
CSE211: Compiler Design
Oct. 8, 2021

• Topic: Parsing regular
expressions with derivatives

• Questions:
• How do you parse a regular

expression?
How do you parse a context
free grammar?

Announcements

• Homework 1 is out
• Due on the 18th

• Get started early!
• Today we will do parsing with derivatives

• Reading for today:
• first 7 pages
• https://www.ccs.neu.edu/home/turon/re-deriv.pdf
• Not optional! It will make part 2 of the homework much easier

• End of module 1, starting module 2 next week

CSE211: Compiler Design
Oct. 8, 2021

• Topic: Parsing regular
expressions with derivatives

• Questions:
• How do you parse a regular

expression?
How do you parse a context
free grammar?

Parsing RE’s with Derivatives

• A simple regular expression parser implementation
• Given an RE AST, you can parse with very few lines of code

• Think recursively!

Language Derivatives

• A language is a (potentially infinite) set of strings {s1, s2, s3, s4, …}

• A language is regular if it can be captured using a regular expression

• Examples of regular languages:
• {“a”}, {“+”}, {“+”, ”-”, ”*”, ”\”}
• {“1”, “1+1”, “1+1+1”}
• {“”}, also called {𝜀}
• {}

Subtle distinction between {} and {𝜀}

Language Derivatives

• The Derivative of language L with respect to character c (noted 𝛿c(L)) is:

• We’ll go over some examples in the next slides

for all s in L, if s begins with c, then s[1:] is in 𝛿c(L)

Language Derivatives Examples

• L = {“a”}

• 𝛿a(L) = {“”}

• 𝛿b(L) = {}

Language Derivatives Examples

• L = {“+”, “-”, “*”, “/”}

• 𝛿+ (L) = {𝜀}

• 𝛿^ (L) = {}

• 𝛿* (L) = {𝜀}

Language Derivatives Examples

• L = {“1”, “1+1”, “1+1+1”, “1+1+1+1”, …}

• 𝛿+ (L) = {}

• 𝛿1 (L) = {“” ,”+1”, “+1+1”, “+1+1+1”, …}

• 𝛿1+ (L) = {“1”, “1+1”, “1+1+1”, ..} = L

Language Derivatives Examples

• L = {“aaa”, “ab”, “ba”, “bba”}

• 𝛿a (L) = {“aa”, “b”}

• 𝛿aa (L) = {“a”}

• 𝛿b (L) = {“a”, “ba”}

• 𝛿ba (L) = {“”}

Regular Expressions

Recall we defined regular expressions recursively:

The three base cases: a character literal
• The RE for a character “a” is given by “a”. It matches only

the character “a”
• The RE for the empty string is is given by “” or 𝜀
• The RE for the empty set is given by {}

Regular Expressions

three recursive definitions

• The concatenation of two REs x and y is given by x.y and matches the
strings of RE x concatenated with the strings of RE y

• The union of two REs x and y is given by x|y and matches the strings of
RE x or the strings of RE y

• The Kleene star of an RE x is given by x* and matches the strings of RE
x repeated 0 or more times

Regular expressions recursive definition

re =
|{}
| “”
| c (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Regular expressions recursive definition

re = “a”.”b”

=

“a” “b”

relhs . rerhs

re =
|{}
| “”
| c (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

parse tree for a regular expression

Operator Name Productions

| union : union PIPE concat
| concat

. concat : concat CONCAT starred
| starred

* starred : starred STAR
| unit

unit : CHAR
| “”

input: “a”.”b” | “c”*

Excluding special cases for {}

parse tree for a regular expression

union

union <|>

starred
concat

concat

concat

<CHAR, “c”>

unit <*>
starred

unit

<CHAR, “a”>

starred

unit

<CHAR ,”b”>

<.>

Operator Name Productions

| union : union PIPE concat
| concat

. concat : concat CONCAT starred
| starred

* starred : starred STAR
| unit

unit : CHAR
| “”

Excluding special cases for {}

input: “a”.”b” | “c”*

parse tree for a regular expression

union

union <|>

starred
concat

concat

concat

<CHAR, c>

unit <*>
starred

unit

<CHAR, a>

starred

unit

<CHAR ,b>

<.>

abstract syntax tree

<|>

<.>

<“a”> <“b”>

<*>

<“c”>

input: “a”.”b” | “c”*

parse tree for a regular expression

abstract syntax tree • re =
|{}
| “”
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

<|>

<.>

<“a”> <“b”>

<*>

<“c”>

input: “a”.”b” | “c”*

parse tree for a regular expression

abstract syntax tree

<|>

<.>

<“a”> <“b”>

<*>

<“c”>

relhs

relhs rerhs

rerhs

restarred

• re =
|{}
| “”
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

input: “a”.”b” | “c”*

parse tree for a regular expression

abstract syntax tree

<|>

<.>

<“a”> <“b”>

<*>

<“c”>

relhs

relhs rerhs

rerhs

restarred

each node is
also a regular expression!

input: “a”.”b” | “c”*

• re =
|{}
| “”
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

parse tree for a regular expression

abstract syntax tree

• Check homework code to
see AST construction

• Question: given a regular
expression AST, how check
if a string is in the
language?

• parsing with derivatives!

<|>

<.>

<“a”> <“b”>

<*>

<“c”>

relhs

relhs rerhs

rerhs

restarred

each node is
also a regular expression!

input: “a”.”b” | “c”*

Regular expressions are closed under derivatives

• Given a regular expression re, any derivative of re is also a regular
expression

• Let’s try some!

Regular expressions are closed under derivatives

• re = “a”

• {“a”}

• 𝛿a(re) = {“”} = re(“”)

• 𝛿b(re) = {}

Regular expressions are closed under derivatives

• re = “a”

• L(re) = {“a”}

• 𝛿a(re) = “”

• 𝛿b(re) = {}

Regular expressions are closed under derivatives

• re = “a” | “b”

• {“a”,”b”}

• 𝛿a(re) = {””}

• 𝛿b(re) = {“”}

Regular expressions are closed under derivatives

• re = “a” | “b”

• L(re) = {“a”, “b”}

• 𝛿a(re) = “”

• 𝛿b(re) = “”

Regular expressions are closed under derivatives

• re = “a”.”a” | “a”.”b”

{”aa”,	“ab”}

• 𝛿a(re) = {“a”,”b”} = “a” | “b”

• 𝛿b(re) = {}

Regular expressions are closed under derivatives

• re = “a”.”a” | “a”.”b”

• L = {“aa”, “ab”}

• 𝛿a(re) = ??

• 𝛿b(re) = ??

Regular expressions are closed under derivatives

• re = “a”.”a” | “a”.”b”

• L = {“aa”, “ab”}

• 𝛿a(re) = {“a”, “b”} = ??

• 𝛿b(re) = {}

Regular expressions are closed under derivatives

• re = “a”.”a” | “a”.”b”

• L = {“aa”, “ab”}

• 𝛿a(re) = {“a”, “b”} = “a” | “b”

• 𝛿b(re) = {}

Regular expressions are closed under derivatives

• re = (“a”.”b”.”c”)*

• {“”, “abc”, “abcabc”, “abcabcabc”, ...}

• 𝛿a(re) = {“bc”, “bcacb”, “bcabcabc” ...} = “b”.”c”.(“a”.”b”.”c”)*

Regular expressions are closed under derivatives

• re = (“a”.”b”.”c”)*

• L = {“”, ”abc”, “abcabc”, “abcabcabc” …}

• 𝛿a(re) = ??

Regular expressions are closed under derivatives

• re = (“a”.”b”.”c”)*

• L = {“”, ”abc”, “abcabc”, “abcabcabc” …}

• 𝛿a(re) = {“bc”, “bcabc”, “bcabcabc”, ...} = ??

Regular expressions are closed under derivatives

• re = (“a”.”b”.”c”)*

• L = {“”, ”abc”, “abcabc”, “abcabcabc” …}

• 𝛿a(re) = {“bc”, “bcabc”, “bcabcabc”, ...} = “b”.”c”.(”a”.”b”.”c”)*

What is a method for computing the derivative?

Consider the base cases

• 𝛿c (re) = match re with:

• {}
return {}

• “”
return {}

• a (single character)
if a == c then return {𝜀}
else return {}

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

return ? ?

• restarred*
return ? ?

• relhs . rerhs
return ? ?

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Regular expressions are closed under derivatives

• re = “a”.”a” | “a”.”b”

• L = {“aa”, “ab”}

• 𝛿a(re) = {“a”, “b”} = “a” | “b”

• 𝛿b(re) = {}

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

return ? ?

• restarred*
return ? ?

• relhs . rerhs
return ? ?

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
return ? ?

• relhs . rerhs
return ? ?

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Regular expressions are closed under derivatives

• re = (“a”.”b”.”c”)*

• L = {“”, ”abc”, “abcabc”, “abcabcabc” …}

• 𝛿a(re) = {“bc”, “bcabc”, “bcabcabc”, ...} = “b”.”c”.(”a”.”b”.”c”)*

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
return ? ?

• relhs . rerhs
return ? ?

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
return 𝛿c(restarred) . restarred*

• relhs . rerhs
return ? ?

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Let’s look at concatenation:

• 𝛿c (re) = match re with:

• relhs . rerhs
return ?? Example:

re = “a”.”b”

𝛿a(re) = “b”

Derivative Recursive Cases

Let’s look at concatenation:

• 𝛿c (re) = match re with:

• relhs . rerhs
return 𝛿c(relhs) . rerhs

Example:

re = “a”.”b”

𝛿a(re) = “b”

Derivative Recursive Cases

Let’s look at concatenation:

• 𝛿c (re) = match re with:

• relhs . rerhs
return 𝛿c(relhs) . rerhs

Example:

re = “c”*.”a”.”b”

𝛿a(re) = “b”

What about?

Derivative Recursive Cases

Let’s look at concatenation:

• 𝛿c (re) = match re with:

• relhs . rerhs
return 𝛿c(relhs) . rerhs |

if “” in relhs then 𝛿c(rerhs) else {}

Example:

re = “c”*.”a”.”b”

𝛿a(re) = “b”

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs
return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
return 𝛿c(restarred) . restarred*

• relhs . rerhs
return 𝛿c(relhs) . rerhs |

if “” in relhs then 𝛿c(rerhs) else {}

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Nullable operator

• NULL(re) =
if “” ∈ 𝑟𝑒 then: “”
else: {}

Nullable operator

• NULL(re) =
if “” ∈ 𝑟𝑒 then: “”
else: {}

implement over a RE abstract syntax tree

<|>

<.>

<“a”> <“b”>

<*>

< “c” >

• re =
|{}
| “”
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

What is a method for computing NULL?

Consider the base cases

• NULL(re) = match re with:

• {}
return {}

• “”
return “”

• a (single character)
return {}

• re =
|{}
| “”
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

What is a method for computing NULL?

Consider the recursive cases:

• NULL(re) = match re with:

• relhs | rerhs

return NULL(re_lhs) | NULL(re_rhs)

• restarred*
return “”

• relhs . rerhs
return NULL(re_lhs) . NULL(re_rhs)

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

What is a method for computing NULL?

Consider the recursive cases:

• NULL(re) = match re with:

• relhs | rerhs

return NULL(relhs) | NULL(rerhs)

• restarred*
return “”

• relhs . rerhs
return NULL(relhs) . NULL(rerhs)

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs
return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
return 𝛿c(restarred) . restarred*

• relhs . rerhs
return 𝛿c(relhs) . rerhs |

if 𝜀 in relhs then 𝛿c(rerhs) else {}

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs
return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred*
return 𝛿c(restarred) . restarred*

• relhs . rerhs
return 𝛿c(relhs) . rerhs |

NULL(relhs) . 𝛿c(rerhs)

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

L(re) = {.. s ..}

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

𝛿c1 (re)

L(𝛿c1 (re)) = {.. s[1:] ..}

L(re) = {.. s ..}

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

𝛿c1 (re) 𝛿c2 (𝛿c1 (re)) = 𝛿c1,c2 (re)

L(𝛿c1 (re)) = {.. s[1:] ..}

L(re) = {.. s ..}

L(𝛿c1,c2 (re)) = {.. s[2:] ..}

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

𝛿c1 (re) 𝛿c2 (𝛿c1 (re)) = 𝛿c1,c2 (re) 𝛿s(re)

L(𝛿c1 (re)) = {.. s[1:] ..} L(𝛿s(re)) = {.. 𝜀 ..}

L(re) = {.. s ..}

L(𝛿c1,c2 (re)) = {.. s[2:] ..}

Parsing REs with derivative

given a function 𝛿c to compute the derivative of an RE, the NULL
function, an RE re, and a string s = c1 . c2 . c3 … (concat of characters)

Can we check if re matches s?

𝛿c1 (re) 𝛿c2 (𝛿c1 (re)) = 𝛿c1,c2 (re)

NULL(𝛿s(re)) == “”

L(𝛿c1 (re)) = {.. s[1:] ..} L(𝛿s(re)) = {.. “” ..}

L(re) = {.. s ..}

L(𝛿c1,c2 (re)) = {.. s[2:] ..}

If this is true,
Then re matches s

𝛿s(re)

Have a good weekend!

Take a look at part 2 of the homework, everything we discussed today is
implemented there, with a few missing pieces for you to implement!

Next week we start module 2!

