## CSE211: Compiler Design

Oct. 8, 2021

- Topic: Parsing regular expressions with derivatives
- Questions:
- How do you parse a regular expression?
How do you parse a context free grammar?
- $\delta_{c}(r e)$, where re is:

$$
\cdot r e_{r h s} \cdot r e_{h s}
$$

$$
\delta_{c}\left(r e_{r h s}\right) \cdot r e_{h s} /
$$

$$
\text { if } \varepsilon \text { in } r e_{r h s} \text { then } \delta_{c}\left(r e_{\text {lhs }}\right) \text { else }\}
$$

## Announcements

- Homework 1 is out
- Due on the $18^{\text {th }}$
- Get started early!
- Today we will do parsing with derivatives
- Reading for today:
- first 7 pages
- https://www.ccs.neu.edu/home/turon/re-deriv.pdf
- Not optional! It will make part 2 of the homework much easier
- End of module 1, starting module 2 next week


## CSE211: Compiler Design

Oct. 8, 2021

- Topic: Parsing regular expressions with derivatives
- Questions:
- How do you parse a regular expression?
How do you parse a context free grammar?
- $\delta_{c}(r e)$, where re is:

$$
\cdot r e_{r h s} \cdot r e_{h s}
$$

$$
\delta_{c}\left(r e_{r h s}\right) \cdot r e_{h s} /
$$

$$
\text { if } \varepsilon \text { in } r e_{r h s} \text { then } \delta_{c}\left(r e_{\text {lhs }}\right) \text { else }\}
$$

## Parsing RE's with Derivatives

- A simple regular expression parser implementation
- Given an RE AST, you can parse with very few lines of code
- Think recursively!


## Language Derivatives

- A language is a (potentially infinite) set of strings $\left\{s_{1}, s_{2}, s_{3}, s_{4} \ldots\right\}$
- A language is regular if it can be captured using a regular expression
- Examples of regular languages:
- \{"a"\}, \{"+"\}, \{"+", "-"," "*", "1"\}
- \{"1", " $1+1$ ", " $1+1+1$ "\}
- $\left\{{ }^{\prime \prime \prime}\right\}$, also called $\{\varepsilon\}$

Subtle distinction between $\}$ and $\{\varepsilon\}$

- $\}$


## Language Derivatives

- The Derivative of language $L$ with respect to character $c\left(\right.$ noted $\left.\delta_{c}(\mathrm{~L})\right)$ is:
for all $s$ in $L$, if $s$ begins with $c$, then $s\left[1\right.$ :] is in $\delta_{c}(L)$
- We'll go over some examples in the next slides


## Language Derivatives Examples

- $L=\left\{{ }^{\prime \prime} a{ }^{\prime \prime}\right\}$
- $\delta_{a}(L)=\left\{{ }^{\prime \prime \prime}\right\}$
- $\delta_{b}(L)=\{ \}$

Language Derivatives Examples

- $L=\left\{"+", "^{\prime}\right.$ ", "*", "/" $\}$
- $\delta_{+}(L)=\{\varepsilon\}$
- $\delta_{\wedge}(L)=\{ \}$
- $\delta_{*}(L)=\{\varepsilon\}$


## Language Derivatives Examples

- $L=\left\{{ }^{\prime \prime} 1\right.$ ", " $1+1$ ", " $1+1+1$ ", " $1+1+1+1$ ", ... $\}$
- $\delta_{+}(L)=\{ \}$
- $\delta_{1}(L)=\left\{{ }^{\prime \prime \prime \prime}, \prime \prime+1^{\prime \prime}, "+1+1 ", "+1+1+1 ", \ldots\right\}$
- $\delta_{1+}(L)=\{" 1 ", " 1+1 ", " 1+1+1 ", .\}=$.

Language Derivatives Examples

- $L=\left\{" a a a{ }^{\prime \prime}, " a b ", " b a{ }^{\prime \prime}, " b b a "\right\}$
- $\delta_{a}(L)=\left\{" a a{ }^{\prime \prime}, " b\right.$ " $\}$
- $\delta_{a a}(L)=\{" a "\}$
- $\delta_{b}(L)=\{" a ", " b a "\}$
- $\delta_{b a}(L)=\left\{{ }^{\prime \prime \prime}\right\}$


## Regular Expressions

Recall we defined regular expressions recursively:

The three base cases: a character literal

- The RE for a character " a " is given by " a ". It matches only the character " a "
- The RE for the empty string is is given by "" or $\varepsilon$
- The RE for the empty set is given by $\}$


## Regular Expressions

three recursive definitions

- The concatenation of two REs $x$ and $y$ is given by $x . y$ and matches the strings of RE $x$ concatenated with the strings of RE $y$
- The union of two REs $x$ and $y$ is given by $x \mid y$ and matches the strings of RE $x$ or the strings of RE $y$
- The Kleene star of an RE $x$ is given by $x^{*}$ and matches the strings of RE $x$ repeated 0 or more times


## Regular expressions recursive definition

```
re =
    |{}
|"
    c (single character)
    re
    re lhs 
    re starred}
```


## Regular expressions recursive definition

re $=$


$$
r e=" a " . " b "
$$

$$
=
$$



## parse tree for a regular expression

input: "a"."b" | "c"*

| Operator | Name | Productions |
| :--- | :--- | :--- |
| I | union | : union PIPE concat <br> I concat |
| . | concat | : concat CONCAT starred <br> I starred |
| * | starred | : starred STAR <br> I unit |
|  | unit | : CHAR <br> \| u" |

Excluding special cases for $\}$

## parse tree for a regular expression



| Operator | Name | Productions |
| :--- | :--- | :--- |
| I | union | : union PIPE concat <br> \| concat |
| . | concat | : concat CONCAT starred <br> \| starred |
| * | starred | : starred STAR <br> \| unit |
|  | unit | : CHAR <br> \| "" |

Excluding special cases for $\}$

## parse tree for a regular expression

input: "a"."b" | "c"*


## parse tree for a regular expression

## input: "a"."b" | "c"*

abstract syntax tree


- re =

$$
\begin{aligned}
& \mid\{ \} \\
& \mid " \prime \\
& \mid \text { a (single character) } \\
& \left|\mathrm{re}_{\mathrm{lhs}}\right| \mathrm{re}_{\text {rhs }} \\
& \mid \mathrm{re}_{\mathrm{lhs}} \cdot \mathrm{re}_{\text {rhs }} \\
& \mid \mathrm{re}_{\text {starred }} *
\end{aligned}
$$

## parse tree for a regular expression

## input: "a"."b" | "c"*

abstract syntax tree


- re =
|\{\}
|""
| a (single character)
$\left|\mathrm{re}_{\mathrm{lhs}}\right| \mathrm{re}_{\mathrm{rhs}}$
$\mid \mathrm{re}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mid \mathrm{re}_{\text {starred }}$ *


## parse tree for a regular expression

## input: "a"."b" | "c"*



- re =

each node is
also a regular expression!


## parse tree for a regular expression

input: "a"."b" | "c"*
abstract syntax tree


- Check homework code to see AST construction
- Question: given a regular expression AST, how check if a string is in the language?
- parsing with derivatives!
each node is
also a regular expression!


## Regular expressions are closed under derivatives

- Given a regular expression re, any derivative of $r e$ is also a regular expression
- Let's try some!


## Regular expressions are closed under derivatives

- re = "a"
- $\{" a "\}$
- $\delta_{a}(r e)=\left\{{ }^{\text {"I' }}\right\}=r e\left(^{\text {("I' }}\right)$
- $\delta_{b}(r e)=\{ \}$


## Regular expressions are closed under derivatives

- re = "a"
- $L(r e)=\left\{{ }^{\prime \prime} a^{\prime \prime}\right\}$
- $\delta_{a}(r e)={ }^{\prime \prime \prime}$
- $\delta_{b}(r e)=\{ \}$


## Regular expressions are closed under derivatives

- re = "a" | " $b$ "
- $\left\{{ }^{\prime \prime} a^{\prime \prime \prime},{ }^{\prime \prime}{ }^{\prime \prime}\right\}$
- $\delta_{a}(r e)=\left\{{ }^{\prime \prime \prime \prime}\right\}$
- $\delta_{b}(r e)=\left\{{ }^{(" \prime \prime}\right\}$


## Regular expressions are closed under derivatives

- $r e=$ " $a "$ | " $b "$
- $L(r e)=\{" a ", " b "\}$
- $\delta_{a}(r e)={ }^{\prime \prime \prime}$
- $\delta_{b}(r e)={ }^{\prime \prime \prime}$


## Regular expressions are closed under derivatives

- re = "a"." $a$ " | "a"." $b^{\prime \prime}$
\{"aa", "ab"\}
- $\delta_{a}(r e)=\left\{" a, ",{ }^{\prime \prime}\right\}=$ " $a$ " | "b"
- $\delta_{b}(r e)=\{ \}$


## Regular expressions are closed under derivatives

- re = "a"." $a$ " | " $a$ ""." "
- $L=\left\{" a a^{\prime \prime}, " a b "\right\}$
- $\delta_{a}(r e)=? ?$
- $\delta_{b}(r e)=? ?$


## Regular expressions are closed under derivatives

- re = "a"." $a$ " | " $a$ ""." "
- $L=\left\{" a a^{\prime \prime}, " a b\right.$ " $\}$
- $\delta_{a}(r e)=\{" a ", " b "\}=? ?$
- $\delta_{b}(r e)=\{ \}$


## Regular expressions are closed under derivatives

- re = "a"." $a$ " | "a"." $b^{\prime \prime}$
- $L=\left\{\right.$ " $a a^{\prime \prime}$, " $\left.a b^{\prime \prime}\right\}$
- $\delta_{a}(r e)=\{" a ", " b "\}=" a " \mid " b "$
- $\delta_{b}(r e)=\{ \}$


## Regular expressions are closed under derivatives

- re = (" $\left.a^{\prime \prime \prime "}{ }^{\prime \prime} b^{\prime \prime \prime}{ }^{\prime \prime} c^{\prime \prime}\right)^{*}$
- \{"", "abc", "abcabc", "abcabcabc", ...\}
- $\delta_{a}(r e)=\left\{" b c\right.$ ", "bcacb", "bcabcabc" ...\} = "b"."c".("a"." $b{ }^{\prime \prime \prime " . " "))^{*}}$


## Regular expressions are closed under derivatives

- re $=\left(" a " \text { "" } b^{\prime \prime \prime} .{ }^{\prime \prime} c^{\prime \prime}\right)^{*}$
- $L=\{$ "", " "abc", "abcabc", "abcabcabc" ...\}
- $\delta_{a}(r e)=$ ??


## Regular expressions are closed under derivatives

- re = (" $\left.a^{\prime \prime \prime "}{ }^{\prime \prime} b^{\prime \prime \prime \prime} c^{\prime \prime}\right)^{*}$
- $L=\{$ "", " "abc", "abcabc", "abcabcabc" ... $\}$
- $\delta_{a}(r e)=\{" b c ", " b c a b c ", " b c a b c a b c ", \ldots\}=$ ??


## Regular expressions are closed under derivatives

- re = (" $\left.a^{\prime \prime \prime "}{ }^{\prime \prime} b^{\prime \prime \prime}{ }^{\prime \prime} c^{\prime \prime}\right)^{*}$
- $L=\{$ """, "abc", "abcabc", "abcabcabc" ... $\}$
- $\delta_{a}(r e)=\left\{" b c ", " b c a b c\right.$ ", "bcabcabc", ...\} = "b""."c".("a"." ${ }^{\prime \prime \prime " . " c ")}{ }^{*}$


## What is a method for computing the derivative?

Consider the base cases

- $\delta_{c}(r e)=$ match re with:
- $\}$
return $\}$
-""
return $\}$
- $a$ (single character)

```
if a == c then return {\varepsilon}
    else return {}
```


## Derivative Recursive Cases

Consider the recursive cases:

- re =
- $\delta_{c}(r e)=$ match re with:
- re $e_{\text {lhs }} / r e_{\text {rhs }}$
return ??
|\{\}
| $\varepsilon$
| a (single character)
$\left|\mathrm{re}_{\mathrm{lhs}}\right| \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\mathrm{lh}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- $r e_{\text {starred }}{ }^{*}$
return??
- re $e_{\text {lhs }} . r e_{r h s}$
return


## Regular expressions are closed under derivatives

- re = "a"." $a$ " | "a"." $b^{\prime \prime}$
- $L=\left\{\right.$ " $a a^{\prime \prime}$, " $\left.a b^{\prime \prime}\right\}$
- $\delta_{a}(r e)=\{" a ", " b "\}=" a " \mid " b "$
- $\delta_{b}(r e)=\{ \}$


## Derivative Recursive Cases

Consider the recursive cases:

- re =
- $\delta_{c}(r e)=$ match re with:
- re $e_{\text {lhs }} / r e_{\text {rhs }}$
return ??
|\{\}
| $\varepsilon$
| a (single character)
$\left|\mathrm{re}_{\mathrm{lhs}}\right| \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\mathrm{lh}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- $r e_{\text {starred }}{ }^{*}$
return??
- re $e_{\text {lhs }} . r e_{r h s}$
return


## Derivative Recursive Cases

Consider the recursive cases:

- re =
|\{\}
| $\varepsilon$
| a (single character)
$\mathrm{re}_{\mathrm{lhs}} \mid \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- $\mathrm{re}_{\text {starred }}{ }^{*}$
return ??
- re ${ }_{l h s} \cdot r e_{r h s}$
return


## Regular expressions are closed under derivatives

- re = (" $\left.a^{\prime \prime \prime "}{ }^{\prime \prime} b^{\prime \prime \prime}{ }^{\prime \prime} c^{\prime \prime}\right)^{*}$
- $L=\{$ """, "abc", "abcabc", "abcabcabc" ... $\}$
- $\delta_{a}(r e)=\left\{" b c ", " b c a b c\right.$ ", "bcabcabc", ...\} = "b""."c".("a"." ${ }^{\prime \prime \prime " . " c ")}{ }^{*}$


## Derivative Recursive Cases

Consider the recursive cases:

- re =
|\{\}
| $\varepsilon$
| a (single character)
$\mathrm{re}_{\mathrm{lhs}} \mid \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- $\mathrm{re}_{\text {starred }}{ }^{*}$
return ??
- re ${ }_{l h s} \cdot r e_{r h s}$
return


## Derivative Recursive Cases

Consider the recursive cases:

- re =
|\{\}
| $\varepsilon$
| a (single character)
$\mathrm{re}_{\mathrm{lhs}} \mid \mathrm{re}_{\mathrm{rhs}}$
$r \mathrm{e}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
re starred $^{*}$
- $r e_{\text {starred }}{ }^{*}$
- $\delta_{c}(r e)=$ match re with:
- $r e_{\text {lhs }} / r e_{\text {rhs }}$

$$
\text { return } \delta_{c}\left(r e_{l h s}\right) \mid \delta_{c}\left(r e_{r h s}\right)
$$

return $\delta_{c}\left(r e_{\text {starred }}\right) \cdot r e_{\text {starred }} *$

- re ${ }_{l h s} \cdot r e_{r h s}$


## Derivative Recursive Cases

Let's look at concatenation:

- $\delta_{c}(r e)=$ match re with:
- re ${ }_{l h s} \cdot r e_{r h s}$
return ??

$$
\begin{aligned}
& \text { Example: } \\
& r e=" a " . " b " \\
& \delta_{a}(r e)=" b "
\end{aligned}
$$

## Derivative Recursive Cases

Let's look at concatenation:

- $\delta_{c}(r e)=$ match re with:
- $r e_{l h s} \cdot r e_{r h s}$
return $\quad \delta_{c}\left(r e_{l h s}\right) \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { Example: } \\
& r e=" a " \text { " } b \text { " } \\
& \delta_{a}(r e)=" b "
\end{aligned}
$$

## Derivative Recursive Cases

Let's look at concatenation:

- $\delta_{c}(r e)=$ match re with:

What about?

- re ${ }_{l h s} \cdot r e_{r h s}$
return $\quad \delta_{c}\left(r e_{l h s}\right) \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { Example: } \\
& r e=\text { "c"*."a"."b" } \\
& \delta_{a}(r e)=" b "
\end{aligned}
$$

## Derivative Recursive Cases

Let's look at concatenation:

- $\delta_{c}(r e)=$ match re with:
- re $e_{l h s} \cdot r e_{r h s}$

$$
\text { return } \quad \delta_{c}\left(r e_{l h s}\right) \cdot r e_{r h s} /
$$

if "" in re ${ }_{\text {hs }}$ then $\delta_{c}\left(r e_{r \text { rs }}\right)$ else $\}$

## Example:

$$
\begin{aligned}
& r e=" c " * . " a " . " b " \\
& \delta_{a}(r e)=" b "
\end{aligned}
$$

## Derivative Recursive Cases

Consider the recursive cases:

- $\delta_{c}(r e)=$ match re with:
- re ${ }_{\text {lhs }} / r e_{r h s}$

$$
\text { return } \delta_{c}\left(r e_{l h s}\right) \mid \delta_{c}\left(r e_{r h s}\right)
$$

- $\mathrm{re}_{\text {starred }}{ }^{*}$

$$
\text { return } \delta_{c}\left(r e_{\text {starred }}\right) \cdot r e_{\text {starred }} *
$$

- re =
|\{\}
| $\varepsilon$
a (single character)
$\mathrm{re}_{\text {lhs }} \mid \mathrm{re}_{\text {rhs }}$
$\mathrm{re}_{\text {Ihs }} \cdot \mathrm{re}_{\text {rhs }}$
$\mathrm{re}_{\text {starred }}$ *
- re ${ }_{\text {lhs }} \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { return } \delta_{c}\left(r e_{\text {lhs }}\right) \cdot r e_{\text {rhs }} / \\
& \quad \text { if ""' }^{\prime \prime} \text { in } r e_{\text {lhs }} \text { then } \delta_{c}\left(r e_{r h s}\right) \text { else }\}
\end{aligned}
$$

Nullable operator

- $\mathrm{NULL}(\mathrm{re})=$

$$
\text { if "" } \in r e \text { then: }
$$

else: \{\}

## Nullable operator

- $\mathrm{NULL}(\mathrm{re})=$


## if """ $\in r e$ then: "" else: \{\}

- re =
implement over a RE abstract syntax tree



## What is a method for computing NULL?

Consider the base cases

- $\operatorname{NULL}(r e)=$ match re with:
- $\}$
return $\}$
-""
return ""
- re =
| a (single character)
$\left|\mathrm{re}_{\text {lhs }}\right| \mathrm{re}_{\text {rhs }}$
$\mid \mathrm{re}_{\text {lhs }} . \mathrm{re}_{\text {rhs }}$
$\mid \mathrm{re}_{\text {starred }} *$
- a (single character)
return \{\}


## What is a method for computing NULL?

Consider the recursive cases:

- re =
- $\operatorname{NULL}(r e)=$ match re with:
- re ${ }_{\text {lhs }} / r e_{\text {rhs }}$
- $\mathrm{re}_{\text {starred }}{ }^{*}$
return ""
- re ${ }_{l h s} \cdot r e_{r h s}$


## What is a method for computing NULL?

Consider the recursive cases:

- re =
|\{\}
| $\varepsilon$
| a (single character)
$\mathrm{re}_{\text {lhs }} \mid \mathrm{re}_{\text {rhs }}$
$\mathrm{re}_{\mathrm{lh}}$. $\mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$
- $r e_{\text {starred }}{ }^{*}$
return ""
- re ${ }_{l h s} \cdot r e_{r h s}$

$$
\text { return NULL(re } \left.\left.{ }_{\text {lhs }}\right) \text {. NULL(re }{ }_{r h s}\right)
$$

## Derivative Recursive Cases

Consider the recursive cases:

- $\delta_{c}(r e)=$ match re with:
- re ${ }_{\text {lhs }} / r e_{r h s}$

$$
\text { return } \delta_{c}\left(r e_{l h s}\right) \mid \delta_{c}\left(r e_{r h s}\right)
$$

- re starred $^{*}$

$$
\text { return } \delta_{c}\left(r e_{\text {starred }}\right) \cdot r e_{\text {starred }} *
$$

- re =
|\{\}
| $\varepsilon$
a (single character)
$\mathrm{re}_{\text {lhs }} \mid \mathrm{re}_{\text {rhs }}$
$r \mathrm{e}_{\mathrm{lhs}} \cdot \mathrm{re}_{\mathrm{rhs}}$
$\mathrm{re}_{\text {starred }}$ *
- re ${ }_{\text {lhs }} \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { return } \delta_{c}\left(r e_{\text {lhs }}\right) \cdot r e_{r h s} l \\
& \quad \text { if } \varepsilon \text { in } r e_{l h s} \text { then } \delta_{c}\left(r e_{r h s}\right) \text { else }\}
\end{aligned}
$$

## Derivative Recursive Cases

Consider the recursive cases:

- $\delta_{c}(r e)=$ match re with:
- re ${ }_{\text {lhs }} / r e_{r h s}$

$$
\text { return } \delta_{c}\left(r e_{l h s}\right) \mid \delta_{c}\left(r e_{r h s}\right)
$$

- re starred $^{*}$

$$
\text { return } \delta_{c}\left(r e_{\text {starred }}\right) \cdot r e_{\text {starred }} *
$$

- re =
|\{\}
| $\varepsilon$
a (single character)
$\mathrm{re}_{\text {lhs }} \mid \mathrm{re}_{\text {rhs }}$
$\mathrm{re}_{\text {lhs }} \cdot \mathrm{re}_{\text {rhs }}$
$\mathrm{re}_{\text {starred }}$ *
- re ${ }_{\text {lhs }} \cdot r e_{r h s}$

$$
\begin{aligned}
& \text { return } \quad \delta_{c}\left(r e_{l h s}\right) \cdot r e_{r h s} / \\
& \quad \operatorname{NULL}\left(r e_{\mid h s}\right) \cdot \delta_{c}\left(r e_{r h s}\right)
\end{aligned}
$$

## Parsing REs with derivative

given a function $\delta_{c}$ to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if re matches $s$ ?

## Parsing REs with derivative

given a function $\delta_{c}$ to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if re matches $s$ ?

$$
L(r e)=\{. . s . .\}
$$

## Parsing REs with derivative

given a function $\delta_{c}$ to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if re matches $s$ ?

$$
\begin{aligned}
& \delta_{c 1}(r e) \\
& L\left(\delta_{c 1}(r e)\right)=\{. . s[1:] . .\}
\end{aligned}
$$

## Parsing REs with derivative

given a function $\delta_{c}$ to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if $r e$ matches $s$ ?


## Parsing REs with derivative

given a function $\delta_{c}$ to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if $r e$ matches $s$ ?


## Parsing REs with derivative

given a function $\delta_{c}$ to compute the derivative of an RE, the NULL function, an RE $r e$, and a string $s=c_{1} \cdot c_{2} \cdot c_{3} \ldots$ (concat of characters)

Can we check if $r e$ matches $s$ ?

| $L(r e)=\{. . s .$. | $\delta_{c 1}(r e)$ | $\delta_{c 2}\left(\delta_{c 1}(\mathrm{re})\right)=\delta_{c 1, c 2}(\mathrm{re})$ | $\delta_{s}(r e)$ | Then re matches s |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  | $N U L L\left(\delta_{s}(r e)\right)={ }^{\prime \prime \prime}$ |
|  | $L\left(\delta_{c 1}(\mathrm{re})\right)=\{. . s[1:] ~ .$. | $L\left(\delta_{c 1, c 2}(\mathrm{re})\right)=\{. . s[2:] ~ .$. | $\mathrm{L}\left(\delta_{s}(r e)\right)=\left\{. .{ }^{\text {c" }}\right.$.. $\}$ |  |

## Have a good weekend!

Take a look at part 2 of the homework, everything we discussed today is implemented there, with a few missing pieces for you to implement!

Next week we start module 2!

