Slides from asynchronous
lecture



On to Module 2!
Optimizations and flow

analysis

Input

A string

Accept

continue to the rest
of compilation

=)

Language

Reject

Recognizer for
language L

=

structured data
(e.g. AST)




On to Module 2!
Optimizations and flow

analysis

Input

A string

Accept

continue to the rest
of compilation

=)

Language

Reject

Recognizer for
language L

=

structured data
(e.g. AST)

Where most
optimizations
and flow analysis
happens!



Intermediate representations (IRs)

* Intermediate step between human-accessible programming
languages and horrible machine ISAs

* |deal for analysis because:
* More regularity than high-level languages (simple instructions)
* Less constraints than ISA languages (virtual registers)
* Machine-agnostic optimizations
e See Godbolt example

+ +
N N
g
I
X

g
|
K



Different IRs

Many different IRs, each have different purposes

* Trees
* Abstract syntax trees
e Data-dependency trees
* Good for instruction scheduling

e Textual

* 3 address code
* Good for local value numberings, removing redundant expressions

* Graphs
e Control flow graphs
* Good for data flow analysis



Different IRs

Many different IRs, each have different purposes

* Trees
* Abstract syntax trees
e Data-dependency trees
* Good for instruction scheduling

e Textual

* 3 address code
* Good for local value numberings, removing redundant expressions

* Graphs
e Control flow graphs
* Good for data flow analysis

What are some examples
of a modern compiler
pipeline?

GPUs often have many
IRs... why?



Abstract Syntax Trees

* Remember the expression parse tree

m

+,- expr : expr PLUS term
| expr MINUS term
| term

*/ term : term TIMES pow
| term DIV pow
| Pow

2 pow : factor CARROT pow
| factor

() factor : LPAR expr RPAR
| NUM

input: 2-3-4

expr
expr <MINUS> term
expr <MINUS> teTm factor
term factor <NUM, 4>
| |
factor <NUM, 3>

<NUM, 2>



Abstract Syntax Trees

e Convert into an AST

T T

2 3

Much more compact!

input: 2-3-4

expr

expr <M|NUS> term
expr <MINUS> term factor
term fac’tor <NUM, 4>
factor <NUM, 3>

<NUM, 2>



Abstract Syntax Trees

« Convert into an AST input: 2-3-4

nodes are operators Mexpr\
4 expr <M|NUS> term
2 3 expr <MINUS> term factor
nodes are
production fact
rules actor <NUM, 4>
Much more compact! ’
factor <NUM, 3>

<NUM, 2>



Abstract Syntax Trees

 Easier to see bigger trees, e.g. quadratic formula:

_ 2 __
T — b__\/2b dac
a

X =(-b-sqrt(b*b-4 *a*c))/(2*%a)

Thanks to Sreepathi Pai for the example!



X =(-b-sqrt(b*b -4 *a*c))/(2%a)



3 address code IR

e Each instruction consists of 3 “addresses”
e Address here means a virtual register or value
* unlimited virtual registers

* represented many ways:
rx = ry op rz;

r5 = r3 + r6;
r6 = r0 * r7;



3 address code IR

e Each instruction consists of 3 “addresses”
e Address here means a virtual register or value
* unlimited virtual registers

* represented many ways:
rXx«<—ry Op rz;

r5<r3 + ré6;
r6—r0 * r7;



3 address code IR

e Each instruction consists of 3 “addresses”
e Address here means a virtual register or value
* unlimited virtual registers

* represented many ways:
rx = op ry, rz;

r5 = add r3, ré6;
ré6 = mult r0, r7;



3 address code IR

e Each instruction consists of 3 “addresses”
e Address here means a virtual register or value
* unlimited virtual registers

* some instructions don’t fit the pattern:
store ry, rz;

r5 = copy r3;
r6 = call(r0, rl, r2, r3..);



3 address code IR

e Each instruction consists of 3 “addresses”

e Address here means a virtual register or value
* unlimited virtual registers

 Other information:
 Annotated
* Typed
e Alignment

r5 = r3 + r6; !dbg 122
r6 = r0 *(1nt32) 67;
store(rl,r2), aligned 8



Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node



Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0 = neg(b);



Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0
rl

i
3

D

Q
o



Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0 = neg(b);
rl = b * b;
r2 =4 * a;



Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0 = neg(b);
rl = b * b;
r2 = 4 * a;
r3 = r2 * c;



Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0
ril
r2
r3
ri

neg(b);
b * b;
4 * a;
r2 * c;
rl — r3;



Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0
ril
r2
r3
ri
r5

neg(b);
b * b;
4 * a;
r2 * c;
rl — r3;
sgrt(r4);



Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0
ril
r2
r3
ri
r5
ro6

neg(b);
b * b;
4 * a;
r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;



Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0
ril
r2
r3
ri
r5
ro6
r

neg(b);
b * b;
4 * a;
r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;
2 * a;



Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0
ril
r2
r3
ri
r5
ro6
r
r8

neg(b);
b * b;

4 * a;

r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;
2 * a;

re / ri;



Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0
ril
r2
r3
ri
r5
ro6
r
r8
X

neg(b);
b * b;

4 * a;

r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;
2 * a;

re / ri;
r8;



Convert this code to 3 address code

post-order traversal, creating virtual

registers for each node

r0
ril
r2
r3
ri
r5
ro6
r
r8
X

= neg(b);
b * b;
4 * a;
r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;
2 * a;
re / ri;

= r8;

This is the exact code we’d see in LLVM!
See Godbolt example



What now?

We can more easily compile to machine code

OR

r0 = neg(b);
rl = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4d = rl — r3;
r5 = sqgrt(r4);
r6 = r0 — r5;
r7 = 2 * a;
r8 = r6 / ri;
X = r8;



What now?

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);
rl = b * b;

r2 = 4 * a;

r3 = r2 * c;
r4d = rl — r3;
r5 = sqgrt(r4d);
r6 = r0 — r5;
r7 = 2 * a;

r8 =r6 / r7;
X = r8;



We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);

rl = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4d = rl — r3;
r5 = sqgrt(r4d);
r6 = r0 — r5;
r7 = 2 * a;
r8 =r6 / r7;

X = r8;



We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);

rl = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4d = rl — r3;
r5 = sqgrt(r4d);
r6 = r0 — r5;
r7 = 2 * a;
r8 =r6 / r7;

X = r8;



We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0
ril
r2
r3
ri
r5
ro6
r
r8
X

= neg(b);

b * b;
4 * a;
r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;
2 * a;
re / ri;

= r8;



We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0
ril
r2
r3
ri
r5
ro6
r
r8
X

= neg(b);

b * b;
4 * a;
r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;
2 * a;
re / ri;

= r8;



We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0
ril
r2
r3
ri
r5
ro6
r
r8
X

= neg(b);

b * b;
4 * a;
r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;
2 * a;
re / ri;

= r8;



We can perform more optimizations, example:

by making a data-dependency graph (DDG) 0 e
r0 = neg(b);

rl = b * b; 0

r2 = 4 * a;

r3 = r2 * cj; 0 @

r4d = rl — r3;

r5 = sqgrt(r4d);

r6 = r0 — r5; ° a
r7 = 2 * a;

r8 =

X = r8;

re / ri; °
(0



We can perform more optimizations, example:

by making a data-dependency graph (DDG) 0
r0 = neg(b);

rl = b * b; a
r2 = 4 * a;

r3 = r2 * c; 0 @
r4d = rl — r3;

r5 = sqgrt(r4d);

r6 = r0 — r5; ° a
r7 = 2 * a;

r8 =r6 / r7; °
X = r8;



We can perform more optimizations, example:

by making a data-dependency graph (DDG) 0
r0 = neg(b);

rl = b * b; a
r2 = 4 * a;

r3 = r2 * c; 0 @
r4d = rl — r3;

r5 = sqgrt(r4d);

r6 = r0 — r5; What can this tell us? ° Q
r7 = 2 * a;

r8 =r6 / r7; °
X = r8;



r2

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

rl Q
i(l) i geg(]g:7 can be done in parallel! @
r2 = 4 * a;
r3 = r2 * c; ° °
r4d = rl — r3;
r5 = sqrt(r4d); ° 7
r6 = r0 — r5;
r7 = 2 * a;
r8 =r6 / ri; °
X = r8;



We can perform more optimizations, example:
by making a data-dependency graph (DDG)

ro =

ril
r2
r3
ri
r5
ro6
r
r8
X

can be done in parallel!

ro

Can be hoisted!

rl

r2

r/7



We can perform more optimizations, example: @
by making a data-dependency graph (DDG)

r3
ro =
rl =
r2

r3 r2 * C, should we hoist this one?
ré = rl — r3; ° G

e

N
N o>
* % \Q
pUT

r5 = sqgrt(r4d);
r6 = r0 — r5;
r8 =r6 / r7;

X = r8;



Lots of considerations in optimizing

* More on instruction scheduling later
* Processor agnostic?

 Back to 3-address code

* We looked at expressions, but how about conditionals?



What about control flow?

* 3 address code typically contains a conditional branch:
br <reg>, <label0>, <labell>
if the value in <reg> is true, branch to <label0>, else branch to <labell>

br <label(O>

unconditional branch



What about control flow?

if (expr) {
// conditional statements

}

// after if statements

First, produce an AST



What about control flow?

if (expr) {
// conditional statements

}

// after if statements

Next lower to 3 address code

IF

/N

<expression> <conditional_statements> <after_if statements>



What about control flow?

if (expr) {
// conditional statements

}

// after if statements

r0 = <expression>; IF

br r0, conditional stmts, after 1if;

conditional stmts:

<conditional_statements>; <expression>  <conditional_statements>  <after_if statements>
after if:

<after if statements>;



What about control flow?

while (expr) {
// inside loop statements

}

// after loop statements



What about control flow?

while (expr) {
// inside loop statements

}

// after loop statements

First, produce an AST



What about control flow?

while (expr) {
// inside loop statements

}

// after loop statements WHILE

/N

<expr> <inside loop_statements> <after_loop_ statements>



What about control flow?

while (expr) {
// inside loop statements

}
// after loop statements WHILE
beginning label: ///////////////[\\\\\\\\\\\\\\\\\\\\

r0 = <expr> .
<expr> <inside loop_statements> <after_loop_ statements>

br r0, inside loop, after loop;

inside loop:
<inside loop_ statements>
br beginning label;

after loop:
<after loop statements>



For loop

for (assignment; cond expr; update expr) {
// inside loop statements

}

// after loop statements



For loop

for (assignment; cond expr; update expr) {
// inside loop statements

}

// after loop statements

FOR

<assignment> <cond expr> <update expr> <after loop_statements>

<inside loop statements>



For loop FoR

<assignment> <cond expr> <update expr> <after loop statements

<inside loop statement

Can be de-sugared into a while loop:

<assignment>

sequenced

WHILE

< cond expr > <inside loop statements>; <after loop statements>
<update_ expr>



For loop FoR

<assignment> <cond expr> <update expr> <after loop statements

<inside loop statement

Can be de-sugared into a while loop:

<assignment>
Pros? Cons? d
sequenced
WHILE
< cond expr > <inside loop statements>; <after loop statements>

<update_ expr>



IR Program structure

* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:
* There is a single entry, single exit

Single Basic Block

. . Label x:
* Important property: an instruction opl;
in a basic block can assume that all op2;
preceding instructions will execute gi3iabel .




IR Program structure

* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:

* There is a single entry, single exit
Two Basic Blocks

Single Basic Block Label_ x:
el opl;
. . Label x: .
o lmportant property: an instruction opl: ggir

in a basic block can assume that all op2;

preceding instructions will execute oP3;

Label y:
br label z;

op4;
op5;




How might they appearin a

| R P rog ra m St |" u Ct u re Z)i(gaf;lsl\;esl?language? What are some
* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:

* There is a single entry, single exit
Two Basic Blocks

Single Basic Block Label x:
bel opl;
. . Label Xx: .
* Important property: an instruction opl; ggi:
in @ basic block can assume that all op2; '
I I i i op3; Label vy:
preceding instructions will execute br 1abel z: Lake ¥

op5;




How might they appearin a

| R P rog Faim St 'y Ct ure high-level language?

Four Basic Blocks

* A sequence of 3 address instructions if (x) {
}

else {

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that: }
* There is a single entry, single exit

Two Basic Blocks

Single Basic Block Label_ x:
el opl;
. . Label x: .
o ImpOI’tht property: an instruction opl: ggir

in a basic block can assume that all op2;

preceding instructions will execute oP3;

Label y:
br label z;

op4;
op>5;




Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?



Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O0:

n
o o

O O

e

e




Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O0:

n
o o

O O

e

e

optimized

to
—

Label O0:
X = a + b;
y = X;




Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O0:

O O

n
o o

Label O0:
X = a + b;

Label 1:
y = a + b;

optimized
to
—_

CANNOT
always optimized
to
—_

Label 0:
X = a + b;

Label 1:
y = X;




Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O0:
X = a + b;

Label 1:
y = a + b;

code could skip Label O,
leaving x undefined!

optimized

to
e

CANNOT
always optimized
to
—_

Label O0:
X = a + b;
y = X;

Label 0:
X = a + b;

Label 1:
y = X;

br Label 1;

Label O0:

X = a + b;

Label 1:

y = a + b;




Regional Optimization

if (%) {

}

else {
X = a + b;

}
y = a + b;

at a higher-level,
we cannot replace:
y=a+b.
with
y=X



Regional Optimization

zf (x) A

}

else {
X = a + b;

}
y = a + b;

X = a + b;
if (%) {

else {

at a higher-level,
we cannot replace:
y=a+b.
with
y=X

But if a and b are
not redefined, then
y=a+b;
can be replaced with
y=X



Local optimizations

e Optimizations that occur in a single basic block
 What property can we exploit?



Local optimizations

Label O0:
X a + b;
Yy a + b;

Label O0:
X = a + b;

Label 1:
y = a + b;

code could skip Label O,
leaving x undefined!

optimized
to
_—

CANNOT
always optimized
to
—_

Label O0:
X a + b;

y X

Label O0:
X = a + b;

Label 1:
y = X;

br Label 1;

Label O0:

X = a + b;

Label 1:

y = a + b;




Today’s lecture: A local optimization



Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.



Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.

C;
d;
C;
d;

O o9 O
I+ 1 +

Q. Q O 9w




Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.

a=>b + c; a=>b + c;
b =a - d; valid? b =a - d;
c =b+c;| — " |c = a;

d = a - d; d =a - d;




Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.

a=>b + c; a=>b + c;

b=a-d:; valid? b=a-4d; No! Because b is redefined
c=b+c;| " |c=a;

d = a - d; d = a - d;




Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.

a=>b + c; a=>b + c;
b =a - d; valid? b=a-d:;
c=b+c;| " |c=Db+ c;
d =a - d; d = b;




Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.

a=>b + c; a=>b + c;

b =a - d; valid? b=a-d:;
c=b+c;| — > |c=Db+ c; yes!
d =a - d; d = b;




Local value numbering

Algorithm:

* Provide a number to each variable. Update the number each time the
variable is updated.

* Keep a global counter; increment with new variables or assighnments

a2 = b0 + cl; Global_counter =7
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;




Local value numbering

Algorithm:

* Provide a number to each variable. Update the number each time the
variable is updated.

* Keep a global counter; increment with new variables or assighnments

a2 = b0 + cl; Global_counter =7
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;




Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl;
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;




Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; o
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;




Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

—|az = b0 + cl; t “b0 + cl” : “a2”
b4 = a2 - d3; } '
cS = bd + cl;
dé = a2 - d3;




Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

az = b0 + clj H={”b0+cl":a2
— |b4 = a2 - d3; ) '

cS = bd + cl;

dé = a2 - d3;




Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

_ . H =
a2z = b0 + clj “b0 + cl” “a2",
— |b4d = a2 - d3; “a2 - d3” : "b4",
c5 = bd + cl; }
dé = a2 - d3;




Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

_ . H = {
a2z = b0 + clj “b0 + cl” “a2",
bd = a2 - d3; “a2 - d3” : "ba",
—— |c5 = bd + cl; }
dé = a2 - d3;




Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

az = b0 + cl; i WpO 4 ol : “g2n mismatch due to

b4 = a2 - d3; va2 - d3" : "bdr, numberings!
—— |c5 = bd + cl; }

dé = a2 - d3;




Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T po 1 s vane,
bd = a2 - d3; “a2 - d3” : "b4",

_ »|c5 = b4 + Cl; “b4d + cl” : “c5”,
d6 = a2 - d3; }




Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T po 1 s vane,

bd = a2 - d3; “a2 - d3” : "b4",

cS5 = bd + Cl; “b4d + cl” : “c5”,
_ . |d6 = a2 - d3; }




Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T po 1 s vane,

bd = a2 - d3; “a2 - d3” : "b4",

c5 = bd + cl; “b4 + cl” : "e57, match!
_ . |d6 = b4; }




What else can we do?



What else can we do?

Consider this snippet:

az2
f4
ch
dé6

cl
d3
b0
a2

- b0;

az2;

- cl;

d3;




Commutative operations

What is the definition of commutative?



Commutative operations

What is the definition of commutative?
X OP y ==y OP x

What operators are commutative? Which ones are not?



Adding commutativity to local value
numbering

* For commutative operators (e.g. + *), the analysis should consider a
deterministic order of operands.

* You can use variable numbers or lexigraphical order



Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

— a2 = cl - b0; ?z '
fd = d3 * a2;
c5 = b0 - cl;
dé = a2 * d3;




Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

cannot re-order because - is not commutative

f4 = d3 * a2; }
c5 = b0 - cl;
dé = a2 * d3;




Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; t “cl = bO” : “a2”
—— | f4 = d3 * a2; } '

c5 = b0 - cl;

dé = a2 * d3;




Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

re-ordered because a2 < d3 lexigraphically

az = cl - b0; t “cl - b0” : “a2”
— | £f4 = d3 * a2; "a2 * d3” “f4":

c5 = b0 - cl; }

dé = a2 * d3;




Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; “cl - b0” : “a2",

f4 = d3 * a2; "a2 * d3" : “f4r,
——|c5 = b0 - cl; }

dé = a2 * d3;




Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; t “cl - b0” : “a2”,
f4 = d3 * a2; "a2 * d3” : “f4",

—|c5 = b0 - cl; "b0 - cl “c5",
d6 = a2 * d3; }




Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; t “cl - b0” : “a2”,

f4 = d3 * a2; "a2 * d3” : “f4",

c5 = b0 - cl; "b0 - cl” : “c5”,
—|d6 = a2 * d3; }




Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

_ H = {
a2 - C]. bO, ucl - bO" . ua2",
f4 = d3 * a2; "a2 * d3” : “f4",
CS — bO — Cl; "bO - Cl" : ”C5",
—|d6 = f4; '




Other considerations?



Local value numbering w/out adding registers

e We've assumed we have access to an unlimited number of virtual
registers.

* In some cases we may not be able to add virtual registers
* |f an expensive register allocation pass has already occurred.

e New constraint:

* We need to produce a program such that variables without the numbers is
still valid.



Local value numbering w/out adding registers

* Example:
a = x + vy,
a = z;

b =x+vy;

numbering

local value
numbering with
unlimited virtual

registers
a3 = x1 + y2;
ab = z4;
b6 = x1 + y2;

a3 = x1 + y2;
a5 = z4;
b6 = a3;
a = x + vy;
a = 2z;
b = a;

if we drop the
numbers, the
optimization is
invalid.



Local value numbering w/out adding registers

e Solutions?
a = X *+ ¥Y; | numbering
a = z;
b =x+vy;

a3
ab
b6

X1 + y2;
z4
X1 + y2;




Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

X+y;

Q O 9 9

X +Y;
X + vy




Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

o))

X + vy
We cannot optimize the first
line, but we can optimize the

BEEEEE | cconc

C X t+ vy




Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

X+y;

Q O 9 9

X +Y;
X + vy




Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

X+y;

Q O 9 9

X +Y;
X + vy

First we number



Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

a3 = x1 + y2;
ab = z4;

b6 = x1 + y2;
c7 = x1 + y2;




Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {

}

— la3 = x1 + y2; H = {
a5 = z4; '
b6 = x1 + y2;
c7 = x1 + y2;




Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 3,
}
— a3 = x1 + y2; H = {
a5=z4; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;




Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 3,
}
a3 = x1 + y2; H={
. |a5 = 24; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;




Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
. |a5 = 24; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;




Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
a5 = 24; , X1 + y2 a3
— |b6 = x1 + y2;
c7 = x1 + y2;




Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
a5 = 24; , X1 + y2 a3
— |b6 = x1 + y2;
c7 = x1 + y2;




Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
— |b6 = x1 + y2;
c7 = x1 + y2;




Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— |c7 = x1 + y2;




Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— |c7 = x1 + y2;




Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— | c7 = bb6;




Anything else we can add to local value
numbering?




Anything else we can add to local value
numbering?

* Final heuristic: keep sets of possible values



Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {

}

X+y;
X+y;

Q o O o
1 [ | I |
~ m
I

X+y;




Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {

}

a3 = x1 + y2;

bd = x1 + y2; o
a6 = z5;

c7 = x1 + y2;




Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val

Il
P

llbll
}
= X1 + y2;
a3 - X ‘ V2; Ho= g
b4 = a3; “x1 + y2" : “a3
a6 = z5; }
— |c7 = x1 + y2;




Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val

Il
P

llbll
}
= X1 + y2;
a3 - X ‘ V2; Ho= g
b4 = a3; “x1 + y2" : “a3
a6 = z5; }
— |c7 = x1 + y2;




Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall 6,
llbll 4
}
a3 = x1 + y2;
bd = a3 H={ but we could have
! “x1l + y2" @ *a3” replaced it with b4!
a6 = z5; }
— |7 = X1 + y2;




Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall
}
rewind to
this point a3 = xl1 + Yz; H = {
— > |bd = x1 + y2; ixl + y2r a3
a6 = z5; }
c7 = x1 + y2;




Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
ua" 3,
"b" 4
}
a3 = x1 + y2; {
H =
EE— e °
b4 a3, uxl + y2" . [ua3", ub4"],

a6 = z5; }
c7 = x1 + y2; hash a list of possible values




Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall 6,
llbll 4
}
a3 = x1 + y2;
b4 = a3; S,
fast forward - a’; “x1 + y2" : [“a3", "b4"],
again a6 = z5; }
— |c7 = x1 + y2;




Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall 6,
llbll 4
}
a3 = x1 + y2; {
H =
fast forward bd = a3; “x1 + y2" : ["a3", "b4"],
again a6 = z5; }
— |c7 = bé;




Local value numbering: Memory

e Consider a 3 address code that allows memory accesses

afi] = x[]J] + y[k];
b[1] = x[]] + y[k];
is this transformation allowed? only if the compiler can prove that a does not alias x and y
No!
a[i] = x[]J] + y[k];
b[i] = a[i]; In the worst case, every time a memory location is updated,
- the compiler must update the value for all pointers.




Local value numbering: Memory

* How to number:
* Number each pointer/index pair

(a[i1,3) = (x[31,1) + (y[k1l,2);
b[i1] = x[]] + y[k];




Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[i1,3) = (x[31,1) + (y[k1l,2);
(b[1]1,6) = (x[]],4) + (y[k]l,5);




Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

compiler analysis:

(a[i1,3) = (x[31,1) + (y[k1l,2);

can we trace a, X,y to

(b[i],6) = (x[J1,4) + (y[k1,5); e tea
x = malloc(..);
y = malloc(..);

// a,x,y are never overwritten



Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

compiler analysis:

(a[i],3) = (x[31,1) + (y[k1,2);
(b[i1,6) = (x[31,1) + (y[kl,2); A A

X malloc(..);

in this case we do not have to update the number
Yy malloc(..);

// a,x,y are never overwritten



Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[1],3) = (x[J1,1) + (y[k],2);
(b[1],6) = (x[]J1,4) + (vI[k],5); programmer annotations can also tell

the compiler that no other pointer
can access the memory pointed to by a



Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[1]1,3)
(b[1]1,6)

= (x[J1,1) + (y[kl,2);
= (x[J],4) + (v[k]l,5);

in this case we do not have to update the number

restrict a

programmer annotations can also tell
the compiler that no other pointer
can access the memory pointed to by a



Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[i1,3) = (x[31,1) + (y[k1l,2);
(b[1]1,6) = (a[1],3);




Optimizing over wider regions
* Local value numbering operated over just one basic block.

* We want optimizations that operate over several basic blocks (a
region), or across an entire procedure (global)

* For this, we need Control Flow Graphs and Flow Analysis



