CSE211: Compiler Design

Oct. 22, 2021

- Topic: More flow analysis applications and intro to SSA
- Questions:
- Questions or comments about homework 1?
- Questions or comments about homework 2?

```
3:
    %4 = tail call i32 @_Z14first_functionv(), !dbg !19
    call void @llvm.dbg.value(metadata i32 %4, metadata !14, metadata
    br label %7, !dbg !21
5:
    %6 = tail call i32 @_Z15second_functionv(), !dbg !22
    call void @llvm.dbg.value(metadata i32 %6, metadata !14, metadata
    br label %7
7:
    %8 = phi i32 [ %4, %3 ], [ %6, %5 ], !dbg !24
    call void @llvm.dbg.value(metadata i32 %8, metadata !14, metadata
    ret i32 %8, !dbg !25
}
```


Announcements

- Homework 2:
- Due Nov. 1
- Great questions on slack!
- I'll have office hours next thursday
- Back to in-person on Monday!

CSE211: Compiler Design

Oct. 22, 2021

- Topic: More flow analysis applications and intro to SSA
- Questions:
- Questions or comments about homework 1?
- Questions or comments about homework 2?

```
3:
    %4 = tail call i32 @_Z14first_functionv(), !dbg !19
    call void @llvm.dbg.value(metadata i32 %4, metadata !14, metadata
    br label %7, !dbg !21
5:
    %6 = tail call i32 @_Z15second_functionv(), !dbg !22
    call void @llvm.dbg.value(metadata i32 %6, metadata !14, metadata
    br label %7
7:
    %8 = phi i32 [ %4, %3 ], [ %6, %5 ], !dbg !24
    call void @llvm.dbg.value(metadata i32 %8, metadata !14, metadata
    ret i32 %8, !dbg !25
}
```


Global optimizations review: Dominance

- Root node is initialized to itself
- Every node determines new dominators based on parent dominators
update:
intersection of parent values
$D=\{x, y\}$

$$
D=\{x, y, z\}
$$

$$
\operatorname{Dom}(n)=\{n\} \cup\left(\bigcap_{p \text { in } p r e d s(n)} \operatorname{Dom}(p)\right)
$$

Forward flow, as updates flow from parents to children.

Global optimizations review: Live variable analysis

$$
\operatorname{LiveOut}(n)=U_{s \text { in succ(n) }}(\operatorname{UEVar}(s) \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)}))
$$

Global optimizations review: Live variable analysis

$$
\operatorname{LiveOut}(n)=U_{s \text { in succ(n) }}(\operatorname{UEVar}(s) \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)}))
$$

Node ordering for backwards flow

- Reverse post-order was good for forward flow:
- Parents are computed before their children
- For backwards flow: use reverse post-order of the reverse CFG
- Reverse the CFG
- perform a reverse post-order
- Different from post order?

Example

post order: D, C, B, A

acks: thanks to this blog post for the example!
https://eli.thegreenplace.net/2015/directed-graph-traversal-orderings-and-applications-to-data-flow-analysis/

Example

post order: D, C, B, A
rpo on reverse CFG: D, B, C, A
reverse CFG

Example

post order: $\mathrm{D}, \mathrm{C}, \mathrm{B}, \mathrm{A}$

rpo on reverse CFG: D, B, C, A

rpo on reverse CFG computes B before C, thus, C can see updated information from B

Example

post order: D, C, B, A

updates in backwards flow

rpo on reverse CFG: D, B, C, A

rpo on reverse CFG computes B before C, thus, C can see updated information from B

Show PyCFG example from homework

- run the print_dot.py command on some test cases to see the output

Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten
UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:

$$
s=a[x]+1 ;
$$

Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten
UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:

$$
s=a[x]+1 ;
$$

UEVar needs to assume $a[x]$ is any memory location that it cannot prove non-aliasing

$$
\text { LiveOut }(n)=U_{s \text { in } \operatorname{succ}(n)}(\operatorname{UEVar}(s) \cup(\operatorname{LiveOut}(s) \cap \overline{\operatorname{VarKill}(s)}))
$$

Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten
UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:

$$
\mathrm{a}[\mathrm{x}]=\mathrm{s}+1 ;
$$

Live variable limitations

To compute the LiveOut sets, we need two initial sets:
VarKill for block b is any variable in block b that gets overwritten
UEVar (upward exposed variable) for block b is any variable in b that is read before being overwritten.

Consider:
$a[x]=s+1$;
VarKill also needs to know about aliasing

Demo

- Godbolt demo

Sound vs. Complete

- Sound: Any property the analysis says is true, is true. However, there may be false positives
- Complete: Any error the analysis reports is actually an error. The analysis cannot prove a property though.

$$
\operatorname{LiveOut}(n)=U_{\text {sin succ(n) }}(\operatorname{UEVar}(s) \cup(\text { LiveOut(s) } \cap \overline{\operatorname{VarKill}(s)}))
$$

How to instantiate the UEVar and VarKill for sound/complete analysis w.r.t. memory?

$$
a[x]=s+1 ; \quad s=a[x]+1 ;
$$

Live variable limitations

Imprecision can come from CFG construction:
consider:
br $1<0$, dead_branch, alive_branch

Live variable limitations

Imprecision can come from CFG construction:
consider:
br $1<0$, dead_branch, alive_branch
could come from arguments, etc.

Live variable limitations

Imprecision can come from CFG construction:
consider first class labels (or functions):
br label_reg
need to branch to all possible
where label_reg is a register that contains a register basic blocks!

The Data Flow Framework

```
LiveOut(n) = U S in succ(n)
```

$$
f(x)=O p_{v \text { in }(\text { succ } / \text { preds })} c_{0}(v) o p_{1}\left(f(v) o p_{2} c_{2}(v)\right)
$$

Available Expressions

AvailExpr $(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \overline{\operatorname{ExprKill}(p)})$

An expression e is "available" at the beginning of a basic block b_{x} if for all paths to b_{x}, e is evaluated and none of its arguments are overwritten

Available Expressions

AvailExpr $(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \overline{\operatorname{ExprKill}(p)})$
Forward Flow

Available Expressions

AvailExpr $(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \overline{\operatorname{ExprKill}(p)})$
intersection implies "must" analysis

Available Expressions

AvailExpr $(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \operatorname{ExprKill}(p))$

DEExpr(p) is all Downward Exposed Expressions in p. That is expressions that are evaluated AND operands are not redefined

Available Expressions

AvailExpr $(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup($ AvailExpr $(p) \cap \overline{\operatorname{ExprKill}(p)})$

AvailExpr(p) is any expression that is available at p

Available Expressions

$\operatorname{AvailExpr}(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \overline{\operatorname{ExprKill}(p)})$

ExprKill(p) is any expression that p killed, i.e. if one or more of its operands is redefined in p

Available Expressions

$\operatorname{AvailExpr}(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \operatorname{ExprKill}(p))$

Any expression
that is available (and not killed)
the parents, along with expressions exposed by all the parents.

Available Expressions

$\operatorname{AvailExpr}(n)=\bigcap_{p \text { in preds }} \operatorname{DEExpr}(p) \cup(\operatorname{AvailExpr}(p) \cap \overline{\operatorname{ExprKill}(p)})$

Application: you can add availExpr(n) to local optimizations in n, e.g. local value numbering

Anticipable Expressions

AntOut $(n)=\bigcap_{\text {sin succ }} \operatorname{UEExpr}(s) \cup($ AntOut $(s) \cap \overline{\operatorname{ExprKill}(s)})$

An expression e is "anticipable" at a basic block b_{x} if for all paths that leave b_{x}, e is evaluated

Anticipable Expressions

AntOut $(n)=\cap_{\text {sinsucc }} U E E x p r(s) \cup($ AntOut(s) $\cap \overline{\text { ExprKill(s) })}$

Backwards flow

Anticipable Expressions

AntOut $(n)=\bigcap_{\text {sin succ }} U E \operatorname{Expr}(s) \cup(\operatorname{AntOut}(s) \cap \overline{\operatorname{ExprKill}(s)})$
"must" analysis

Anticipable Expressions

AntOut $(n)=\bigcap_{\text {sin succ }} \operatorname{UEExpr}(s) \cup(\operatorname{AntOut}(s) \cap \overline{\operatorname{ExprKill}(s)})$

UEExpr(p) is all Upward Exposed Expressions in p. That is expressions that are computed in p before operands are overwritten.

Anticipable Expressions

AntOut $(n)=\cap_{\text {sinsucc }}$ UEExpr(s) $\cup($ AntOut(s) $\cap \overline{\text { ExprKill(s) }})$

Anticipable Expressions

AntOut $(n)=\bigcap_{\text {sin succ }} \operatorname{UEExpr}(s) \cup(\operatorname{AntOut}(s) \cap \overline{\operatorname{ExprKill}(s)})$

Anticipable Expressions

AntOut $(n)=\bigcap_{\text {sin succ }} \cup E \operatorname{Expr}(s) \cup($ AntOut $(s) \cap \overline{\operatorname{ExprKill}(s)})$

Anticipable Expressions

AntOut $(n)=\bigcap_{\text {sin succ }} U E \operatorname{Expr}(s) \cup(\operatorname{AntOut}(s) \cap \overline{\operatorname{ExprKill}(s)})$

Application: you can hoist AntOut expressions to compute as early as possible
potentially try to reduce code size: -Oz

More flow algorithms:

Check out chapter 9 in EAC: Several more algorithms.
"Reaching definitions" have applications in memory analysis

See you in-person on Monday

- More optimal SSA construction
- Have a good weekend!

