap ExprKill(s))$

Application: you can hoist AntOut expressions to compute as early as possible

potentially try to reduce code size: -Oz

More flow algorithms:

Check out chapter 9 in EAC: Several more algorithms.

"Reaching definitions" have applications in memory analysis

Have a nice weekend!

• See you in office hours or in a week!