
CSE211: Compiler Design
Sept. 27, 2021

• Topic: Parsing overview 1 (tokenizing)

• Questions:
• What is parsing?

• Have you used Regular Expressions before?

• How do you parse Regular Expressions? What about Context-free Grammars?

..

.. ..

....

int main() {
printf(““);
return 0;
}

Announcements:

• Tutorial for Docker on website

• Any issues so far?
• Accessing text book
• Slides

• Vote for slack, discord, piazza on the website, closes at the end of
tomorrow!

• Homework 1 will be assigned in 1 week!
• In the meantime, make sure you can get docker working and let me know if you want

any software installed

CSE211: Compiler Design
Sept. 27, 2021

• Topic: Parsing overview 1 (tokenizing)

• Questions:
• What is parsing?

• Have you used Regular Expressions before?

• How do you parse Regular Expressions? What about Context-free Grammars?

..

.. ..

....

int main() {
printf(““);
return 0;
}

Compiler architecture overview

String Compiler output
(string, executable)

Compiler architecture overview

String output
(string, executable)

parser
transformations

and analysis backend

Compiler architecture overview

String output
(string, executable)

parser
transformations

and analysis backend

Parsing is the first step in the compiler

Creates structure

..

.. ..

....

int main() {
printf(““);
return 0;
}

Parsing is the first step in a compiler

• How do we parse a sentence in English?

Parsing is the first step in a compiler

• How do we parse a sentence in English?

The dog ran across the park

Parsing is the first step in a compiler

• How do we parse a sentence in English?

The dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

Parsing is the first step in a compiler

• How do we parse a sentence in English?

Grammar and Syntax

What about semantics?

The dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

Parsing is the first step in a compiler

• How do we parse a sentence in English?

Grammar and Syntax

What about semantics?

The dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

Parsing is the first step in a compiler

• How do we parse a sentence in English?

Grammar and Syntax

What about semantics?

My dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN

New Question

Can we define a simple language using these building blocks?

• ARTICLE
• NOUN
• VERB
• ADJECTIVE

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

ARTICLE NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Question mark means optional

ARTICLE ADJECTIVE? NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

My Old Computer Crashed

ARTICLE ADJECTIVE? NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

The Purple Dog Crashed

ARTICLE ADJECTIVE? NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Syntactically correct,
logically correct?

The Purple Dog Crashed

ARTICLE ADJECTIVE? NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

What other sentences can you construct?

ARTICLE ADJECTIVE? NOUN VERB

A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

What other languages can you specify?

ARTICLE ADJECTIVE* NOUN VERB

Goals in this module

• Understand the architecture of a modern parser (tokenizing and
parsing)

• Understand the language of tokens (regular expressions) and parsers
(context-free grammars)

• How to design CFG production rules so avoid ambiguity and encode
precedence and associativity.

• Utilize a classic parser generator (Lex and Yacc) for a simple language

Goals in this module

• We will NOT discuss parsing algorithms for CFGs. It is a deep dark
hole. If you are interested, you can do this for a paper assignment.

• This module should provide you with the background to implement
parsers, which are USEFUL in many different projects.

• These topics are typically covered in more depth in an undergrad
course (e.g. formal properties of regular expressions, parsing
algorithms).

High-level parser

Parser

High-level parser

Parser

A parser needs a language specification:
• What forms can these take?

High-level parser

Parser

A parser needs a language specification:
• 1800 page C++ specification,
• English language

• Formal specification, mathematical
• Mostly used in academics
• X86, ARM, Functional languages

High-level parser

Parser

A parser needs a language specification:
• 1800 page C++ specification,
• English language

• Formal specification, mathematical
• Mostly used in academics
• X86, ARM, Functional languages

Parser needs only a small part of the specification!
The Grammar!

High-level parser

Input

A string

Parser

Language
Recognizer for
L’s Grammar

High-level parser

Reject

Accept

Input

A string

Parser

Language
Recognizer for
L’s Grammar

High-level parser

Reject

Accept

Input

A string

Parser

The input string
satisfies L’s grammar

The input string is NOT
in the language L

Language
Recognizer for
L’s Grammar

High-level parser

Reject

Accept

Input

A string

Parser

Syntax error

The input string
satisfies L’s grammar

The input string is NOT
in the language L

what other types of
errors might happen up
here?

Language
Recognizer for
L’s Grammar

High-level parser

Reject

Accept

Input

A string

Parser

Syntax error

The input string
satisfies L’s grammar

The input string is NOT
in the language L

what other types of
errors might happen up
here?

Some languages
try to move logic errors
to syntax errors!

Language
Recognizer for
L’s Grammar

High-level parser

Reject

Accept

Input

A string

Parser

Syntax error

The input string
satisfies L’s grammar

The input string is NOT
in the language L

structured data
(e.g. AST)

continue to the rest
of compilation

Language
Recognizer for
L’s Grammar

Parser architecture
Parser

Scanner
(Lexer)

(Tokenizer)
Parser

Parser architecture

First level of
abstraction.

Transforms a string of
characters into a string

of tokens

Second level:
transforms a string

of tokens in a tree of
tokens.

Parser

Parser
Scanner
(Lexer)

(Tokenizer)

Parser architecture

First level of
abstraction.

Transforms a string of
characters into a string

of tokens

Second level:
transforms a string

of tokens in a tree of
tokens.

Language:
Regular Expressions

(REs)

Language:
Context-Free Grammars

(CFGs)

Parser

Parser
Scanner
(Lexer)

(Tokenizer)

Scanner

• List of tokens:
• e.g. {NOUN, ARTICLE, ADJECTIVE, VERB}

Scanner

My Old Computer Crashed

Scanner

My Old Computer Crashed

[(ARTICLE, “my”) (ADJECTIVE, “old”) (NOUN, “Computer”) (VERB, “Crashed”)]

Scanner

Scanner

My Old Computer Crashed

Lexeme: (TOKEN, value)

Scanner

[(ARTICLE, “my”) (ADJECTIVE, “old”) (NOUN, “Computer”) (VERB, “Crashed”)]

Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3

ideas?
numbers
operators
parenthesis
whitespace

Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3(LPAREN, ‘(‘)
(NUMBER, 5)
(PLUS, +)
(NUMBER, 4)
(RPAREN, ‘)’)
(TIMES, *)
(NUMBER, 3)

Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3(LPAREN, ‘(‘)
(NUMBER, 5)
(PLUS, +)
(NUMBER, 4)
(RPAREN, ‘)’)
(TIMES, *)
(NUMBER, 3)

(LPAREN, ‘(‘)
(NUMBER, 5)
(OP, +)
(NUMBER, 4)
(RPAREN, ‘)’)
(OP, *)
(NUMBER, 3)

You can generalize tokens

Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3(LPAREN, ‘(‘)
(NUMBER, 5)
(PLUS, +)
(NUMBER, 4)
(RPAREN, ‘)’)
(TIMES, *)
(NUMBER, 3)

(LPAREN, ‘(‘)
(FIVE, 5)
(PLUS, +)
(FOUR, 4)
(RPAREN, ‘)’)
(TIMES, *)
(THREE, 3)

You can make tokens more specific

Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3(LPAREN, ‘(‘)
(NUMBER, 5)
(PLUS, +)
(NUMBER, 4)
(RPAREN, ‘)’)
(TIMES, *)
(NUMBER, 3)

Some choices are more obvious!

(PAREN, ‘(‘)
(NUMBER, 5)
(PLUS, +)
(NUMBER, 4)
(PAREN, ‘)’)
(TIMES, *)
(NUMBER, 3)

Defining tokens

Defining tokens

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

Defining tokens

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

Defining tokens

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = {“Cat”, “Dog”, “Car”}

Defining tokens

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = {“Cat”, “Dog”, “Car”}

• Numbers
• NUM = {“0”, “1” …}

Defining tokens

• Regular expressions!• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = {“Cat”, “Dog”, “Car”}

• Numbers
• NUM = {“0”, “1” …}

Regular Expressions

• Lots of literature!
• Simplest grammar in the

Chomsky language
hierarchy

• abstract machine definition
(finite automata)

• Many implementations (e.g.
Python standard library)

image source: wikipedia

Regular Expressions

We will define RE’s recursively:

Input:
• Regular Expression R
• String S

Output:
• Does the Regular Expression R match the string S

Regular Expressions

We will define RE’s recursively:

The base case: a character literal
• The RE for a character ‘x’ is given by ‘x’. It matches only the

character ‘x’

Examples: (demo)

Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under concatenation:

• The concatenation of two REs x and y is given by xy and
matches the strings of RE x concatenated with the strings of
RE y

Examples (demo)

Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under union:

• The union of two REs x and y is given by x|y and matches
the strings of RE x OR the strings of RE y

Examples (demo)

Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under Kleene star:

• The Kleene star of an RE x is given by x* and matches the
strings of RE x REPEATED 0 or more times

Examples (demo)

Regular Expressions

• Use ()’s to force precedence!

• Just like in math:
• 3 + 4 * 5

• what is the precedence of concatenation, union, and star?
• “cat | dog”
• (xy)*

Regular Expressions

• Use ()’s to force precedence!

• Just like in math:
• 3 + 4 * 5

• what is the precedence of concatenation, union, and star?
• “x | yw”

• Is it “(x | y)w” or “x | (yw)”
• “xy*”

• is it (xy)* or x(y*)

Regular Expressions

• Use ()’s to force precedence!

• Just like in math:
• 3 + 4 * 5

• what is the precedence of concatenation, union, and star?
• Star > Concat > Union
• use () liberally to avoid mistakes!

Regular Expressions

Most RE implementations provide syntactic sugar:

• Ranges:
• [0-9]: any number between 0 and 9
• [a-z]: any lower case character
• [A-Z]: any upper case character

• Optional(?)
• Matches 0 or 1 instances:
• ab?c matches ”abc” or ”ac”
• can be implemented as: (abc | ac)

Defining tokens using REs

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = “(Cat)|(Dog)|(Car)”

• Numbers
• SINGLE_NUM = [0-9]
• how to do INT = -?([1-9][0-9]*) | 0
• how to do FLOAT?

Defining tokens using REs

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = “(Cat)|(Dog)|(Car)”

• Numbers
• SINGLE_NUM = [0-9]
• INT = (-|\+)?[0-9]+
• FLOAT = (-|\+)?[0-9]+(\.[0-9]+)?

Longest possible match

• Consider the re:

• CLASS_TOKEN = {“cse” | “211” | “cse211”}

• What would the lexeme be for: “cse211”

• (CLASS_TOKEN, ?)

Longest possible match

• Important for operators, e.g. in C
• ++, +=,

how would we parse “x++;”

(ID, “x”) (ADD, “+”) (ADD, “+”) (SEMI, “;”)

(ID, “x”) (INCREMENT, “++”) (SEMI, “;”)

Longest possible match

• Important for operators, e.g. in C
• ++, +=,

how would we parse “x++;”

(ID, “x”) (ADD, “+”) (ADD, “+”) (SEMI, “;”)

(ID, “x”) (INCREMENT, “++”) (SEMI, “;”)

We match the longest possible substring

Scanner Questions?

• A scanner splits a string into lexemes

• Tokens are defined using regular expressions

• Regular expressions are good for matching operators, parenthesis, variable
names, numbers, key words etc.

Parser

Scanner
(Lexer)

(Tokenizer)
Parser

Next class

• Chapter 2 in EAC goes into detail on regular expression parsing
• Finite automata etc.

• Production rules for expressions
• parse trees
• associativity
• ambiguous grammars

• For you:
• Try out docker instructions
• Vote for Canvas alternatives!
• Homework is released in 1 week!

• See you on Wednesday!

