
CSE211: Compiler Design 
Oct. 18, 2022

• Topic: global optimizations

• Questions: how can we reason 
about arbitrary CFGs?



Announcements

• Office hours Today:
• 3:30 - 5:30 PM
• Moved to remote

• Homework 1:
• Due today (at 11:59 pm)
• Likely won’t be available for help after office hours

• Homework 2:
• I will try to release it today 

• Possible for delays
• I will send out the pair programming sign up sheet
• Try to find a partner by the end of the week so that you can start!



Announcements 

• Thursday will be asynchronous
• Plan on asynchronous
• Unless I’m sick, then we’ll do remote, like today. I’ll let you know ASAP
• Thanks for being patient with the uncertainty!



Announcements

• Mark your attendance for today after you watch the 
recording (or if you are attending live)
• Please try to keep on top of this.
• We have put attendance in up until now. Let us know 

within 1 week if there are any issues.

• Only mark Oct. 20 attendance after you watch the 
lectures.



Guest lecture confirmed 

• Felix Klock
• Principle Engineer at AWS
• Big contributor to Rust
• wants to tell us about work on incremental compilation

• Nov. 29 (Felix will be remote, but we will stream his lecture in the 
classroom)



Review regional optimizations



FOR

<after_loop_statements><cond_expr><assignment> <update_expr>

<inside_loop_statements>

If all of these are basic blocks then the CFG looks like:

<after_loop_statements>

<cond_expr>

<assignment>

<update_expr>

<inside_loop_statements>



Loop unrolling: <assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

What could change this CFG?



Loop unrolling: <assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

Assume we 
know that the loop will
iterate an even number
of times:



Loop unrolling: <assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

<inside_loop_statements>

<update_expr>



Loop unrolling: <assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

Assume we 
know that the loop will
iterate an even number
of times:

<inside_loop_statements>

<update_expr>

What have we saved here?



Loop unrolling: <assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

Assume we 
know that the loop will
iterate an even number
of times:

<inside_loop_statements>

<update_expr>

What have we saved here?

merge into
1 basic block
and locally optimize!



Code placement:

• Back to if/else

• Eventually we will 
straight line the 
code:

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;



Code placement:

• Back to if/else

• Eventually we will 
straight line the 
code:

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;
br next_lbl

If we know that one branch is taken more often than the other...
say the branch is true most often

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;
br next_lbl
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CSE211: Compiler Design 
Oct. 18, 2022

• Topic: global optimizations

• Questions: how can we reason 
about arbitrary CFGs?

Quick note: Global vs. Regional vs. Local - What do they all mean?



Global optimizations

• Difference between regional:
• handle arbitrary CFGs, cannot rely on structure!
• Algorithms become more general
• Potential for more optimizations

• Highly suggest reading for this part of the class
• Chapter 9 of EAC



First concept:

• Dominance in a CFG

• Builds up a framework for reasoning

• Building block for many algorithms
• Global local value numbering
• Conversion to SSA



Dominance
start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

• a block bx dominates block by iff
every path from the start to block 
bx goes through by

• definition: 
• dominance (includes itself) 
• strict dominance (does not include 

itself)



Dominance
start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

dominators

dominators

dominators

dominators

• a block bx dominates block by iff
every path from the start to block 
bx goes through by

• definition: 
• dominance (includes itself) 
• strict dominance (does not include 

itself)

• Can we use this notion to extend 
local value numbering?



Node Dominators

B0

B1

B2

B3

B4

B5

B6

B7

B8



Node Dominators

B0 B0

B1 B0, B1

B2 B0, B1, B2

B3 B0, B1, B3

B4 B0, B1, B3, B4

B5 B0, B1, B5

B6 B0, B1, B5, B6

B7 B0, B1, B5, B7

B8 B0, B1, B5, B8

Concept introduced in 1959, algorithm not not given until 10 years later



Computing dominance

• Iterative fixed point algorithm

• Initial state, all nodes start with all other nodes are dominators:
• Dom(n) = N
• Dom(start) = {start}

iteratively compute:

Dom(n) = {n} ∪ (⋂m in preds(n) Dom(m) )



Building intuition behind the math

• This algorithm is vertex centric
• local computations consider only a target node and its immediate neighbors

• At least one node is instantiated with ground truth:
• starting node dominator is itself

• Information flows through the graph as nodes are updated



For example: Bellman Ford Shortest path

• Root node is initialized to 0
• Every node determines new distances based on incoming distances.
• When distances stop updating, the algorithm is converged

n

p0 p1 p2

d0
d1

d2
Update:
for all parents p: min(p + d)

the next iteration, another parent
may have found a shorter path.



Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values



Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}



Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Dom(n) = {n} ∪ ( ⋂p in preds(n) Dom(p) )



Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Dom(n) = {n} ∪ ( ⋂p in preds(n) Dom(p) )

Forward flow, as updates flow from
parents to children.



Lets try it

Node Initial Iteration 1

B0 B0

B1 N

B2 N

B3 N

B4 N

B5 N

B6 N

B7 N

B8 N

Dom(n) = {n} ∪ ( ⋂p in preds(n) Dom(p) )



Lets try it

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B3 N B0,B1,B2,B3

B4 N B0,B1,B2,B3,B4

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B7 N B0,B1,B5,B6,B7

B8 N B0,B1,B5,B8



Lets try it

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0 ...

B1 N B0,B1 ...

B2 N B0,B1,B2 ...

B3 N B0,B1,B2,B3 B0,B1,B3

B4 N B0,B1,B2,B3,B4 B0,B1,B3,B4

B5 N B0,B1,B5 ...

B6 N B0,B1,B5,B6 ...

B7 N B0,B1,B5,B6,B7 B0,B1,B5,B7

B8 N B0,B1,B5,B8 ...



How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0 ... ...

B1 N B0,B1 ... ...

B2 N B0,B1,B2 ... ...

B3 N B0,B1,B2,B3 B0,B1,B3 ...

B4 N B0,B1,B2,B3,B4 B0,B1,B3,B4 ...

B5 N B0,B1,B5 ... ...

B6 N B0,B1,B5,B6 ... ...

B7 N B0,B1,B5,B6,B7 B0,B1,B5,B7 ...

B8 N B0,B1,B5,B8 ... ...



How can we optimize the algorithm?

This can be any order...

How can we optimize the order? 

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0 ... ...

B1 N B0,B1 ... ...

B2 N B0,B1,B2 ... ...

B3 N B0,B1,B2,B3 B0,B1,B3 ...

B4 N B0,B1,B2,B3,B4 B0,B1,B3,B4 ...

B5 N B0,B1,B5 ... ...

B6 N B0,B1,B5,B6 ... ...

B7 N B0,B1,B5,B6,B7 B0,B1,B5,B7 ...

B8 N B0,B1,B5,B8 ... ...



Given this intuition, what ordering would be best?

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Dom(n) = {n} ∪ ( ⋂p in preds(n) Dom(p) )

Forward flow, as updates flow from
parents to children.



How can we optimize the algorithm?

Node New Order

B0

B1

B2

B3

B4

B5

B6

B7

B8

Reverse 
post-order (rpo),
where parents are visited 
first



How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0

B1 N

B2 N

B5 N

B6 N

B8 N

B7 N

B3 N

B4 N



How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B8 N B0,B1,B5,B8

B7 N B0,B1,B5,B7

B3 N B0,B1,B3

B4 N B0,B1,B4



How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0 ...

B1 N B0,B1 ...

B2 N B0,B1,B2 ...

B5 N B0,B1,B5 ...

B6 N B0,B1,B5,B6 ...

B8 N B0,B1,B5,B8 ...

B7 N B0,B1,B5,B7 ...

B3 N B0,B1,B3 ...

B4 N B0,B1,B4 ...



A quick aside about graph algorithms:

• Does node ordering matter in SSSP?
• Yes! Dijkstra’s algorithm uses a priority queue
• Prioritize nodes with the lowest value

n

p0 p1 p2

d0
d1

d2
Update:
for all parents p: min(p + d)

the next iteration, another parent
may have found a shorter path.

Traversal order in graph algorithms
is a big research area!



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:

x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:

Live variables: ?
p

x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:

Live variables: z, w 
p

x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:

Live variables: ?px = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:

Live variables: x,z,wpx = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:

Live variables: ?p

x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:

//start
x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: ?
p



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:

//start
x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: w
p



Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a 
path from p to some use of v where v has not been redefined

• examples:

//start
x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: w
p

Accessing an uninitialized 
variable!



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

For each block Bx : we want to compute LiveOut:
The set of variables that are live at the end of Bx



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Live variables: ?

Live variables: ?

Live variables: ?

Live variables: {}

Live variables: ?



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Live variables: i, s

Live variables: i,s

Live variables: i,s

Live variables: {}

Live variables: i,s



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Block VarKill UEVar

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b 
is any variable in b that is satisfies these two conditions
• it is read and it is not written to
• it is read before it is written to



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Block VarKill UEVar

B0 i

B1 {}

B2 s

B3 s,i

B4 {}

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b 
is any variable in b that is satisfies these two conditions
• it is read and it is not written to
• it is read before it is written to



Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Block VarKill UEVar

B0 i {}

B1 {} i

B2 s {}

B3 s,i s,i

B4 {} s

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b 
is any variable in b that is satisfies these two conditions
• it is read and it is not written to
• it is read before it is written to



Live variable analysis in the CFG:

• Initial condition: LiveOut(n) = {} for all nodes
• Ground truth, no variables are live at the exit of the program, i.e. end node 

nend has LiveOut(nend)= {}



Live variable analysis in the CFG:

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

• Initial condition: LiveOut(n) = {} for all nodes
• Ground truth, no variables are live at the exit of the program, i.e. end node 

nend has LiveOut(nend)= {}



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

n

s0 s1 s2

Backwards flow analysis
because values flow from
successors



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

n

s0 s1 s2 any variable in UEVar(s)
is live at n



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

n

s0 s1 s2 variables that are not
overwritten in s



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

n

s0 s1 s2 variables that are live
at the end of s



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

n

s0 s1 s2 variables that are live
at the end of s, and not
overwritten by s



Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

n

s0 s1 s2

LiveOut is a union
rather than an intersection

Dom(n) = {n} ∪ ( ⋂p in preds(n) Dom(p) )



Consider the language we use for each:

• Dominance of node bx contains by if: 
• every path from the start to bx goes through by

• LiveOut of node bx contains variable y if:
• some path from bx contains a usage of y

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))
Dom(n) = {n} ∪ ( ⋂p in preds(n) Dom(p) )



Consider the language we use for each:

• Dominance of node bx contains by if: 
• every path from the start to bx goes through by

• LiveOut of node bx contains variable y if:
• some path from bx contains a usage of y

• Some vs. Every

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))
Dom(n) = {n} ∪ ( ⋂p in preds(n) Dom(p) )



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar ~VarKill LiveOut I0
Bstart {} {} i,s

B0 i {} s

B1 {} i i,s

B2 s {} i

B3 i,s i,s {}

B4 {} s i,s

Bend {} {} i,s

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

Bend

Bstart



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1
Bstart {} {} i,s {}

B0 i {} s {}

B1 {} i i,s {}

B2 s {} i {}

B3 i,s i,s {} {}

B4 {} s i,s {}

Bend {} {} i,s {}

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

Bend

Bstart



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

Bend

Bstart

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1 LiveOut I2
Bstart {} {} i,s {} {}

B0 i {} s {} i

B1 {} i i,s {} i,s

B2 s {} i {} i,s

B3 i,s i,s {} {} i,s

B4 {} s i,s {} {}

Bend {} {} i,s {} {}



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

Bend

Bstart

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1 LiveOut I2 .. I3
Bstart {} {} i,s {} {} {}

B0 i {} s {} i i,s

B1 {} i i,s {} i,s i,s

B2 s {} i {} i,s i,s

B3 i,s i,s {} {} i,s i,s

B4 {} s i,s {} {} {}

Bend {} {} i,s {} {} {}



i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

Bend

Bstart

Block VarKill UEVar ~VarKill LiveOut I0 LiveOut I1 LiveOut I2 .. I3
Bstart {} {} i,s {} {} {} s

B0 i {} s {} i i,s i,s

B1 {} i i,s {} i,s i,s i,s

B2 s {} i {} i,s i,s i,s

B3 i,s i,s {} {} i,s i,s i,s

B4 {} s i,s {} {} {} {}

Bend {} {} i,s {} {} {} {}



Node ordering for backwards flow

• Reverse post-order was good for forward flow:
• Parents are computed before their children

• For backwards flow: use reverse post-order of the reverse CFG
• Reverse the CFG
• perform a reverse post-order

• Different from post order?



Example

A

BC

D

post order: D, C, B, A

acks: thanks to this blog post for the example!
https://eli.thegreenplace.net/2015/directed-graph-traversal-orderings-and-applications-to-data-flow-analysis/



Example

A

BC

D

post order: D, C, B, A

A

BC

D

reverse CFG

rpo on reverse CFG: D, B, C, A



Example

A

BC

D

post order: D, C, B, A

rpo on reverse CFG: D, B, C, A

rpo on reverse CFG computes B before C, thus, C can see updated
information from B



Example

A

BC

D

post order: D, C, B, A

rpo on reverse CFG: D, B, C, A

rpo on reverse CFG computes B before C, thus, C can see updated
information from B

updates in backwards flow



Show PyCFG example from homework

• run the print_dot.py command on some test cases to see the 
output



Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before 
being overwritten.

Consider:

s = a[x] + 1;



Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before 
being overwritten.

Consider:

s = a[x] + 1;

UEVar needs to assume a[x] is any memory location that it cannot prove non-aliasing

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))



Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before 
being overwritten.

Consider:

a[x] = s + 1;

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))



Live variable limitations

To compute the LiveOut sets, we need two initial sets:

VarKill for block b is any variable in block b that gets overwritten

UEVar (upward exposed variable) for block b is any variable in b that is read before 
being overwritten.

Consider:

a[x] = s + 1;

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

VarKill also needs to know about aliasing



Demo

• Godbolt demo



Sound vs. Complete

• Sound: Any property the analysis says is true, is true. However, there 
may be false positives

• Complete: Any error the analysis reports is actually an error. The 
analysis cannot prove a property though.

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

How to instantiate the UEVar and VarKill for sound/complete analysis w.r.t. memory? 

a[x] = s + 1; s = a[x] + 1;



Live variable limitations

Imprecision can come from CFG construction:

consider:

br 1 < 0, dead_branch, alive_branch



Live variable limitations

Imprecision can come from CFG construction:

consider:

br 1 < 0, dead_branch, alive_branch

could come from arguments, etc.
n

s0 s1

dead_branch

alive_branch



Live variable limitations

Imprecision can come from CFG construction:

consider first class labels (or functions):

br label_reg

where label_reg is a register that contains a register

n

s2 s3
s0 s1

need to branch to all possible
basic blocks!



The Data Flow Framework

LiveOut(n) = ∪s in succ(n) ( UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s) ))

f(x) = Opv in (succ | preds) c0(v) op1 (f(v) op2 c2(v))



Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

An expression e is “available” at the beginning of a basic 
block bx if for all paths to bx , e is evaluated and none of its 
arguments are overwritten



Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

Forward Flow



Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

intersection implies “must” analysis



Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

DEExpr(p) is all Downward Exposed Expressions in p. That is expressions 
that are evaluated AND operands are not redefined



Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

AvailExpr(p) is any expression that is available at p



Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

ExprKill(p) is any expression that p killed, i.e. if one or more of its operands is redefined 
in p



Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

n

p0 p1 p2

Any expression
that is available (and not killed)
the parents, along with expressions exposed by
all the parents.

pp0
x = y + z; 



Available Expressions

AvailExpr(n)= ⋂p in preds DEExpr(p) ∪ (AvailExpr(p) ⋂ ExprKill(p))

Application: you can add availExpr(n) to local optimizations in n, e.g. local value numbering



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

An expression e is “anticipable” at a basic block bx if for all 
paths that leave bx , e is evaluated



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

Backwards flow



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))
”must” analysis



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

UEExpr(p) is all Upward Exposed Expressions in p. That is expressions 
that are computed in p before operands are overwritten.



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

n

s0 s1 s2

x = y + z; 
x = y + z; x = y + z; 



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

n

s0 s1 s2
x = y + z; 

x = y + z; 

s3x = y + z; 



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

n

s0 s1 s2
x = y + z; 

x = y + z; 

s3x = y + z; 

y = 128;



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

Application: you can hoist AntOut expressions to compute as early as possible

potentially try to reduce code size: -Oz



More flow algorithms:

Check out chapter 9 in EAC: Several more algorithms.

“Reaching definitions” have applications in memory analysis



Have a nice weekend!

• See you in office hours or in a week!


