CSE211: Compiler Design

Oct. 8, 2021

* Topic: Parsing regular * 0. (re), where reis:

expressions with derivatives
® s . [es
Oc(repms) - rejs |

* Questions: if € in re,,.then & (re,) else {}
* How do you parse a reqular
expression?

How do you parse a context
free grammar?

Announcements

* Homework 1 is out
e Due on the 18"
* Get started early!
* Today we will do parsing with derivatives

* Reading for today:
* first 7 pages
* https://www.ccs.neu.edu/home/turon/re-deriv.pdf
* Not optional! It will make part 2 of the homework much easier

* End of module 1, starting module 2 next week

CSE211: Compiler Design

Oct. 8, 2021

* Topic: Parsing regular * 0. (re), where reis:

expressions with derivatives
® s . [es
Oc(repms) - rejs |

* Questions: if € in re,,.then & (re,) else {}
* How do you parse a reqular
expression?

How do you parse a context
free grammar?

Parsing RE’s with Derivatives

* A simple regular expression parser implementation
* Given an RE AST, you can parse with very few lines of code

* Think recursively!

Language Derivatives
* A language is a (potentially infinite) set of strings {s;, s, 53, S, ...}
* A language is regular if it can be captured using a regular expression

* Examples of regular languages:

° { {4 a Il}, { Il} { Il II Va/ & Y4 Il\ Il}

{I/lll I/1+1II //1+1+1ll}
. {7} also called {¢} Subtle distinction between {} and {<}

* {}

Language Derivatives
* The Derivative of language L with respect to character ¢ (noted 6 (L)) is:

forall sin L, if s begins with ¢, then s[1:]isin § (L)

* We’ll go over some examples in the next slides

Language Derivatives Examples

° L - {Ilall}

* 04(L)={""}

* O,(L) = {}

Language Derivatives Examples
° L - {Il+lj /I_I: Il*l: Il/ll}

* 0, (L) ={¢}
* 0 (L) ={}
* 0« (L) ={e}

Language Derivatives Examples
o [={“1" “1+17 “1+1+17, “1+1+1+1", ...}
*0,(L)=1{}

° 51 (L) — {////’//_I_l/; //+1+1/; //+1+1+1/: }

o 5., (L) ={“1”, “1+1”, “1+1+1%, .} =L

Language Derivatives Examples
o | = {”aaa’ﬁ ”(Jb’: ”ba’j ”bba”}
° 50 (L) — {Ilaa/j //b//}

* 0o (L) = {"a”}

° 5b (L) — {//a/j //ba//}

* Sy (L) =)

Regular Expressions

Recall we defined regular expressions recursively:

The three base cases: a character literal

* The RE for a character “a” is given by “a”. It matches only
the character “a”

* The RE for the empty string is is given by “” or &
* The RE for the empty set is given by {}

Regular Expressions

three recursive definitions

* The concatenation of two REs x and y is given by x.y and matches the
strings of RE x concatenated with the strings of RE y

* The union of two REs x and y is given by x|y and matches the strings of
RE x or the strings of RE y

* The Kleene star of an RE x is given by x* and matches the strings of RE
X repeated O or more times

Regular expressions recursive definition

re =

U

)

¢ (single character)
r€hs | s
M€hs - MCrhs

*
resta rred

Regular expressions recursive definition

re =

N/ N/ /4 /4
{} re = “a”.”b

)

¢ (single character)
M€ hs | M€ hs F€ips - I€prps

e - reﬂr‘hs / \

resta rred

parse tree for a regular expression

iﬂpUt: ngnw o npn ‘ "Ik

“

| union : union PIPE concat
| concat
concat : concat CONCAT starred
| starred
* starred : starred STAR
| unit
unit : CHAR

| awn

Excluding special cases for {}

parse tree for a regular expression

“

| union : union PIPE concat
| concat
concat : concat CONCAT starred
| starred
* starred : starred STAR
| unit
unit : CHAR

| awn

Excluding special cases for {}

iﬂpUt: ngnw o npn ‘ "Ik
union
_— T
union <|> concat
|
concat

/ /\ starred
concat <.> starred /\

ﬂ \. unit <*>
starred unit ’
| | <CHAR, “c">

. <CHAR) b”>
unit

\

<CHAR, “a@”>

parse tree for a regular expression

abstract syntax tree

<|>
<> <*>
<”a”> <l(bll>

iﬂpUt: ngnw o npn ‘ "Ik
union
T
union <|> concat
|
concat

/ | T~ starred
concat <.> starred /\

I \. unit <*>
starred unit ’
| | <CHAR, c>
. <CHAR ,b>
unit

<CHAR, a>

parse tree for a regular expression

input: ugn nrpn ‘ "Ik

o =
abstract syntax tree re {}
(o))
<|>
T a (single character)
/<'>\ < (€lhs | Merhs
<uan> <”b”> re”"IS * re;;hs
<“c”> M€ctarred

parse tree for a regular expression

input: ugn nrpn ‘ "Ik

abstract syntax tree

[l
<> <*>
re,,,/ ws
restarred
o ”n
<“9”s <“b’>
a <llC”>

*re=

U

)

a (single character)
r€hs | s
(€hs - MCrhs

£
resta rred

parse tree for a regular expression
input: ugn nrpn ‘ "Ik

*re=

abstract syntax tree

U

)

a (single character)
(€hs | Mrhs
I€starred re|hs . rerhs

£
resta rred

each node is
also a regular expression!

parse tree for a regular expression

input: ugn nrpn ‘ "Ik

abstract syntax tree

each node is
also a regular expression!

e Check homework code to
see AST construction

* Question: given a reqular
expression AST, how check
if a string is in the
language?

* parsing with derivatives!

Regular expressions are closed under derivatives

* Given a regular expression re, any derivative of re is also a regular
expression

e Let’s try some!

Regular expressions are closed under derivatives

‘ {“a”)
* 8,fre) = {*"} = re(*”)

* dy(re) = {}

Regular expressions are closed under derivatives

* L(re) = {"a”}
* O4(re) ="

* d(re) = {}

Regular expressions are closed under derivatives
re="a” | “b”

< {a"b"}

+ 8,(re) = {"")

+ 64fre) ="}

Regular expressions are closed under derivatives
re="a” | “b”

* Lire) = {“a’, b}

+ 8,re) =

° 5b(re) - an

Regular expressions are closed under derivatives
cre="a""a” | “a”.”b”

[aa’ “ab”}

* Oqre) ={"a”,”b”}="a” | “b”

* Oy(re) = {}

Regular expressions are closed under derivatives

(P /4 II/ /Iallllbll

*re =“a”."a
° L - {I/aaI: Ilabll}
*d,(re) =77

* 0, (re) =77

Regular expressions are closed under derivatives
*re="a""a” | “a”.”b”

+ L = {“aa’, “ab”}

« 8,(re) = {“a”, “b”"} = ??

* d(re) = {}

Regular expressions are closed under derivatives
re="0""a” | “a”.”b”

+ L = {“aa’, “ab”}

* O4re) ={"a”, “b”}="“a” | “b”

* Oy(re) = {}

Regular expressions are closed under derivatives
° re - (Ilall.llbll.llcll X
o {7 “abc”, “abcabc”, “abcabcabc’, ...}

* 04(re) ={"bc”, “bcacb”, “bcabcabc” ...} = “b"7c”.(“a”"b"."c”)*

Regular expressions are closed under derivatives
° re - (Ilall.llbll.llcll X
e [={"" "abc” “abcabc”, “abcabcabc” ...}

* 0,(re) =77

Regular expressions are closed under derivatives
° re - (Ilall.llbll.llcll X
e [={"" "abc” “abcabc”, “abcabcabc” ...}

* d,(re) ={“bc”, “bcabc”, “bcabcabc’, ...} = ??

Regular expressions are closed under derivatives
° re - (Ilall.llbll.llcll X
e [={"" "abc” “abcabc”, “abcabcabc” ...}

* 04(re) ={"bc”, “bcabc”, “becabcabc’, ...} = “b”7c”.("a”."b"."c”)*

What is a method for computing the derivative?

Consider the base cases

*re=

* §. (re) = match re with: 0
- -
return {} a (single character)
rhs | s
(€hs - MCrhs
return {} €starred *

g (single character)
if a == c then return {&}
else return {}

Derivative Recursive Cases

Consider the recursive cases:

* §. (re) = match re with:

* reps [réps

return ? ?

*
°r estarred
return ? ?

*r elhs T erhs
return ?77?

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred

Regular expressions are closed under derivatives
re="0""a” | “a”.”b”

+ L = {“aa’, “ab”}

* O4re) ={"a”, “b”}="“a” | “b”

* Oy(re) = {}

Derivative Recursive Cases

Consider the recursive cases:

* §. (re) = match re with:

* reps [réps

return ? ?

*
°r estarred
return ? ?

*r elhs T erhs
return ?77?

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred

Derivative Recursive Cases

Consider the recursive cases:

* 0. (re) = match re with:

* reps [réps

return 6 (rey) | 8. (req)

*
°r estarred
return ? ?

*r elhs T erhs
return ?77?

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred

Regular expressions are closed under derivatives
° re - (Ilall.llbll.llcll X
e [={"" "abc” “abcabc”, “abcabcabc” ...}

* 04(re) ={"bc”, “bcabc”, “becabcabc’, ...} = “b”7c”.("a”."b"."c”)*

Derivative Recursive Cases

Consider the recursive cases:

* 0. (re) = match re with:

* reps [réps

return 6 (rey) | 8. (req)

*
°r estarred
return ? ?

*r elhs T erhs
return ?77?

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred

Derivative Recursive Cases

Consider the recursive cases:
°re =
* §. (re) = match re with: {}
€
a (single character)

r€hs | rerns
return 5c(relhs) | 5c (rerhs) r.elhs : rer‘hs

* reps [réps

k
. r.esta rred
°r estarred

x
return 0 (réqigrreq) - M€starred

*r elhs T erhs
return ?77?

Derivative Recursive Cases

Let’s look at concatenation:

* §. (re) = match re with:

*r elhs . r erhs
Example:
return ?? p

re - I/allllbll

d,(re) = “b”

Derivative Recursive Cases

Let’s look at concatenation:

* §. (re) = match re with:

* rey . re
lhs rhs 5 Exam p le:
return o.rey.) . re,.

re - I/allllbll

d,(re) = “b”

Derivative Recursive Cases

Let’s look at concatenation:

* 0. (re) = match re with: What about?

* rey . re
lhs rhs 5 Exam p le:
return O.rey.) . re,,

Il* V4 Illlbll

re="c a

d,(re) = “b”

Derivative Recursive Cases

Let’s look at concatenation:

* 0. (re) = match re with:

* Ips

r erhs

return o(rey;) - req s |

if “” in re, then 6_(re,) else {}

Example:

Il* V4 Illlbll

re="c a

o,(re) = “b”

Derivative Recursive Cases

Consider the recursive cases:

* 0, (re) = match re with:

*r elhs / r erhs

return o (rey,) | 0. (re,)

*
*r estarred

x
return 0 (re rreq) - €starred

*r elhs T erhs

return o rey,) . re.. |

if “”in re, then 6 (re,,.) else {}

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred

Nullable operator

* NULL(re) =
if “” € re then:
else: {}

Nullable operator

* NULL(re) =
if “” € re then:
else: {}
°re =
implement over a RE abstract syntax tree {}
o))
<|>
T a (single character)
/<'>\ <> r€hs | M€hs
. . re
< an> <”b”> n |hS th
<c > €starred

What is a method for computing NULL?

Consider the base cases

* NULL(re) = match re with:

* {}

return {}

return “”

g (single character)
return {}

*re=

U

)

a (single character)
rhs | s
(€hs - MCrhs

£
r.esta rred

What is a method for computing NULL?

Consider the recursive cases:

) re =
* NULL(re) = match re with: {}
3
* Teps | rerms a (single character)
return NULL(re_lhs) | NULL(re_rhs) rehs | re .
F€ihs - MC€rhs
* reurred” MCstarred *

on”»n

return

*r elhs T erhs

return NULL(re_lhs) . NULL(re_rhs)

What is a method for computing NULL?

Consider the recursive cases:

[re =
* NULL(re) = match re with: {}
E
* reps | rep a (single character)
return NULL(re;,,) | NULL(re,p) M€ ns | r€hs
F€ihs - MC€rhs
o« reg it r€ctarred *

on”»n

return

*r elhs T erhs

return NULL(re;,) . NULL(re,;)

Derivative Recursive Cases

Consider the recursive cases:

* 0, (re) = match re with:

*r elhs / r erhs

return o (rey,) | 0. (re,)

*
*r estarred

x
return 0 (re rreq) - €starred

*r elhs T erhs

return o rey,) . re.. |

if € in re, then o (re,,.) else {}

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

>
r.esta rred

Derivative Recursive Cases

Consider the recursive cases:

_ ° re =
* 0, (re) = match re with: 0
*r elhs / r erhs €]
return 8 (re,,.) | 8. (re.,.) a (single character)
rejns | réms
re,..re
r estarred t 5 () * Ihs ;;hs
return C r estarred T estarred resta rred

*r elhs T erhs

return o rey,) . re.. |

NULL(I'e/hS) . Sc(rerhs)

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

Lire)={..s..}

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

5c1 (I’E’)
Lire)={..s..}

L(6. (re)) ={..s[1:]..}

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

5c1 (I’E’) 6c2 (5c1 (re)) = 5c1,c2 (I’E)

Lire)={..s..}

L(5C1 (re)) = { 5[1] } L(5C1,C2 (re)) = { 5[2] }

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

5c1 (I’E’) 6c2 (5c1 (re)) = 5c1,c2 (I’E) 55(I’€)

Lire)={..s..}

L(6. (re)) ={.s[1:]..} L(6c1,co (re)) ={.. s[2:] ..} L(8(re)) ={.. € ..}

Parsing REs with derivative

given a function 0, to compute the derivative of an RE, the NULL
function, an RE re, and a string s =c; . ¢,. ¢;... (concat of characters)

Can we check if re matches s?

Lire)={..s..}

5c1 (I’ E’)

L(6. (re)) ={..s[1:]..}

6c2 (5c1 (re)) = 5c1,c2 (I’E)

L(5c1,c2 (re)) = { 5[2-'] }

dy(re)

L(8.(re)) = {..“” ..}

If this is true,
Then re matches s

NULL(6(re)) == "

Have a good weekend!

Take a look at part 2 of the homework, everything we discussed today is
implemented there, with a few missing pieces for you to implement!

Next week we start module 2!

