CSE211: Compiler Design

Oct. 4, 2021

* Topic: Parser Generator Example (PLY)

 Questions:

* Do you have any experience with a parser
generator?

from: https://en.wikipedia.org/wiki/Yak

Announcements

* Homework 1 is released
* Cover PLY today
e Cover symbol tables next class
* Cover parsing with derivatives on Friday

* Pushes us back 1 day in the schedule
* if you have ideas for projects, we can start discussing!

e Join the slack for discussions!

From the discussion
is == associative?
((0 ==]_) == ())

(7==(0==0)

CSE211: Compiler Design

Oct. 4, 2021

* Topic: Parser Generator Example (PLY)

 Questions:

* Do you have any experience with a parser
generator?

from: https://en.wikipedia.org/wiki/Yak

Parser generators

* Specify:
* Tokens
* Production Rules
* Production Actions

* Parser generator gives you a function in which you can pass strings
* Executes production actions
* Error reporting

Historically

* Lex
* lexer
* released in 1975
e co-developed by Eric Schmidt
* "Flex” is a common open-source implementation
* historically outputs a .c file

* Yacc (Yet Another Compiler Compiler)
* parser
released in 1975
originally written in B, but soon rewritten in C
interface is widely supported, but newer implementations are more widely used now
historically outputs a .c file

Historically

* Bison
* Parser only, often coupled with flex
* Released in 1985: latest release was Sept. 2021
* better error tracking and debugging
compatible with yacc rules
outputs C/++, Java

More modern

e Antlr
* Lexer and Parser
Released 1992, latest release was March 2021
BSD License
From Wikipedia, used in:

o The expression evaluator in Numbers, Apple's spreadsheet.[c/tation needed]
« Twitter's search query language.°/ation needed]

Outputs: Python, Javascript, C#, Swift

e Others: https://en.wikipedia.org/wiki/Comparison of parser generators

PLY

* An implementation of Lex and Yacc in Python

* links:
e source: https://github.com/dabeaz/ply
e docs: https://ply.readthedocs.io/en/latest/

* We are going to build several parsers today

* Your homework augments this example in several ways:
* Variables, Scope, Precedence, Associativity

Demo

* Lots of thanks to the excellent PLY documentation! Some functions are
copied from there

* Setup:
* clone the ply repo
* make a new directory
* copy the ply/ directory into the directory

A Simple Language

 ARTICLE = {The, A, My, Your}

* NOUN = {Dog, Car, Computer}

* VERB = {Ran, Crashed, Accelerated}
* ADJECTIVE = {Purple, Spotted, Old}

Lexer Demo

e Library import

import ply.lex as lex

e Token list

tokens = ["ADJECTIVE", "NOUN", "VERB", "ARTICLE"]

» Token specification

t_ADJECTIVE = "old|purple|spotted"
t_NOUN = "dog|computer|car"
t_ARTICLE = "the|my|a|your"
t_VERB = "ran|crashed|accelerated"

Lexer Demo

e Build the lexer

lexer = lex. lex() what happens?

* Need an error function

Error handling rule

def t_error(t):
print("Illegal character '%s'" % t.valuelQ])
exit(1)

Lexer Demo

* Now give the lexer some input

lexer.input(“"dog")
* The lexer streams the input, we need to stream the tokens:

Tokenize
while True:
= lexer.token()
if not tok:
break # No more input
print(tok)

Lexer Demo

° OUtpUt.’ line number (1 indexed)

/

LexToken(NOUN, 'dog’, 1, 0)

number of characters streamed
(0 indexed)

 try a longer string:

lexer.input("dog computer")

What happens?

Lexer Demo

* Need to add a token for whitespace!
= ["ADJECTIVE", "NOUN", "VERB", "ARTICLE", "WHITESPACE"]
= "\ !
* Now we can lex:

LexToken(NOUN, 'dog',1,0)
LexToken(WHITESPACE,' ',1,3)
LexToken (NOUN, 'computer',1,4)

Lexer Demo

* Now we can do a sentence
lexer.input("my spotted dog ran")

LexToken(ARTICLE, 'my',1,0)
LexToken(WHITESPACE,"' ',1,2)
LexToken(ADJECTIVE, 'spotted’',1,3)
LexToken(WHITESPACE,"' ',1,10)
LexToken (NOUN, 'dog',1,11)
LexToken(WHITESPACE,"' ',1,14)
LexToken(VERB, 'ran',1,15)

Can we clean this up?

Lexer Demo

* We can ignore whitespace

#t_WHITESPACE = "\

gets simplified to:

LexToken(ARTICLE, 'my',1,0)
LexToken (WHITESPACE,"' ',1,2)
LexToken(ADJECTIVE, 'spotted',1,3)

(

E LexToken (ARTICLE, 'my',1,0)
LexToken(WHITESPACE,' ',1,10)

(

(

(

LexToken(ADJECTIVE, 'spotted’,1,3)
LexToken (NOUN, 'dog',1,11)

LexToken(NOUN, 'dog',1,11) LexToken(VERB, 'ran',1,15)

LexToken (WHITESPACE,' ',1,14)
LexToken(VERB, 'ran',1,15)

Lexer Demo

 What about newlines?

lexer.input(
my spotted dog ran
the old computer crashed

)

e Need to add a newline token!

Lexer Demo

 What about newlines?

lexer.input ("""

my spotted dog ran
the old computer crashed

IIIIII)

e Need to add a newline token!

tokens = ["ADJECTIVE", "NOUN", "VERB", "ARTICLE", "NEWLINE"]

t_NEWLINE = "\\n"

Lexer Demo

LexToken(NEWLINE, '\n"',1,0)
LexToken(ARTICLE, 'my',1,1)
LexToken(ADJECTIVE, 'spotted’,1,4)
LexToken (NOUN, 'dog',1,12)
LexToken(VERB, 'ran',1,16)
LexToken(NEWLINE, '\n"',1,19)
LexToken(ARTICLE, 'the',1,20)

Line numbers are not updating

Lexer Demo

* Token actions, similar to production actions

— II\\nII

Changes into:

def t_NEWLINE(t):
II\\nII

return t

+=

1

docstring is the regex, lexer object which has a linenumber
attribute.

If we don’t return anything, then it is ignored.

Lexer Demo

* Example: changing gendered pronouns into gender neutral pronouns

tokens = ["ADJECTIVE", "NOUN", "VERB", "ARTICLE", "NEWLINE", "PRONOUN"]
t_PRONOUN = "her|his|their"

lexer.input ("""
his spotted dog ran
her old computer crashed

IIIIII)

Lexer Demo

 Add a token action:

def t_PRONOUN(t):
"her|his|their"
if t.value in ["his", "her"]:
t.value = "their"
return t

Now output will have all gender neutral pronouns!

Multiline calculator example

* For this, we will use lexer and parser

* input:
* 1 or more mathematical expressions separated by a ;
* mathematical expressions can have non-negative integers as operands
* mathematical operators are +,-,*,/ and ()

* output:
* the solution to each expression

Multiline calculator example

import ply.lex as lex
tokens = ["NUM", "MULT", "PLUS", "MINUS", "DIV", "LPAR", "RPAR", "SEMI", "NEWLINE"]

t_NUM = '[0-9]+'

t_MULT = "\x'

t_PLUS = '\+'

t_MINUS = '-!

t DIV = '/

t_LPAR = '\('

t RPAR = “\)" Set up the lexer
t_SEMI = ";"

t_ignore = ' '

def t_NEWLINE(t):

II\\nII
t. lexer. lineno += 1

Error handling rule

def t_error(t):
print("Illegal character '%s'" % t.valuel@])
exit(1)

lexer = lex.lex()

Multiline calculator example

* Import the library

ply.yacc yacc

e Simple rule

p_expr_num(p):

"expr : NUM™ functions are given prefixed by p
[0] = int(p[1]) o

production rules are the doc string

return values are stored in p[0]
children values are in p[1], p[2], etc.

Multiline calculator example

* Try it out

= yacc.yacc(debug=True)

= parser.parse('"5")
(result)

Multiline calculator example

e Next rule

def p_expr_plus(p):
"expr : expr PLUS expr"
[0] = p[1] + pl3]

* Try it again

= parser.parse("5 + 4")
print(result)

What errors are we getting? Can we look into them?

Multiline calculator example

» Set an error function

def p_error(p):
print("Syntax error in input!")

* Set associativity (and precedence)

= (
('left’, '"PLUS'"),

Multiline calculator example

 Next rules

def p_expr_minus(p):
"expr : expr MINUS expr"

pl@] = pl[1] - pI3] precedence = [

('left', 'PLUS', 'MINUS'),
('left', 'MULT', 'DIV'),
def p_expr_mult(p):]

"expr : expr MULT expr"
pl@] = pl1l] % p[3]

def p_expr_div(p):
"expr : expr DIV expr"
plo] = pl1] / pl3]

Multiline calculator example

* Last rule for expressions

def p_expr_par(p):
"expr : LPAR expr RPAR"
[0] = pl2]

Multiline calculator example

* An extra we can easily implement

def p_expr_div(p):
"expr : expr DIV expr"
if pl[3] == 0:
print("divide by @ error:")
print("cannot divide: " + str(p[1]) + " by 0")
exit(1)
ple] = pl1l] / pl3]

Multiline calculator example

* Combining rules:

def p_expr_plus(p):
"expr : expr PLUS expr"
plo] = pl1l] + pl3]

def p_expr_minus(p):
"expr : expr MINUS expr"
p[@] = pl[1] - pI3]

def p_expr_mult(p):
"expr : expr MULT expr"
pl@] = pl1l] % p[3]

def p_expr_bin(p):

expr : expr PLUS expr
| expr MINUS
| expr MULT expr

if pl[2] == "+":

nl@] = pl1] + pl3]
elif pl[2] == "'-":

pl@] = pl1] - pl3]
elif pl[2] == "*':

n[0] = pl[1] * pl[3]
else:
assert(False)

See you on Wednesday!

* Talk more about symbol tables and start talking about parsing with
derivatives

* Might have to finish up Module 1 on Friday
* put us 1 day behind the schedule

* Homework 1 is released
* From today’s lecture you should be able to get started on part 1

