
CSE211: Compiler Design 
Sept. 27, 2021

• Topic: Parsing overview 1 (tokenizing)

• Questions:
• What is parsing?

• Have you used Regular Expressions before?

• How do you parse Regular Expressions? What about Context-free Grammars?

..

.. ..

....

int main() {
printf(““);
return 0;
}



Announcements:

• Tutorial for Docker on website

• Any issues so far?
• Accessing text book
• Slides

• Vote for slack, discord, piazza on the website, closes at the end of 
tomorrow!

• Homework 1 will be assigned in 1 week!
• In the meantime, make sure you can get docker working and let me know if you want 

any software installed
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Compiler architecture overview

String output
(string, executable)

parser
transformations 

and analysis backend

Parsing is the first step in the compiler

Creates structure

..

.. ..

....

int main() {
printf(““);
return 0;
}
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Parsing is the first step in a compiler

• How do we parse a sentence in English?

Grammar and Syntax

What about semantics?

My dog ran across the park

ARTICLE ARTICLENOUN VERB PREPOSITION NOUN



New Question

Can we define a simple language using these building blocks?

• ARTICLE
• NOUN
• VERB
• ADJECTIVE



A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}
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A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

Syntactically correct,
logically correct?

The Purple            Dog Crashed
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A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}
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A Simple Language

• ARTICLE = {The, A, My, Your}
• NOUN = {Dog, Car, Computer}
• VERB = {Ran, Crashed, Accelerated}
• ADJECTIVE = {Purple, Spotted, Old}

What other languages can you specify?

ARTICLE ADJECTIVE*   NOUN VERB



Goals in this module

• Understand the architecture of a modern parser (tokenizing and 
parsing)

• Understand the language of tokens (regular expressions) and parsers 
(context-free grammars)

• How to design CFG production rules so avoid ambiguity and encode 
precedence and associativity.

• Utilize a classic parser generator (Lex and Yacc) for a simple language



Goals in this module

• We will NOT discuss parsing algorithms for CFGs. It is a deep dark 
hole. If you are interested, you can do this for a paper assignment.

• This module should provide you with the background to implement 
parsers, which are USEFUL in many different projects. 

• These topics are typically covered in more depth in an undergrad 
course (e.g. formal properties of regular expressions, parsing 
algorithms).
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High-level parser

Parser

A parser needs a language specification:
• What forms can these take?
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High-level parser

Parser

A parser needs a language specification:
• 1800 page C++ specification, 
• English language

• Formal specification, mathematical
• Mostly used in academics
• X86, ARM, Functional languages

Parser needs only a small part of the specification!
The Grammar!
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High-level parser

Reject

Accept

Input

A string

Parser

Syntax error

The input string 
satisfies L’s grammar

The input string is NOT
in the language L

what other types of 
errors might happen up 
here?

Some languages
try to move logic errors
to syntax errors!

Language
Recognizer for 
L’s Grammar



High-level parser

Reject

Accept

Input

A string

Parser

Syntax error

The input string 
satisfies L’s grammar

The input string is NOT
in the language L

structured data 
(e.g. AST)

continue to the rest 
of compilation

Language
Recognizer for 
L’s Grammar
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Parser architecture

First level of 
abstraction.

Transforms a string of 
characters into a string

of tokens

Second level:
transforms a string 

of tokens in a tree of 
tokens.

Language:
Regular Expressions 

(REs)

Language:
Context-Free Grammars 

(CFGs)

Parser

Parser
Scanner 
(Lexer)

(Tokenizer)



Scanner

• List of tokens: 
• e.g. {NOUN, ARTICLE, ADJECTIVE, VERB}



Scanner

My Old Computer Crashed



Scanner

My Old Computer Crashed

[(ARTICLE, “my”) (ADJECTIVE, “old”) (NOUN, “Computer”) (VERB, “Crashed”)]

Scanner



Scanner

My Old Computer Crashed

Lexeme: (TOKEN, value) 

Scanner

[(ARTICLE, “my”) (ADJECTIVE, “old”) (NOUN, “Computer”) (VERB, “Crashed”)]



Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3

ideas?
numbers
operators
parenthesis
whitespace
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Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3(LPAREN, ‘(‘) 
(NUMBER, 5) 
(PLUS, +) 
(NUMBER, 4) 
(RPAREN, ‘)’) 
(TIMES, *) 
(NUMBER, 3)

(LPAREN, ‘(‘) 
(FIVE, 5) 
(PLUS, +) 
(FOUR, 4) 
(RPAREN, ‘)’) 
(TIMES, *) 
(THREE, 3)

You can make tokens more specific



Scanner

• Lets write tokens for arithmetic expression:

(5 + 4) * 3(LPAREN, ‘(‘) 
(NUMBER, 5) 
(PLUS, +) 
(NUMBER, 4) 
(RPAREN, ‘)’) 
(TIMES, *) 
(NUMBER, 3)

Some choices are more obvious!

(PAREN, ‘(‘) 
(NUMBER, 5) 
(PLUS, +) 
(NUMBER, 4) 
(PAREN, ‘)’) 
(TIMES, *) 
(NUMBER, 3)



Defining tokens
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Defining tokens

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = {“Cat”, “Dog”, “Car”}

• Numbers
• NUM = {“0”, “1” …}



Defining tokens

• Regular expressions!• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = {“Cat”, “Dog”, “Car”}

• Numbers
• NUM = {“0”, “1” …}



Regular Expressions

• Lots of literature!
• Simplest grammar in the 

Chomsky language
hierarchy

• abstract machine definition 
(finite automata) 

• Many implementations (e.g. 
Python standard library)

image source: wikipedia



Regular Expressions

We will define RE’s recursively:

Input:
• Regular Expression R
• String S

Output:
• Does the Regular Expression R match the string S



Regular Expressions

We will define RE’s recursively:

The base case: a character literal
• The RE for a character ‘x’ is given by ‘x’. It matches only the 

character ‘x’

Examples: (demo)



Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under concatenation:

• The concatenation of two REs x and y is given by xy and 
matches the strings of RE x concatenated with the strings of 
RE y

Examples (demo)



Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under union:

• The union of two REs x and y is given by x|y and matches 
the strings of RE x OR the strings of RE y

Examples (demo)



Regular Expressions

We will define RE’s recursively:

Regular expressions are closed under Kleene star:

• The Kleene star of an RE x is given by x* and matches the 
strings of RE x REPEATED 0 or more times

Examples (demo)



Regular Expressions

• Use ()’s to force precedence!

• Just like in math:
• 3 + 4 * 5

• what is the precedence of concatenation, union, and star?
• “cat | dog”
• (xy)*



Regular Expressions

• Use ()’s to force precedence!

• Just like in math:
• 3 + 4 * 5

• what is the precedence of concatenation, union, and star?
• “x | yw” 

• Is it “(x | y)w” or “x | (yw)”
• “xy*”

• is it (xy)* or x(y*) 



Regular Expressions

• Use ()’s to force precedence!

• Just like in math:
• 3 + 4 * 5

• what is the precedence of concatenation, union, and star?
• Star > Concat > Union
• use () liberally to avoid mistakes!



Regular Expressions

Most RE implementations provide syntactic sugar:

• Ranges:
• [0-9]: any number between 0 and 9
• [a-z]: any lower case character
• [A-Z]: any upper case character

• Optional(?)
• Matches 0 or 1 instances:
• ab?c matches ”abc” or ”ac”
• can be implemented as: (abc | ac)



Defining tokens using REs

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = “(Cat)|(Dog)|(Car)”

• Numbers
• SINGLE_NUM = [0-9]
• how to do INT = -?([1-9][0-9]*) | 0
• how to do FLOAT?



Defining tokens using REs

• Literal – single character:
• PLUS = ‘+’, TIMES = ‘*’

• Keyword – single string:
• IF = “if”, INT = “int”

• Sets of words:
• NOUN = “(Cat)|(Dog)|(Car)”

• Numbers
• SINGLE_NUM = [0-9]
• INT = (-|\+)?[0-9]+
• FLOAT = (-|\+)?[0-9]+(\.[0-9]+)?



Longest possible match

• Consider the re:

• CLASS_TOKEN = {“cse” | “211” | “cse211”}

• What would the lexeme be for: “cse211”

• (CLASS_TOKEN, ?)



Longest possible match

• Important for operators, e.g. in C
• ++, +=,

how would we parse “x++;”

(ID, “x”) (ADD, “+”) (ADD, “+”) (SEMI, “;”)

(ID, “x”) (INCREMENT, “++”) (SEMI, “;”)



Longest possible match

• Important for operators, e.g. in C
• ++, +=,

how would we parse “x++;”

(ID, “x”) (ADD, “+”) (ADD, “+”) (SEMI, “;”)

(ID, “x”) (INCREMENT, “++”) (SEMI, “;”)

We match the longest possible substring



Scanner Questions?

• A scanner splits a string into lexemes

• Tokens are defined using regular expressions

• Regular expressions are good for matching operators, parenthesis, variable 
names, numbers, key words etc.

Parser

Scanner 
(Lexer)

(Tokenizer)
Parser



Next class

• Chapter 2 in EAC goes into detail on regular expression parsing 
• Finite automata etc.

• Production rules for expressions
• parse trees
• associativity
• ambiguous grammars

• For you:
• Try out docker instructions
• Vote for Canvas alternatives!
• Homework is released in 1 week!

• See you on Wednesday!


