CSE211: Compiler Design

Nov. 8, 2022

* Topic: Loop structure and DSLs

* Discussion questions:

* Lots of discussions throughout about loops
and DSLs

Cco C1 C2 C3
L1 L1 L1 L1
cache cache cache cache
v i v i
L2 cache

A4

DRAM

Announcements

* Midterm was due on Friday
* Please let me know if there was any issues ASAP

Announcements

* Homework 3 is out
* Released yesterday
* Please find a partner ASAP (the spreadsheet is live)

* |t covers two topics:
* A microbenchmark generator for ILP
* Checking if loops are safe to do in parallel

* Due Nov. 21

Announcements

e Start thinking about paper review and project

e Paper: required by everyone
* Get paper proposed by Nov. 15 (Next week)
* Get paper approved by Nov. 17
* I’'m not going to chase you down for this, late policy still applies

* Project: You can do this or take the final
* Project proposed by Nov. 15 (Next week)
* Project approved by Nov. 17
* You cannot switch after Nov. 15

Announcements

* Homework 1 is graded
* Thanks to Kyle and Arrian for all the help
* Please let us know if there are any issues within 1 week

* The test cases were released on Piazza
* It was a combination of the provided tests and the tests you wrote.

e Plan:

e Grade midterm this week
e Grade HW 2 next week

Review implementing parallel loops

CSE211: Compiler Design

Nov. 8, 2022

* Topic: Loop structure and DSLs

* Discussion questions:

* Lots of discussions throughout about loops
and DSLs

Cco C1 C2 C3
L1 L1 L1 L1
cache cache cache cache
v i v i
L2 cache

A4

DRAM

Shifting our focus back to a single core

* Why?

Cco C1 C2 C3
L1 L1 L1 L1
cache cache cache cache
I '

L2 cache

DRAM

Shifting our focus back to a single core

* Why?

Shifting our focus back to a single core

* Why?

1 Introduction

“You can have a second computer once you’ve
shown you know how to use the first one.”

—Paul Barham

scalable system cores | twitter | uk-2007-05
GraphChi [12] 2 3160s 6972s
Stratosphere [8] 16 2250s -
X-Stream [21] 16 1488s -
Spark [10] 128 857s 1759s
Giraph [10] 128 596s 1235s
GraphLab [10] 128 249s 833s
GraphX [10] 128 419s 462s
Single thread (SSD) 1 300s 651s
Single thread (RAM) 1 275s -

Table 2: Reported elapsed times for 20 PageRank it-
erations, compared with measured times for single-
threaded implementations from SSD and from RAM.
GraphChi and X-Stream report times for 5 Page-
Rank iterations, which we multiplied by four.

Shifting our focus back to a single core

* We need to consider single
threaded performance

e Good single threaded performance
can enable better parallel
performance

* Memory locality is key to good
parallel performance.

CcO

C1

L1
cache

C2

L1

cache

C3

L1
cache

L1
cache

L2 cache

A4

DRAM

Transforming Loops

* Locality is key for good (parallel) performance:

* What kind of locality are we talking about?

Transforming Loops

* Locality is key for good parallel performance:

e Two types of locality: temporal locality

e Temporal locality rl = af[2];

* Spatial locality r2 = a[2];

Transforming Loops

* Locality is key for good parallel performance:

e Two types of locality: spatial locality

e Temporal locality rl = af[2];

e Spatial locality r2 = a[3];

how far apart can memory locations be?

Transforming Loops

* Locality is key for good (parallel) performance:

good data locality: cores will
spend most of their time accessing
private caches

CcO

L1
cache

C3

C1 C2
L1 L1
cache cache
i v

L1
cache

L2 cache

DRAM

Transforming Loops

* Locality is key for good (parallel) performance:

Bad data locality: cores will
pressure and thrash shared memory
resources

Co C1 C2 C3
L1 L1 L1 L1
cache —egCiTe Cacire=——| cache
i \4 I)
\ L2 cache /

How multi dimensional arrays are stored:

How multi dimensional arrays are stored:

Row major

)
//
‘// >
—
//
//
/)
/
4/
//
.K/ >

How multi dimensional arrays are stored:

Row major

How multi dimensional arrays are stored:

Row major

How multi dimensional
arrays are stored:

Column major?
Fortran

Matlab

How multi dimensional
arrays are stored:

Column major?
Fortran

Matlab

How multi dimensional arrays are stored:

sayx==y==0

x1l = a[x,Y];
X2 = a[x, y+1];

good pattern for row major
bad pattern for column major

How multi dimensional arrays are stored:

unrolled row major: still has locality

x1l = a[x,Y];
X2 = a[x, y+1];

good pattern for row major
bad pattern for column major

How multi dimensional arrays are stored:

x1l = a[x,Y];
X2 = a[x, y+1];

good pattern for row major
bad pattern for column major

How multi dimensional
arrays are stored:

unrolled
column
major:

Bad locality

x1l = a[x,Y];
X2 = a[x, y+1];

good pattern for row major
bad pattern for column major

How multi dimensional arrays are stored:

o I

x1l = a[x,Y];
X2 = a[x+1l, v];

good pattern for column major
bad pattern for row major

How multi dimensional arrays are stored:

row major unrolled: bad spatial locality

good pattern for column major
bad pattern for row major

x1l = a[x,Y];
X2 = a[x+1l, v];

How multi dimensional
arrays are stored:

unrolled

column
major:

good locality

x1l = a[x,Y];
X2 = a[x+1l, v];

good pattern for column major
bad pattern for row major

How much does this matter?

for (int x = 0; x < X size; x++) {
for (int y = 0; y < y size; y++) {
a[x,yl] = blx,y] + c[x,y1];
}
} which will be faster?

by how much?

for (int y = 0; yv < y size; y++) {

for (int x = 0; x < X size; x++) { Demo
al[x,y] = b[x,y] + c[x,y];

}

How to reorder loop nestings?

* For a loop when can we reorder loop nestings?
* If loop iterations are independent
* If loop bounds are independent

How to reorder loop nestings?

* For a loop when can we reorder loop nestings?
* If loop iterations are independent
* If loop bounds are independent

* If the loop bounds are dependent...

Example:

for (y = 0; y <= 5; yt++) {
for (x =y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,¥];
}
}

Example:

bad nesting order for
row-major!

Example:

7; x++) {

bad nesting order for
x,y] + c[x,y1; 8

for (y = 0; y <= 5; yt++) {
] row-major!

b

but iteration variables are
dependent

Example:

for (y = 0; y <= 5; y++) {
f = vy; <= 7; x++
or (x 3_,’ % 7 xr) Ao bad nesting order for
a[x,y] = b[x,y] + c[x,Y]; row-major!
) .

but iteration variables are
dependent

loop constraints

y >= 0
y <=5
X >=y
X <=7

Example:

loop constraints

y >= 0
y <=5
X >=y
X <=7

System with N variables can be viewed as an N
dimensional polyhedron

Fourier-Motzkin elimination:

* Given a system of inequalities with N variables, reduce it to a system
with N - 1 variables.

* A system of inequalities describes an N-dimensional polyhedron.
Produce a system of equations that projects the polyhedron onto an
N-1 dimensional space

loop constraints

y >= 0
y <=5
X >=y
X <=7

System with N variables can be viewed as an N
dimensional polyhedron

X =y
@ L 2
® @
® @
o @
® L

Fourier-Motzkin elimination:

* To eliminate variable x;:
For every pair of lower bound L; and upper bound U; on x;, create:

LiSXi<Ui

Then simply remove Xx; :

L, < U,

Example: remove y from the constraints

for (y = 0; y <= 5; yt++) {
for (x =y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,¥];
}
}

All pairs of upper/lower bounds on v:

loop constraints

y >= 0
y <=5
X>=y
X <=7

Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x =y; x <= 7; x++) {

a[x,y] = b[x,y] + c[Xx,Y];
}
}
All pairs of upper/lower bounds on v:

loop constraints 0 <=y <=5

y >= 0 0 <=y <= X

y <= 5

X >=y

X <=7

Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,Y];

}
}
All pairs of upper/lower bounds on v:
loop constraints 0 <=y <=5
y >= 0 0 <=y <= X
y <= 5
X >=Yy Then eliminate y:
X <=7
0 <=5
0 <= x

Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,Y];

}
}
All pairs of upper/lower bounds on v:
loop constraints 0 <=y <=5
y >= 0 0 <=y <= X
y <= 5
X >=Yy Then eliminate y:
X <=7
0 <=5
0 <= x

Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,Y];

}
}
All pairs of upper/lower bounds on v:
loop constraints 0 <=y <=5
y >= 0 0 <=y <= X
y <= 5
X >=Yy Then eliminate y:
X <=7

Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,Y];

}
}
All pairs of upper/lower bounds on y: _ .
loop constraints without y:

loop constraints 0 <=y <=5

y >= 0 0 <=y <= X X >=0

X >= Yy Then eliminate y:

X <=7

loop constraints

y >= 0
y <=5
X >=y
X <=7

System with N variables can be viewed as an N
dimensional polyhedron

X =y
@ L 2
® @
® @
o @
® L

Reording Loop bounds:

* Given a new order: [xg, X1, X5, ... X,]

* For each variable x; : perform Fourier-Motzkin elimination to
eliminate any variables that come after x; in the new order.

* Instantiate loop conditions for x;, potentially using max/min
operators

7; x++) {

loop constraints

y >= 0
y <=5
X >=y
X <=7

new order: [X,y]

7; x++) { for x: eliminate y using FM elimination:

loop constraints

y >= 0
y <= 5
X >=y
X <=7

new order: [X,y]

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) { for x: eliminate y using FM elimination:
alx,y] = b[x,y] + c[Xx,Y];
} x loop constraints without y:
}
x >= 0
X <=7

loop constraints

y >= 0
y <=5
X >=y
X <=7

new order: [X,y]

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) { for x: eliminate y using FM elimination:
alx,y] = b[x,y] + c[Xx,Y];
} x loop constraints without y:
}
x >= 0
X <=7

loop constraints

y loop constraints:
Y s
17

new order: [X,y]

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) { for x: eliminate y using FM elimination:
a[x,y] = b[x,y] + c[x,Y];
} x loop constraints without y:
}
x >= 0
X <=7
loop constraints y loop constraints:
y >= 0 y >= 0
y <= 5 y <= 5
X >=y —
X <=7

new order: [X,y]

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) { for x: eliminate y using FM elimination:
alx,y] = b[x,y] + c[Xx,Y];
} x loop constraints without y:
}
x >= 0
X <=7

loop constraints

y loop constraints:
Y s
z >: y y <= min(x,5)
X <=7

<= min(x,5); y++) {

X, ¥] + c[x,Y1];

for (x = 0; x <= 7; x++) {
] b

— K

x loop constraints without y:

>= 0
<=7

X

y loop constraints:
>= 0
<= min(x,5)

L

Reordering loop bounds

* only works if loop increments by 1; assumes a closed polyhedron

* best performance when array indexes are simple:
ceg..al[x,v]
* harder with, e.g.: a[x*5+127, y+x*37]

* There exists schemes to automatically detect locality. Reach chapter 10 of the
Dragon book

* compiler implementation allows exploration and auto-tuning

Adding loop nestings

* In some cases, there might not be a good nesting order for all

dCcesses.
A=B+CT

A B C

Adding loop nestings

* In some cases, there might not be a good nesting order for all

daCcesses:
A=B+cC"

A B C

cold miss for all of them

Adding loop nestings

* In some cases, there might not be a good nesting order for all

dCcesses.
A=B+CT

A B C

Hit on A and B. Miss on C

Adding loop nestings

* In some cases, there might not be a good nesting order for all

dCcesses.
A=B+CT

A B C

Hit on A and B. Miss on C

Adding loop nestings

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+CT
A B C

Adding loop nestings

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+CT
A B C

Adding loop nestings

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+C"
A B C

cold miss for all of them

Adding loop nestings

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+CT
A B C

Miss on C

Adding loop nestings

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+CT
A B C

Miss on A,B, hit on C

Adding loop nestings

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+CT
A B C

Hit on all!

Adding loop nestings

* Add two outer loops for both x and y

for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
a[xX*SIZE + y] = b[X*SIZE + y] + c[Yy*SIZE + x];
}
}

Adding loop nestings

* Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
for (int yy = 0; yy < SIZE; yy += B) {
for (int x = xxX; x < xxX+B; x++) {
for (int y = yy; y < yy+B; y++) {
a[x*SIZE + y] = b[X*SIZE + y] + c[y*SIZE + x];
}
}
}
}

Adding loop nestings

* Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
for (int yy = 0; yy < SIZE; yy += B) {
for (int x = xxX; x < xxX+B; x++) {
for (int y = yy; y < yy+B; y++) {
a[x*SIZE + y] = b[X*SIZE + y] + c[y*SIZE + x];
}
}
}
}

Adding loop nestings

* Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
for (int yy = 0; yy < SIZE; yy += B) {
for (int x = xxX; x < xxX+B; x++) {
for (int y = yy; y < yy+B; y++) {
a[x*SIZE + y] = b[X*SIZE + y] + c[y*SIZE + x];
}
}
}
}

Adding loop nestings

* Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
for (int yy = 0; yy < SIZE; yy += B) {
for (int x = xxX; x < xxX+B; x++) {
for (int y = yy; y < yy+B; y++) {
a[x*SIZE + y] = b[X*SIZE + y] + c[y*SIZE + x];
}
}
}
}

Demo

Recap what we’ve covered with loops

* Are the loop iterations independent?
* The property holding all of these optimizations together

* mainstream compilers don’t do much to help us out here
* why not?

e But DSLs can!

Discussion

Discussion questions:

W

W
W

nat is a DSL?
nat are the benefits and drawbacks of a DSL?

nat DSLs have you used?

What is a DSL

* Objects in an object oriented language?
e operator overloading (C++ vs. Java)

* Libraries?
* Numpy

* Does it need syntax?
* Pytorch/Tensorflow

What is a DSL

* Not designed for general computation, instead
designed for a domain

* How wide or narrow can this be?

* Numpy vs TensorFlow
* Pros and cons of this design?

* Domain specific optimizations
* Optimizations do not have to work well in all cases

DSL designs

* Ease of expressiveness

sed ‘s/Utah/California’ address.txt

gnuplot

set title "Parallel timing experiments”
set xlabel "Threads”

set ylabel "Speedup"

plot ”"data.dat" with lines

Other examples?

These require their own front end. What about Matplotlib?

DSL designs

* Ease of expressiveness

make it harder to write bugs!

(a) Correct implementation. (b) With geometry bug.

Object A

woset?

Bworld onose
A
Omos® :
VeEz) L (Object B
OModelB PModel B Model B
» World

Oworld bworld

Add reference tags to types: World or View

From: Geometry Types for Graphics Programming, OOPSLA 2020

DSL designs

* Ease of optimizations

Examples?

From homework 3: uyhat docs this assume?

Non-optional in Tensorflow

* reduction loops:
* Entire computation is dependent
* Typically short bodies (addition, multiplication, max, min)

addition: 21
1 2 3 4 5 6 max: 6

Typically faster than min: 1
implementations in general
languages.

. nuplot example again
DSL designs —

set title ”"Parallel timing experiments”
set xlabel "Threads”

set ylabel "Speedup"

e Easier to reason about plot ”"data.dat" with lines
Typically much fewer lines of code tensorflow
than implementations in general tf.matmul(a, b)
languages.

What does an optimized matrix multiplication look like?

https://github.com/flame/blis/tree/master/kernels

DSL designs

e Easier to maintain

* Optimizations and transforms are less general (more targeted).
e [ess syntax (sometimes no syntax).
* Fewer corner cases.

DSL design

* Recipe for a DSL talk:
* Introduce your domain
* Show scary looking optimized code
* Show clean DLS code
* Show performance improvement
* Have a correctness argument

The rest of the lecture

* A discussion and overview of Halide:
* Huge influence on modern DSL design
* Great tooling
* Great paper

* Originally: A DSL for image pipelining:

Brighten example

from: https://halide-lang.org/tutorials/tutorial_lesson_02_input_image.html

Motivation:

pretty straight
forward computation
for brightening

(1 pass over all pixels)

We want to be able to do this
fast and efficiently!

Main results in from Halide show
a 1.7x speedup with 1/5 the LoC
over hand optimized versions at Adobe

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

Decoupling computation from optimization

* We love Halide not only because it can make pretty pictures very fast

* We love it because it changed the level of abstraction for thinking
about computation and optimization

* (Halide has been applied in many other domains now, turns out
everything is just linear algebra)

Example

e in C++

Which one would you write?

for (int x = 0; x < X size; x++) {
for (int y = 0; yv < y size; y++) {
a[x,y] = b[x,y] + c[x,y];
}
}
for (int y = 0; yv < y size; y++) {
for (int x = 0; x < X size; x++) {
a[x,y] = b[x,y] + c[x,y];
}

Optimizations are a black box

* What are the options?
* -00, -01, -02, -03
* |s that all of them?
 What do they actually do?

https://stackoverflow.com/questions/15548023/clang-optimization-levels

Optimizations are a black box

* What are the options?
* -00, -01, -02, -03
* |s that all of them?
 What do they actually do?

* Answer: they do their best for a wide range of programs. The
common case is that you should not have to think too hard about
them.

* In practice, to write high-performing code, you are juggling
computation and optimization in your mind!

Halides approach

* Decouple
e what to compute (the program)
* with how to compute (the optimizations, also called the schedule)

Halides approach

* Decouple

e what to compute (the program)
* with how to compute (the optimizations, also called the schedule)

for (int y = 0; y < y size; y++) { program
for (int x = 0; x < X size; x++) { add(x,y) = b(x,y) *+ c(x,Y)
a[X’Y] = b[X’Y] + C[X’Y]; schedule
} add.order(x,Vy)
}

Halide (high-level)
C++:

Halides approach

* Decouple

e what to compute (the program)
* with how to compute (the optimizations, also called the schedule)

program
add(x,y) = b(x,y) + c(X,Y)

Pros and Cons? schedule
add.order(x,y)

Halide (high-level)

Halide optimizations

* Now all of a sudden, the programmer has to worry about how to
optimize the program. Previously the compiler compiler made those
decisions and we just “helped”.

e What can we do here?

Halide optimizations

* Auto-tuning
e automatically select a schedule
e compile and run/time the program.
* Keep track of the schedule that performs the best

* Why don’t all compilers do this?

Halide optimizations

* Auto-tuning
e automatically select a schedule
e compile and run/time the program.
* Keep track of the schedule that performs the best

* Why don’t all compilers do this?

* Image processing is especially well-suited for this:

* Images in different contexts might have similar sizes (e.g. per phone, on
twitter, on facebook)

Halide programs

* Halide programs:
* built into C++, contained within a header

#include "Halide.h"

Halide: :Func gradient; // a pure function declaration
Halide::Var x, y; // variables to use in the definition of the function (types?)
gradient(x, y) = x + y; // the function takes two variables (coordinates in the image) and adds them

from: https://halide-lang.org/tutorials/tutorial_lesson_01_basics.html

gradient(x, V)

X

X + Yy

increasing

Y (o,/O)/ (1,0)

(2,0)

(0,1) | (1,1)

(2,1)

(0,2) | (1,2)

(2,2)

increasing

»
L

gradient(x, y) = x + y;
after applying the gradient function
X increasing X
(o,/O)/ (1,0) | (2,0) Y1 o0 | 1] 2
(0,1) | (1,1) | (2,1) 1 2 3
(0,2) | (1,2) | (2,2) 2 3 4
increasing

what are some properties of this computation?

gradient(x, y) = x + y;
X increasing
(0,0)/ (1,0) | (2,0)
(0,1) | (1,1) | (2,1)
(0,2) | (1,2) | (2,2)
increasing

after applying the gradient function

v

what are some properties of this computation?
Data races?

Loop indices and increments?
The order to compute each pixel?

Executing the function

Halide: :Buffer<int32 t> output = gradient.realize({3, 3});

Not compiled until this point
Needs values for x and y

v

2 3 4 output

Example: brightening

Brighten example

Halide::

Halide: :Func brighter;

Halide: :Expr value = input(x, y, C);
value = Halide::cast<float>(value);
value = value * 1.5f;

value = Halide::min(value, 255.0f);
value = Halide::cast<uint8 t>(value);
brighter(x, y, c¢) = value;

Buffer<uint8 t> input = load image('parrot.png'");

Halide: :Buffer<uint8 t> output =

brighter.realize({input.width(),

input.height(),

input.channels()});

Halide: :Buffer<uint8 t> input = load image('"parrot.png");
Halide: :Func brighter;

Halide: :Expr value = input(x, y, C);

value = Halide::cast<float>(value);
value = value * 1.5f;

value = Halide::min(value, 255.0f);
value = Halide::cast<uint8 t>(value);
brighter(x, y, c¢) = value;

Halide: :Buffer<uint8 t> output =
brighter.realize({input.width(), input.height(), input.channels()});

brighter(x, y, c¢) = Halide::cast<uint8 t>(min(input(x, y, c) * 1.5f, 255));

Schedules

Halide: :Func gradient;
Halide::Var x, y;

gradient(x, y) = x + y;

Halide: :Buffer<int32 t> output =

increasing

gradient.realize ({3, 3});
X
Y 10,0 | (1,0 | (2,0)
(0,1) | (1,1) | (2,1)
(0,2) | (1,2) | (2,2)

increasing

which order to traverse these elements?

Halide: :Func gradient;

Halide::Var x, y;

gradient(x, y) = x + y;

Halide: :Buffer<int32 t> output =
gradient.realize({4, 4});

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
output|[y,x] = X + y;

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Halide: :Func gradient;

Halide::Var x, y;

gradient(x, y) = x + y;

Halide: :Buffer<int32 t> output =
gradient.realize({4, 4});

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
output|[y,x] = X + y;

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Halide: :Func gradient; Schedule
Halide::Var x, y;
gradient(x, y) = x + y; gradient.reorder(y, X);
Halide: :Buffer<int32 t> output =
gradient.realize({4, 4});

for (int x = 0; x < 4; x++) {
for (int y = 0; y < 4; y++) {
output|[y,x] = X + y;
}

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Halide: :Func gradient; Schedule
Halide::Var x, y;
gradient(x, y) = x + y; gradient.reorder(y, X);
Halide: :Buffer<int32 t> output =
gradient.realize({4, 4});

for (int x = 0; x < 4; x++) {
for (int y = 0; y < 4; y++) {
output|[y,x] = X + y;
}

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Halide: :Func gradient; Schedule

Halide::Var x, y;

gradient(x, y) = x + y; Var x outer, x inner;

Halide: :Buffer<int32 t> output = gradient.split(x, x outer, x inner, 2);
gradient.realize({4, 4});

for (int y = 0; y < 4; y++) {
for (int x outer = 0; x outer < 2; x outer++) {

for (int x inner = 0; X inner < 2; X inner++) ({
X = X outer*2 + x inner;
output|[y,x] = X + Vy;

}

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Tiling

Adding loop nestings

* In some cases, there might not be a good nesting order for all

dCcesses.
A=B+CT

A B C

Adding loop nestings

* In some cases, there might not be a good nesting order for all

daCcesses:
A=B+cC"

A B C

cold miss for all of them

Adding loop nestings

* In some cases, there might not be a good nesting order for all

dCcesses.
A=B+CT

A B C

Hit on A and B. Miss on C

Adding loop nestings

* In some cases, there might not be a good nesting order for all

dCcesses.
A=B+CT

A B C

Hit on A and B. Miss on C

Adding loop nestings

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+CT
A B C

Adding loop nestings

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+CT
A B C

Adding loop nestings

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+C"
A B C

cold miss for all of them

Adding loop nestings

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+CT
A B C

Miss on C

Adding loop nestings

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+CT
A B C

Miss on A,B, hit on C

Adding loop nestings

* Blocking operates on smaller chunks to exploit locality in column
increment accesses. Example 2x2

A=B+CT
A B C

Hit on all!

for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
a[xX*SIZE + y] = b[X*SIZE + y] + c[Yy*SIZE + Xx];

}

transforms into:

for (int xx = 0; xx < SIZE; xx += B) {
for (int yy = 0; yy < SIZE; yy += B) {
for (int x = xxX; x < xxX+B; x++) {
for (int y = yy; y < yy+B; y++) {
a[x*SIZE + y] = b[X*SIZE + y] + c[y*SIZE + x];
}

Halide: :Func gradient; Schedule
Halide::Var x, y;

gradient(x, y) = x + y; Var x_outer, x_inner, y_outer, y_inner;
Halide: :Buffer<int32 t> output = gradient.split(x, x_outer, x_inner, 4);
gradient.realize ({16, 16}); gradient.split(y, y_outer, y_inner, 4);

gradient.reorder(x_inner, y_inner, x_outer, y_outer);

for (int y = 0; y < 16; y++) {
for (int x = 0; x < 16; x++) {
output|[y,xX] = X + y;

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Halide: :Func gradient; Schedule
Halide::Var x, y;

gradient(x, y) = x + y; Var x_outer, x_inner, y_outer, y_inner;
Halide: :Buffer<int32 t> output = gradient.split(x, x_outer, x_inner, 4);
gradient.realize ({16, 16}); gradient.split(y, y_outer, y_inner, 4);

gradient.reorder(x_inner, y_inner, x_outer, y_outer);

for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
output[y,xX] = X + y;

gradient.tile(x, vy,
X outer, y outer,
X_inner, y inner, 4, 4);

from: https://halide-lang.org/tutorials/tutorial_lesson_05_scheduling_1.html

Parallelism?

 Next lecture

Next class

* Continuing on DSL parallelism

e See you on Thursday

* Get a partner for homework 3!

