
CSE211: Compiler Design 
Oct. 6, 2021

• Topic: Finish PLY overview, go over 
symbol tables.

• Questions:
• Has anyone started on the homework? Any 

issues?

from: https://en.wikipedia.org/wiki/Yak



Announcements

• Homework 1 is out
• Due on the 18th

• Get started early!

• Office hours tomorrow (2-3pm, E2-233)

• if you have ideas for projects, we can start discussing!

• Keep an eye out for homework 
questions/clarifications on slack



CSE211: Compiler Design 
Oct. 6, 2021

• Topic: Finish PLY overview, go over 
symbol tables.

• Questions:
• Has anyone started on the homework? Any 

issues?

from: https://en.wikipedia.org/wiki/Yak



Review: Parser generators

• Specify:
• Tokens
• Production Rules
• Production Actions

• Parser generator gives you a function in which you can pass strings
• Executes production actions
• Error reporting



Review: PLY:

• How did we specify tokens?

• What are token actions?

• How did we specify production rules?
• Are you allowed to in your homework?

• How did we specify precedence and associativity?



Review: PLY:

• Catch-up on the calculator example



Simplifying binary operations with Lambdas

def p_expr_bin(p):
"""
expr : expr PLUS expr

| expr MINUS expr
| expr MULT expr

"""
if p[2] == '+':

p[0] = p[1] + p[3]
elif p[2] == '-':

p[0] = p[1] - p[3]
elif p[2] == '*':

p[0] = p[1] * p[3]
else:

assert(False)

Can be changed to (next slide)



Simplifying binary operations with Lambdas

def p_plusp(p):
”plusp : PLUS"
p[0] = lambda x,y: x+y

def p_multp(p):
”multp : MULT"
p[0] = lambda x,y: x*y

def p_minusp(p):
”minusp : MINUS"
p[0] = lambda x,y: x-y

def p_expr_bin(p):
"""
expr : expr plusp expr

| expr minusp expr
| expr multp expr

"""
p[0] = p[2](p[1], p[3])

Can be changed to (next slide)



Multiline calculator example
• A sequence of expressions?

to_print = []

def p_expression_list(p):
"expr_list : expr SEMI"
to_print.append(p[1])

def p_expression_list_rec(p):
"expr_list : expr_list expr SEMI"
to_print.append(p[2])

Is this order important?



Multiline calculator example
• A better error function?

def p_error(p):
print("Syntax error in input on line: %d" % p.lineno)
exit(1)

What are other options? try to recover?



Multiline calculator example
• Attempting to recover:

def p_error(p):
print("Syntax error in input on line: %d" % p.lineno)
print("trying to recover")
while True:

tok = parser.token()
if tok.type == 'SEMI': break

print("trying restart after the ; on line %d" % p.lineno)
to_print.append("ERROR")
parser.restart()



How to handle keywords and ids
• How to differentiate keywords from ids:
• e.g. “if”, from “x”
• token for id is “[a-zA-Z]+”
• it will also match keywords...



How to handle keywords and ids
tokens = ["IF", "ELSE", "ID"]

t_ID = "[a-zA-Z]+"
t_IF = "if"
t_ELSE = "else"
t_ignore = ' '

def t_error(t):
print("Illegal character '%s'" % t.value[0])
print("line number: %d" % t.lexer.lineno)
exit(1)

lexer = lex.lex()

lexer.input("if")

parses ”if” as an ID!



How to handle keywords and ids
reserved = {

'if' : 'IF',
'else' : 'ELSE’

}

tokens = ["ID"] + list(reserved.values())

def t_ID(t):
"[a-zA-Z]+"
t.type = reserved.get(t.value, 'ID')
return t

This will work!



Conclusion: lots of interesting features
• Modern parser generators are really great! 

• I highly suggest reading the PLY readme
• Even more examples and interesting functionality

• PLY was largely developed for educational purposes, but it’s been 
reliable for me for several projects, especially other parts of your 
project are in Python.

• While I have never used it, Antlr is highly recommended. If anyone is 
interested in doing any of homework in Antlr let me know!



Back to presentation mode

• To discuss symbol tables!



One consideration: Scope

• What is scope?

• Can it be determined at compile time? Can it be determined at 
runtime?

• C vs. Python

• Anyone have any interesting scoping rules they know of?



One consideration: Scope

• Lexical scope example

int x = 0;
int y = 0;
{
int y = 0;
x+=1;
y+=1;

}
x+=1;
y+=1; What are the final values in x and y?



How to track scope?

• Symbol table
• Global object, accessible (and mutable) by all production actions

• two methods:
• lookup(id) : lookup an id in the symbol table. 
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id (or overwrite an 
existing id) into the symbol table along with a set 
of information about the id.

What information might we store about an id?



a very simple programming language

VARIABLE_NAME = [a-z]+
INCREMENT = “\+\+”
TYPE = “int”
LB = “{“
RB = “}”
SEMI = “;”

statements are either a declaration or an increment

int x;
x++;
int y;
y++;



a very simple programming language

VARIABLE_NAME = [a-z]+
INCREMENT = “\+\+”
TYPE = “int”
LB = “{“
RB = “}”
SEMI = “;”

statements are either a declaration or an increment

int x;
{
int y;
x++;
y++;

}
y++;



a very simple programming language

VARIABLE_NAME = [a-z]+
INCREMENT = “\+\+”
TYPE = “int”
LB = “{“
RB = “}”
SEMI = “;”

statements are either a declaration or an increment

int x;
{
int y;
x++;
y++;

}
y++;



How to track scope?

• SymbolTable ST;

declare_variable: TYPE VARIABLE_NAME SEMI 
{}

Say we are matched string:
int x;

lookup(id) : lookup an id in the symbol table. Returns None if the 
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into 
the symbol table along with a set of information about the id.



How to track scope?

• SymbolTable ST;

declare_variable: TYPE VARIABLE_NAME SEMI 
{ST.insert(C[1],C[0])}

Say we are matched string:
int x;

In this example we are storing a type



How to track scope?

• SymbolTable ST;

variable_inc: VARIABLE_NAME INCREMENT SEMI
{}

Say we are matched string:
x++;

lookup(id) : lookup an id in the symbol table. Returns None if the 
id is not in the symbol table.

insert(id,info) : insert a new id (or overwrite an existing id) into 
the symbol table along with a set of information about the id.



How to track scope?

• SymbolTable ST;

variable_inc: VARIABLE_NAME INCREMENT SEMI
{if not ST.lookup(x):

raise SymbolTableException;
else:

... // continue}

Say we are matched string:
x++;



How to track scope?

• SymbolTable ST;

statement : variable_inc
| declare_variable

statement_list : statement_list statement 
| statement

why do we have the statement list declared like this?



How to track scope?

• SymbolTable ST;

statement : variable_inc
| declare_variable

statement_list : statement_list statement
| statement

adding in scope



How to track scope?

• SymbolTable ST;

statement : variable_inc
| declare_variable
| LBAR statement_list RBAR

statement_list : statement_list statement
| statement



How to track scope?

• SymbolTable ST;

statement : LBAR statement_list RBAR

start a new scope S remove the scope S 



How to track scope?

• Symbol table
• four methods:
• lookup(id) : lookup an id in the symbol table. 
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id into the symbol 
table along with a set of information about the id.

• push_scope() : push a new scope to the symbol table

• pop_scope() : pop a scope from the symbol table



How to track scope?

• SymbolTable ST;

statement : LBAR statement_list RBAR

start a new scope S remove the scope S 



How to track scope?

• SymbolTable ST;

statement : LBAR statement_list RBAR

start a new scope S remove the scope S 

How to write a production action here?



How to track scope?

• SymbolTable ST;

statement : start_scope statement_list RBAR

start_scope : LBAR

add a new production rule!



How to track scope?

• SymbolTable ST;

statement : start_scope statement_list RBAR
{}

start_scope : LBAR
{}



How to track scope?

• SymbolTable ST;

statement : start_scope statement_list RBAR
{ST.pop_scope()}

start_scope : LBAR
{ST.push_scope()}



How to implement a symbol table?

• Thoughts? What data structures are good at mapping strings?

• Symbol table
• four methods:
• lookup(id) : lookup an id in the symbol table. 
Returns None if the id is not in the symbol table.

• insert(id,info) : insert a new id into the symbol 
table along with a set of information about the id.

• push_scope() : push a new scope to the symbol table

• pop_scope() : pop a scope from the symbol table



How to implement a symbol table?

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables

HT 0base scope



How to implement a symbol table?

HT 0push_scope() 

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



How to implement a symbol table?

HT 0

HT 1

push_scope() 

adds a new 
Hash Table
to the top of the stack

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



How to implement a symbol table?

HT 0

HT 1

insert(id,data) 

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



How to implement a symbol table?

HT 0

HT 1

insert(id,data) 

insert (id -> data) at
top hash table

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



How to implement a symbol table?

HT 0

HT 1

lookup(id) 

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



How to implement a symbol table?

HT 0

HT 1

lookup(id) 

check here
first

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



How to implement a symbol table?

HT 0

HT 1

lookup(id) then check
here

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



How to implement a symbol table?

HT 0

HT 1

pop_scope() 

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



How to implement a symbol table?

HT 0

• Many ways to implement:

• A good way is a stack of hash tables:

Stack of hash tables



How to implement a symbol table?

• Example

HT 0

int x = 0;
int y = 0;
{
int y = 0;
x++;
y++;

}
x++;
y++;

Stack of hash tables

x = 2

y = 1



See you on Friday!

• You should have everything you need to know to work on Homework 
part 1!

• Next class: Parsing regular expressions with derivatives

• Office hours tomorrow: (2 - 3 pm)


