
CSE211: Compiler Design 
Nov. 17, 2022

• Topic: Compiling relaxed memory 
models

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)



Announcements

• Homework 3 is due on Monday
• Office hours tomorrow 3-5 pm
• Feel free to share results (not code!) on piazza or discord

• Guest lecture for Nov. 29
• Felix Klock will be talking about Rust



Announcements

• Working on grading HW 2 still
• Will have more of an update on Tuesday



Paper and project proposals

• Paper and project proposals
• I have left everyone a comment on both. Everything looks great thanks for 

submitting them!

• Remember
• Reports are due the day of the final: Dec 8.
• I highly suggest not saving these until the last minute. They have a late 

deadline to give you flexibility, not to enable procrastination. 
• one more homework (will be assigned on Monday)



CSE211: Compiler Design 
Nov. 17, 2022

• Topic: Compiling relaxed memory 
models

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)



Review

• How to implement parallelism in DOALL loops
• Regular parallelism?



DOALL regular parallelism on SMP system

C1C0

L1 
cache

L1 
cache

L2 cache

DRAM

thread 0 thread 1

0 1 2 3 4 5 6 7

stays in thread 0’s
L1 cache

stays in thread 1’s
L1 cache

SMP parallelism



DOALL regular parallelism on GPUs

one streaming
multiprocessor
contains many 
small Compute
Elements (CE)

0 1 2 3 4 5 6 7

CEs Can load adjacent
memory locations
simultaneously 

What about a striped pattern?

CE1CE0

thread 0 thread 1

streaming multiprocessor

L1 cache

DRAM

load/
store 
unit



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 1 2 3 4 5 6 7 SIZE -1

thread 1thread 0

Pros? Cons?



• local worklists: divide tasks into different worklists for each thread

0 1 3 4

thread 1thread 0

worklist 0 worklist 1

Work stealing - local worklists

Pros?
Cons?



Today’s lecture

• We have been assuming DOALL loops:
• Threads access completely disjoint memory
• This might not be the case
• Examples?



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 1 2 3 4 5 6 7 SIZE -1

thread 1thread 0

Pros? Cons?

Shared head of the list



• local worklists: divide tasks into different worklists for each thread

0

1

thread 1thread 0

worklist 0 worklist 1

steal!

Work stealing - local worklists

shared data structures!



What happens when threads share data?



Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1); 
L:%t1 = load(x);



Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1); 
L:%t1 = load(x);

S:store(x, 1);

L:%t0 = load(y); L:%t1 = load(x);

S:store(y, 1);

pick from the top of the pile of either thread



Sequential Consistency

• Sequential interleaving of atomic instructions

• What are ”atomic instructions”?



Thread 0:
S:store(x, 1);
L:%t0 = load(y);

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:store(y, 1); 
L:%t1 = load(x);

S:store(x, 1);

L:%t0 = load(y); L:%t1 = load(x);

S:store(y, 1);

pick from the top of the pile of either thread
Can t0 == t1 == 0 at the end of the execution?



Demo



• What is going on?



Thread 0: Thread 1:

mov [x], 1

mov %t0, [y]
mov %t1, [x]

mov [y], 1

Core 0 Core 1

Main Memory
x:0
y:0



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

mov [x], 1 mov [y], 1

execute first instruction
what happens to the stores?

x:0
y:0



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:0



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:0

eventually they flush to main memory



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:1

eventually they flush to main memory



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:0
y:0

mov [x], 1 mov [y], 1

rewind



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:0
y:0

mov [x], 1 mov [y], 1

execute first instruction



Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

values get stored in SB



Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Execute next instruction

mov %t0, [y] mov %t1, [x]



Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Values get loaded from memory

mov %t0, [y] mov %t1, [x]



Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

we see t0 == t1 == 0!

mov %t0, [y] mov %t1, [x]



Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Store buffers are drained eventually



Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:1
y:1

Store buffers are drained eventually
but we’ve already done our loads



Our first relaxed memory execution!

• also known as weak memory behaviors

• An execution that is NOT allowed by sequential consistency

• A memory model that allows relaxed memory executions is known as 
a relaxed memory model



Litmus tests

• Small concurrent programs that check for relaxed memory behaviors

• Vendors have a long history of under documented memory 
consistency models

• Academics have empirically explored the memory models
• Many vendors have unofficially endorsed academic models
• X86 behaviors were documented by researchers before Intel!



Litmus tests

Thread 0:
mov [x], 1
mov %t0, [y]

Thread 1:
mov [y], 1
mov %t1, [x]

Can t0 == t1 == 0?

This test is called “store buffering”



Restoring sequential consistency

• It is typical that relaxed memory models provide special instructions 
which can be used to disallow weak behaviors.

• These instructions are called Fences

• The X86 fence is called mfence. It flushes the store buffer.



Thread 0: Thread 1:

mov [x], 1

mov %t0, [y] mov %t1, [x]

mov [y], 1

Core 0 Core 1

Main Memory
x:0
y:0

mfence mfence

Store Buffer Store Buffer



Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov [x], 1

mov %t0, [y] mov %t1, [x]

mov [y], 1

Main Memory
x:0
y:0

mfence mfence
Execute first instruction



Store Buffer
x:1

Store Buffer
y:1Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:0
y:0

mfence mfenceValues go into the store buffer



Store Buffer
x:1

Store Buffer
y:1Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:0
y:0

mfence mfence

Execute next instruction



Store Buffer
x:1

Store Buffer
y:1Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:0
y:0

store buffers are flushed



Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

store buffers are flushed



Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

execute next instruction



Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

values are loaded from memory



Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

We don’t get the problematic behavior: t0 != 0 and t1 != 0



Next example



Thread 0:

mov [x], 1

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer

single thread
same address

possible outcomes:
t0 = 1
t0 = 0

Which one do you expect?



Thread 0:

mov [x], 1

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer

How does this execute?



Thread 0:

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer

execute first instruction

mov [x], 1



Thread 0:

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Store the value in the store buffer



Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Next instruction

mov %t0, [x]



Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Where to load??

Store buffer?
Main memory?

mov %t0, [x]



Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Where to load??

Threads check store buffer before going to main memory

It is close and cheap to check.

mov %t0, [x]



Question

• Can stores be reordered with stores?



Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1

Rules: S(tores) followed by a L(oad)
do not have to follow program order.



Thread 0:
S:mov [x], 1
mfence
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
mfence
L:mov %t1, [x]

Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1

Rules: S(tores) followed by a L(oad)
do not have to follow program order.

mfence

mfence



Thread 0:
S:mov [x], 1
mfence
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
mfence
L:mov %t1, [x]

Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1

mfence

mfence

Rules: 
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order



Rules

• Are we done?

Rules: 
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order



Thread 0:
S:mov [x], 1
L:mov %t0, [x]

Global variable:
int x[1] = {0};
int y[1] = {0};

Another test
Can t0 == 0?

S:mov [x], 1

L:mov %t0, [x] Rules: 
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order



Thread 0:
S:mov [x], 1
L:mov %t0, [x]

Global variable:
int x[1] = {0};
int y[1] = {0};

Another test
Can t0 == 0?

S:mov [x], 1

L:mov %t0, [x]

Rules: 
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

S(tores) cannot be reordered past L(oads)
from the same address



TSO - Total Store Order

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

S(tores) cannot be reordered past L(oads)
from the same address



Other memory models?

• We can specify them in terms of what reorderings are allowed

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S



Other memory models?

• We can specify them in terms of what reorderings are allowed

NO NO

NO NO

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

Sequential Consistency



Other memory models?

• We can specify them in terms of what reorderings are allowed

NO Different 
address

NO NO

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

TSO - total store order



Other memory models?

• We can specify them in terms of what reorderings are allowed

? ?

? ?

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

Weaker models?



Other memory models?

• We can specify them in terms of what reorderings are allowed

NO Different 
address

NO Different 
address

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

PSO - partial store order

Allows stores to drain from the store buffer in any order



Other memory models?

• We can specify them in terms of what reorderings are allowed

YES Different 
address

Different 
address

Different 
address

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

RMO - Relaxed Memory Order

Very relaxed model!



Other memory models?

• FENCE: can always restore order using fences. Accesses cannot be 
reordered past fences!

If memory access 0 appears before
memory access 1 in program order, and 
there is a FENCE between the two accesses,
can it bypass program order?

Any Memory Model



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

First thing: change our syntax to pseudo code
You should be able to find natural mappings
to any ISA



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Question: can t0 == t1 == 1?



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks and try for sequential consistency

L:%t0 = load(y)

S:store(x,1)
L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks and try for TSO

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

NO Different 
address

NO NO

memory access 0

memory access 1

L S

L

S



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks and try for PSO

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

NO Different 
address

NO Different 
address

memory access 0

memory access 1

L S

L

S



Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks and try for RMO

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

memory access 0

memory access 1

L S

L

S

YES Different 
address

different 
address

Different 
address

How do we disallow it?



Thread 0:
L:%t0 = load(y)
fence
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
fence
S:store(y,1)

Get out our lego bricks and try for RMO

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

memory access 0

memory access 1

L S

L

S

YES Different 
address

different 
address

Different 
address

How do we disallow it?

fence
fence



Compiling relaxed memory models



Compiling relaxed memory models

• C++ style:
• Any memory conflicts (read-write or write-write) must be accessed with an 

atomic operation*
• Otherwise your program is undefined
• By default, you will get sequentially consistent behavior

• *unless they are synchronized, which is a really complicated concept in c++... 
If you are interested, I can recommend papers.



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine

? ?

? ?

L S

L

S



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

find mismatch



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

find mismatch

Two options:

make sure stores
are not reordered
with later loads

make sure loads
are not reordered
with earlier stores



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);

This should help you see why you 
want to reduce the number of atomic
load/stores in your program



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S

How about this one?



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);

x.store(1); fence;
store(x,1);



Memory orders

• Atomic operations take an additional “memory order” argument
• memory_order_seq_cst - default
• memory_order_relaxed - weakest

Where have we seen memory_order_relaxed?



Relaxed memory order

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

basically no orderings except for accesses to 
the same address



Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S



Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

lots of mismatches!



Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

lots of mismatches!

But language is more
relaxed than machine

so no fences are needed



Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

Do any of the ISA memory models need any fences
for relaxed memory order?

NO Different 
address

NO NO

L S

L

S

TSO

NO Different 
address

NO Different 
address

L S

L

S

PSO

YES Different 
address

Different 
address

Different 
address

L S

L

S

RMO



Memory order relaxed

• Very few use-cases! Be very careful when using it
• Peeking at values (later accessed using a heavier memory order)
• Counting (e.g. number of finished threads in work stealing)



More memory orders: we will not discuss in class 

• Atomic operations take an additional “memory order” argument
• memory_order_seq_cst - default
• memory_order_relaxed - weakest

• More memory orders (useful for mutex implementations):
• memory_order_acquire
• memory_order_release

• EVEN MORE memory orders (complicated: in most research it is 
ommitted)
• memory_order_consume



Memory consistency in the real world

• Historic Chips:
• X86: TSO

• Surprising robost
• mutexes and concurrent data structures generally seem to work
• watch out for store buffering

• IBM Power and ARM
• Very relaxed. Similar to RMO with even more rules
• Mutexes and data structures must be written with care
• ARM recently strengthened theirs



Memory consistency in the real world

• Modern Chips:
• RISC-V : two specs: one similar to TSO, one similar to RMO
• Apple M1: toggles between TSO and weaker



Memory consistency in the real world

• PSO and RMO were never implemented widely
• I have not met anyone who knows of any RMO taped out chip
• They are part of SPARC ISAs (i.e. RISC-V before it was cool)
• These memory models might have been part of specialized chips

• Interestingly:
• Early Nvidia GPUs appeared to informally implement RMO

• Other chips have very strange memory models:
• Alpha DEC - basically no rules



Compiler

• Previously (before C/++11): 
• Use volatile
• Use inline assembly for fences
• Not portable!

• Now:
• C/++11 memory model
• But there are still bugs: Intel OpenCL compiler, IBM C++ compiler...



Further research

• Should we provide sequential consistency by default? even without 
atomics?
• How to do this?
• Many interesting papers



Thanks!

• Have a nice weekend!

• On Tuesday, we will talk about decoupled access execute (DAE)


