
CSE211: Compiler Design
Sept. 29, 2021

• Topic: Parsing overview 2 (production rules)

• Questions:
• What are the limitations of tokens for parsing?

• What is a context free grammar? Is it more or less powerful than a regular
expression?

..

.. ..

....

int main() {
printf(““);
return 0;
}

Announcements:

• Quiz results are in!

• Slack wins, there is a link to join
• Official communication will occur through canvas
• Private communication will occur through canvas
• Discussions can happen on slack
• Keep it open during class?

• Any issues so far?
• Accessing text book
• Slides

• Homework 1 will be assigned in 1 week!
• In the meantime, make sure you can get docker working and let me know if you want any

software installed

Announcements:

• I think there is a class in here afterwards
• I can stay after class outside

• Office hours tomorrow:
• 2 - 3pm
• E2 - 233 (no name tag yet!)

CSE211: Compiler Design
Sept. 29, 2021

• Topic: Parsing overview 2 (production rules)

• Questions:
• What are the limitations of tokens for parsing?

• What is a context free grammar? Is it more or less powerful than a regular
expression?

..

.. ..

....

int main() {
printf(““);
return 0;
}

Refresher

Regular expressions:
• 3 primitive operations
• union
• concat
• Kleene star

• Precedence?

• Common additional operators?

Refresher

Exercise:

C-style ids

floating point number

Email addresses

Parser architecture

First level of
abstraction.

Transforms a string of
characters into a string

of tokens

Second level:
transforms a string

of tokens in a tree of
tokens.

Language:
Regular Expressions

(REs)

Language:
Context-Free Grammars

(CFGs)

Parser

Parser
Scanner
(Lexer)

(Tokenizer)

Lists of Tokens

• Main idea:
• We can construct languages out of tokens

ARTICLE ADJECTIVE NOUN VERB

Lists of Tokens

• Main idea:
• We can construct languages out of tokens

ARTICLE ADJECTIVE NOUN VERB

My Old Computer Crashed

[(ARTICLE, “my”) (ADJECTIVE, “old”) (NOUN, “Computer”) (VERB, “Crashed”)]

Scanner

Lists of Tokens

• What about a mathematical sentence (expression)?

limited to non-negative integers
and just using + and *

Lists of Tokens

• What about a mathematical sentence (expression)?

• First lets define tokens:

limited to non-negative integers
and just using + and *

Lists of Tokens

• What about a mathematical sentence (expression)?

• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

limited to non-negative integers
and just using + and *

Lists of Tokens

• What about a mathematical sentence (expression)?

• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

• What should our language look like?

limited to non-negative integers
and just using + and *

Lists of Tokens

• What about a mathematical sentence (expression)?

• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

• What should our language look like?
• NUM

limited to non-negative integers
and just using + and *

Lists of Tokens

• What about a mathematical sentence (expression)?

• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

• What should our language look like?
• NUM
• NUM PLUS NUM

limited to non-negative integers
and just using + and *

Lists of Tokens

• What about a mathematical sentence (expression)?

• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

• What should our language look like?
• NUM
• NUM PLUS NUM
• ...

limited to non-negative integers
and just using + and *

Lists of Tokens

• What about a mathematical sentence (expression)?

• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

• What should our language look like?
• NUM
• NUM PLUS NUM
• ...

Why not just use regular
expressions?

What would the expression
look like?

limited to non-negative integers
and just using + and *

Lists of Tokens

• Where are we going to run into issues?

What about ()’s

• there is a formal proof available that regex CANNOT match ()’s:
pumping lemma

• Informal argument:
• Try matching (!)!using Kleene star
• Impossible!

• We are going to need a more powerful language description
framework!

Context Free Grammars

• Backus–Naur form (BNF)
• A syntax for representing context free

grammars

• Naturally creates tree-like structures

• More powerful than regular
expressions

Image Credit:
By Jochgem - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=5036988

BNF Production Rules

• <production name> : <token list>
• Example:

sentence: ARTICLE NOUN VERB

• <production name> : <token list> | <token list>
• Example:
sentence: ARTICLE ADJECTIVE NOUN VERB

| ARTICLE NOUN VERB
Convention: Tokens in all caps,
production rules in lower case

BNF Production Rules

• Production rules can reference other production rules

sentence: non_adjective_sentence
| adjective_sentence

non_adjective_sentence: ARTICLE NOUN VERB

adjective_sentence: ARTICLE ADJECTIVE NOUN VERB

BNF Production Rules

sentence: ARTICLE ADJECTIVE* NOUN VERB

BNF Production Rules

sentence: ARTICLE ADJECTIVE* NOUN VERB
We cannot do the star in production rules

BNF Production Rules

• Production rules can be recursive
• Imagine a list of adjectives:

“The small brown energetic dog barked”

sentence: ARTICLE adjective_list NOUN VERB

adjective_list: ADJECTIVE adjective_list
| <empty>

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

expr : NUM
| NUM bin_op expr

bin_op : PLUS | TIMES

How can we make BNF production rules for this?

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’

expression : NUM
| expression PLUS expression
| expression TIMES expression

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:

• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’
• LP = ‘\(’
• RP = \)’

expression : NUM
| expression PLUS expression
| expression TIMES expression
| LP expression RP

Let’s add () to the language!

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’
• LPAREN = ‘\(‘
• RPAREN = ‘\)’

expression : NUM
| expression PLUS expression
| expression TIMES expression
| LPAREN expression RPAREN

What other syntax like ()
are used in programming
languages?

Let’s go back to mathematical sentences
(expressions)
• First lets define tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’
• LPAREN = ‘\(‘
• RPAREN = ‘\)’

expression : NUM
| expression PLUS expression
| expression TIMES expression
| LPAREN expression RPAREN

What other syntax like ()
are used in programming
languages?

https://stackoverflow.com/questions/1
732348/regex-match-open-tags-except-
xhtml-self-contained-tags

2nd most upvoted post on stackoverflow

How to determine if a string matches a CFG?

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: 5

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

input: 5

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

input: 5

root of the tree is
the entry production

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

<NUM, 5>

input: 5

leafs are lexemes

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: 5*6

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

input: 5*6

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

expr <TIMES>

input: 5*6

expr

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

<NUM, 5>

expr

<NUM, 6>

<TIMES>

input: 5*6

expr

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

input: 5**6

What happens
in an error?

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

expr <TIMES>

input: 5**6

expr

What happens
in an error?

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

expr

<TIMES>

expr

<NUM, 6>

<TIMES>

input: 5**6

expr

<NUM, 5>

Not possible!

What happens
in an error?

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6>

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

<NUM, 5><NUM, 1>

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• Reverse question: given a parse tree: how do you create a string?

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

<NUM, 5><NUM, 1>

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• Try making a parse tree from: 1 + 5 * 6

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• Try making a parse tree from: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

Ambiguous grammars

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

Ambiguous grammars

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr

expr <PLUS> expr

<NUM, 1> <TIMES>expr expr

<NUM, 6><NUM, 5>

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

Ambiguous grammars

• What’s the issue?

ParserInput

A string Language
Recognizer for

language L

Reject

Accept

Ambiguous grammars

• What’s the issue?

ParserInput

A string Language
Recognizer for

language L

Reject

Accept
structured data

(e.g. AST)

continue to the rest
of compilation

Meaning into structure

• Structural meaning defined to be a post-order traversal

Meaning into structure

• Structural meaning defined to be a post-order traversal
• Children return values to their parent
• Nodes are only evaluated once all their children have been evaluated
• Evaluated from left to right
• Also called “Natural Order”

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• Reverse question: given a parse tree: how do you create a string?

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

<NUM, 5><NUM, 1>

Meaning into structure

• Structural meaning defined to be a post-order traversal
• Children return values to their parent
• Nodes are only evaluated once all their children have been evaluated
• Evaluated from left to right

• Can also encode the order of operation

Ambiguous grammars

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr

expr <PLUS> expr

<NUM, 1> <TIMES>expr expr

<NUM, 6><NUM, 5>

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

Avoiding Ambiguity

• How to avoid ambiguity related to precedence?

• Define precedence: ambiguity comes from conflicts. Explicitly define
how to deal with conflicts, e.g. write* has higher precedence than +

• Some parser generators support this, e.g. Yacc

Avoiding Ambiguity

• How to avoid ambiguity related to
precedence?

• Second way: new production rules
• One rule for each level of precedence
• lowest precedence at the top
• highest precedence at the bottom

• Lets try with expressions and the
following:
• + * ()

Avoiding Ambiguity

• How to avoid ambiguity related to
precedence?

• Second way: new production rules
• One rule for each level of precedence
• lowest precedence at the top
• highest precedence at the bottom

• Lets try with expressions and the
following:
• + * ()

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Precedence
increases going down

Now lets create a parse tree
input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

term

factor

input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

term

factor

input: 1+5*6

term

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

<TIMES>term term

term

factor

input: 1+5*6

term

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

<TIMES>term term

term

factor

input: 1+5*6

term

<NUM, 5>

factor

<NUM, 6>

factor

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Parsing REs

Let’s try it for regular expressions, {| . * ()}

Operator Name Productions

| p0 p0 PIPE p0
p1

. p1 p1 DOT p1
p2

* p2 p2 STAR
p3

() p3 LPAR p0 RPAR
CHAR

Parsing REs

Operator Name Productions

| union : union PIPE union
| concat

. concat : concat DOT concat
| starred

* starred : starred STAR
| unit

() unit : LPAREN union RPAREN
| CHAR

Let’s try it for regular expressions, {| . * ()}

Parsing REs

Let’s try it for regular expressions, {| . * ()}
input: a.b | c*

Operator Name Productions

| union : union PIPE union
| concat

. concat : concat DOT concat
| starred

* starred : starred STAR
| unit

() unit : LPAREN union RPAREN
| CHAR

Parsing REs

Let’s try it for regular expressions, {| . * ()}
input: a.b | c*

union

union <|> union

starred

concat

concat

concat

<CHAR, c>

unit <*>

concat

starred

unit

<CHAR, a>

starred

unit

<CHAR ,b>

<.>

Operator Name Productions

| union : union PIPE union
| concat

. concat : concat DOT concat
| starred

* starred : starred STAR
| unit

() unit : LPAREN union RPAREN
| CHAR

Next class

• Chapter 3 in EAC goes into detail on parsers
• Some parsing algorithms, ambiguous grammars, etc.

• Encoding associativity into production rules

• For you:
• Try out docker instructions!
• Join slack for discussions!
• Homework is released in 1 week!

• See you on Friday!

