
Applying C/C++ sanitizers on the Nix toolchain

Farid Zakaria fmzakari@ucsc.edu

November 2021

1 Introduction

As hardware has steadily increased in power (computational, storage etc..),
software has become increasingly complex to match. Using an audit of
various programming languages and their dependencies as a proxy, shows
that the mean number of transitive dependencies can be on the order of
10-50 dependents[1]. If you account for the dependencies necessary to build
(i.e. compiler) as well as runtime dependencies, it’s easy to see that software
and their relationships can be viewed as a dense graph. Often times these
relationships are implicit, Nix aims to make it explicit.

Nix is a purely-functional package manager which can be configured via
a language of the same name. Nix was published in a PhD thesis by Eelco
Dolstra in 20061. It focuses on letting users specify repeatable actions on
files, which make it possible to write portable, reproducible actions in Nix.

The Nix community is incredibly vibrant. The nixpkgs2 repository, which
contains the various build recipes has close to 4000 unique contributors and
is currently the largest and freshest (most up to date) package repository.

Given the popularity and use of Nix, what is the code quality of the
underlying toolchain? We present data after having applied a memory san-
itizer (dynamic code analysis) and report on the defects found and the
commentary on modifications necessary to the codebase to support it.

2 Sanitizers

Programmers are fallible, and the result of their mistakes are bugs. These
bugs can be on account of a misunderstanding of the algorithm attempted

1https://edolstra.github.io/pubs/phd-thesis.pdf
2https://github.com/NixOS/nixpkgs/

1

mailto:fmzakari@ucsc.ed
https://edolstra.github.io/pubs/phd-thesis.pdf
https://github.com/NixOS/nixpkgs/

to be implemented, the language specification or from more mundane typos.
There has been a resurgence in tooling and languages that aim to help
programmers from either making certain class of mistakes or catching them
earlier during the software development process3.

C/C++ does not trade performance for safety, and famously is known
to make it easy to shoot yourself in the foot4. Sanitizers are a suite of
tools, open-sourced by Google, that can be statically included into the built
binary to help catch a large suite of errors such as data races, memory
leaks or use of uninitialized memory[3]. Other tools exist similarly but are
prohibitively expensive as they could impose a cost of 100x slowdown. The
various sanitizers are shown to provide high fidelity information necessary
to track and fix the bug while incurring only a modest 2.5x slowdown in
execution time.

Address Sanitizer A detector of various memory use errors such as buffer
overflows and memory leaks.

Thread Sanitizer A data race detector, a data race occurs when two
threads access the same variable concurrently and at least one of the
accesses is write.

Memory Sanitizer A detector for the use of uninitialized memory.

3 Evaluation

3.1 Building with Clang

In order to augment the build system to include the sanitizers, a deeper
understanding of Nix’s build system is necessary. There is a limited Hack-
ing Guide at https://nixos.org/manual/nix/unstable/contributing/

hacking.html, which at the time of this report details how to manually kick
off the Autotools5 commands to configure && make.

Running the build commands within the nix-shell6 on a build machine
with 256GiB memory and 128 cores (AMD Ryzen Threadripper 3990X 64-
Core Processor) but limiting build to use 28 sub-processes takes close to a
minute (51s).

3https://clang.llvm.org/diagnostics.html
4https://www.stroustrup.com/quotes.html
5https://www.gnu.org/software/automake/manual/html_node/GNU-Build-System.

html
6a reproducible environment offered by Nix that it uses to build itself

2

https://nixos.org/manual/nix/unstable/contributing/hacking.html
https://nixos.org/manual/nix/unstable/contributing/hacking.html
https://clang.llvm.org/diagnostics.html
https://www.stroustrup.com/quotes.html
https://www.gnu.org/software/automake/manual/html_node/GNU-Build-System.html
https://www.gnu.org/software/automake/manual/html_node/GNU-Build-System.html

[nix-shell]$./bootstrap.sh

[nix-shell]$./configure $configureFlags \

--prefix=$(pwd)/outputs/out

[nix-shell]$ make -j28

By default, the Nix code-base relies on GCC to build itself, specifically
version 10.3.0. The repository use to be able to build itself with either clang
or gcc, however that toggle functionality looks to have been removed. There
are unmerged contributions from the community which seek to reintroduce
this capability7. The Nix codebase already has support for changing the
standard environment (stdenv) to one that uses clang instead (clangStdenv)
and support can be reintroduced to the codebase with a minimal patch8.

Fortunately as the codebase use to build with Clang, at some point, the
build remained compatible and no subsequent changes were necessary to
build with clang. Although GCC has support for building with the various
sanitizers, Clang was chosen since the sanitizers reside within the LLVM
repository, and therefore there is the assumption for Clang to have superior
support.

3.2 Building with Address Sanitizer

The build was augmented to include support for Address Sanitizer (ASan),
following the official documentation of the LLVM website9. The key change
to introduce to the build step is to compile and link the program with
-fsanitize=address, and making sure to link using clang and not ld. Ad-
ditional changes were made to have the tool emit nicer stack traces and
remove incompatible linker flags such as -Wl,-z,defs (report unresolved
symbols in object files)10. Unfamiliarity with the codebase and Autotools
added complexity when discovering all the places to inject additional linker
flags (LDFLAGS) as failure to do so resulted in cryptic unresolved reference
errors.

error: undefined reference to '__asan_after_dynamic_init'

src/nix/log.cc:56: error: undefined reference to '__asan_set_shadow_f5'

clang-7: error: linker command failed with exit code 1 (use -v to see invocation)

make: *** [mk/lib.mk:118: src/nix/nix] Error 1

7https://github.com/NixOS/nix/issues/4129
8https://gist.github.com/fzakaria/00dafaec3b3f0864d136470bf6579099
9https://clang.llvm.org/docs/AddressSanitizer.html

10https://gist.github.com/fzakaria/eab8d14695549ddefdf9ba09038016ad

3

https://github.com/NixOS/nix/issues/4129
https://gist.github.com/fzakaria/00dafaec3b3f0864d136470bf6579099
https://clang.llvm.org/docs/AddressSanitizer.html
https://gist.github.com/fzakaria/eab8d14695549ddefdf9ba09038016ad

3.3 Discovering Errors

Running the Nix binary surprisingly immediately emits many failures caught
by the LeakSanitizer (LSan) and the AdressSanitizer (ASan). The LeakSan-
itizer is bundled automatically by building with the AdressSanitizer. Run-
ning the Nix binary, innocuously to simply emit it’s version information,
results in a memory leak.

./src/nix/nix --version

nix (Nix) 2.4

===

==1172266==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 152 byte(s) in 1 object(s) allocated from:

#0 0x553ac6 in calloc (/nix/src/nix/nix)

#1 0x7fa2229b0b92 in __pthread_attr_extension (libc.so.6)

Direct leak of 16 byte(s) in 1 object(s) allocated from:

#0 0x5876ef in operator new(unsigned long) (/nix/src/nix/nix)

#1 0x7fa222e0b5d5 in nix::makeSimpleLogger(bool) logging.cc:130:12

#2 0x7fa222e0b5d5 in __cxx_global_var_init.6 logging.cc:26

#3 0x7fa222e0b5d5 in _GLOBAL__sub_I_logging.cc logging.cc

Indirect leak of 32 byte(s) in 1 object(s) allocated from:

#0 0x553d2e in realloc (/nix/src/nix/nix)

#1 0x7fa2229b0d13 in pthread_attr_setaffinity_np@GLIBC_2.3.4 (libc.so.6)

SUMMARY: AddressSanitizer: 200 byte(s) leaked in 3 allocation(s).

Upon investigation, this memory leak is created at startup from overrid-
ing a default global logger pointer variable with other object addresses, with-
out freeing the memory beforehand. The Nix codebase is built against the
C++11 standard which includes support for smart pointers (i.e. std::unique ptr),
however the logging variable’s lifetime is managed manually. An upstream
pull-request11 has been made to remove the memory leak.

Unfortunately after resolving the above memory leak, subsequent runs
of the Nix binary results in many more, specifically involving the AST &
parser. The code maintainers explain that the AST & parser knowingly

11https://github.com/NixOS/nix/pull/5579

4

https://github.com/NixOS/nix/pull/5579

cause many memory leaks since tracking them is unecessary overhead and
they are generally needed for the lifetime of the application12.

$ nix search jdk

==1526543==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 5432 byte(s) in 97 object(s) allocated from:

#0 0x7139cf in operator new(unsigned long)

#1 0x7f644b4f1e13 in nix::EvalState::addPrimOp(nix::PrimOp&&) eval.cc:637

#2 0x7f644b6ad46b in nix::EvalState::createBaseEnv() primops.cc:3719

...

......

............

SUMMARY: AddressSanitizer: 14982 byte(s) leaked in 331 allocation(s)

The sanitizer also caught a variety of memory bugs that are all different
variants of use after free.

$ nix build -f concurrent.nix

==2023391==ERROR: AddressSanitizer: heap-use-after-free on address 0x606000d3d4ad at

pc 0x00000067893e bp 0x7ffd73767570 sp 0x7ffd73766d20

READ of size 6 at 0x606000d3d4ad thread T0

#0 0x67893d in __interceptor_memcpy.part.0 (nix)

...

The exploration of the binary for errors was done ad-hoc since there were
so many discovered failures rather than building a working corpus of tests.
A future improvement would be to run the full test-suite of the toolchain
itself with a debug build that includes ASan.

3.4 Results

The errors discovered by the sanitizer were easy to locate as the binary
still contained meaningful debug symbols and steps were taken following
the prescribed setup to disable certain compiler optimizations that may
obfuscate the location. Familiarity with the C/C++ language was necessary
in order to rectify the problems as the sanitizer only locates the failure but
does not provide any advice how to resolve it. At times the bugs were trivial

12https://matrix.to/#/!VRULIdgoKmKPzJZzjj:nixos.org/

$RczAfZSEWi7kX04NYHSdm2q3hzf1iS63CNEGSc6FEpc?via=nixos.org&via=matrix.org&

via=nixos.dev

5

https://matrix.to/#/!VRULIdgoKmKPzJZzjj:nixos.org/$RczAfZSEWi7kX04NYHSdm2q3hzf1iS63CNEGSc6FEpc?via=nixos.org&via=matrix.org&via=nixos.dev
https://matrix.to/#/!VRULIdgoKmKPzJZzjj:nixos.org/$RczAfZSEWi7kX04NYHSdm2q3hzf1iS63CNEGSc6FEpc?via=nixos.org&via=matrix.org&via=nixos.dev
https://matrix.to/#/!VRULIdgoKmKPzJZzjj:nixos.org/$RczAfZSEWi7kX04NYHSdm2q3hzf1iS63CNEGSc6FEpc?via=nixos.org&via=matrix.org&via=nixos.dev

to identify, however some stack-use-after-free with string view required a
more nuance understanding of the language to solve.

string create_str() {

return "Hello World!";

}

string_view crop_exclamation(string_view str) {

return str.substr(0, str.size() - 1);

}

int main() {

// BOOM! hello_world here is invalid memory

string_view hello_world = crop_exclamation(create_str());

std::cout << hello_world << std::endl;

return 0;

}

Listing 1: Demonstrating a suble stack-use-after-free failure with string view

Three upstream contributions were made to fix errors reported by the
sanitizer, two of which have already been merged1314. The contributions
were welcomed and have even inspired further investigation into the code-
base via the sanitizers by other active members of the community15.

4 Compiler Design and Implementation

The sanitizes are instrumented into the code at compile-time rather than
than dynamically at runtime, which other similar tools have done (i.e. val-
grind). The address sanitizer specifically overrides free and malloc, to catch
memory failures (memory leaks or use-after-free) that the compiler is un-
able to detect itself during compilation. Performing the instrumentation at
compile-time results in a less severe speedup penalty[2]. Additionally, the
sanitizers are tune-able, changing various settings that for instance may con-
trol corrupted heap memory size to stack unwinding depth. These settings
can effect the ability to discover bugs or the amount of diagnostic infor-

13https://github.com/NixOS/nix/pull/5599
14https://github.com/NixOS/nix/pull/5592
15https://github.com/NixOS/nix/pull/5599#issuecomment-976683952

6

https://github.com/NixOS/nix/pull/5599
https://github.com/NixOS/nix/pull/5592
https://github.com/NixOS/nix/pull/5599#issuecomment-976683952

mation presented to the developer both of which may affect the speedup
penalty imposed.

5 Conclusion

The suite of sanitizers available to statically instrument into a codebase is
a surprisingly easy and effective method to discover a wide class of failures
that are often challenging to reason through or discover simply by reading
the code. The sanitizers impose a small enough penalty to the performance
of the application that applying them to complex software systems such as
Chromium is doable and worthwhile.

The address sanitizer was added to the Nix toolchain and a suite of errors
was easily uncovered. The diagnostic information was complete enough to
identify the bugs, fix them and upstream contributions have been merged.
A surprising amount of bugs were uncovered through the exercise yet do not
meaningfully effect the functionality of the tool. An interesting question for
future work is a deeper discussion on what constitutes a bug if it doesn’t
typically impose a failure.

References

[1] Riivo Kikas et al. “Structure and Evolution of Package Dependency Net-
works”. In: 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). 2017, pp. 102–112. doi: 10.1109/MSR.
2017.55.

[2] Konstantin Serebryany et al. “AddressSanitizer: A Fast Address Sanity
Checker”. In: Proceedings of the 2012 USENIX Conference on Annual
Technical Conference. USENIX ATC’12. Boston, MA: USENIX Asso-
ciation, 2012, p. 28.

[3] Evgeniy Stepanov and Konstantin Serebryany. “MemorySanitizer: fast
detector of uninitialized memory use in C++”. In: 2015 IEEE/ACM In-
ternational Symposium on Code Generation and Optimization (CGO).
IEEE. 2015, pp. 46–55.

7

https://doi.org/10.1109/MSR.2017.55
https://doi.org/10.1109/MSR.2017.55

	Introduction
	Sanitizers
	Evaluation
	Building with Clang
	Building with Address Sanitizer
	Discovering Errors
	Results

	Compiler Design and Implementation
	Conclusion

