
CSE211: Compiler Design
Oct. 1, 2021

• Topic: Parsing overview 3 (associativity
and production actions)

• Questions:
• What is associativity?

• What are some operators that are
associative and what are some that are not?

Announcements

• Homework 1 will be released on Monday

• if you have ideas for projects, we can start discussing!

• Join the slack for discussions
• Thanks to Farid for some initial discussion points!

• New people:
• Introductions

Review

• How do we define a context-free grammar?

BNF Production Rules

• Tokens:
• NUM = [0-9]+
• PLUS = ‘\+’
• TIMES = ’*’
• LP = ‘\(’
• RP = \)’

expression : NUM
| expression PLUS expression
| expression TIMES expression
| LP expression RP

Review

• How do we determine if a string matches a context-free grammar?

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

Parse trees

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

• A string is accepted by a BNF form if and only if there exists a parse
tree.

input: (1+5)*6

expr

expr <TIMES> expr

<NUM, 6><LPAREN> <RPAREN>expr

<PLUS>expr expr

<NUM, 5><NUM, 1>

Review

• What do we call it when a CFG can produce 2 different parse trees for
the same string? Is this an issue?

Ambiguous grammars

• input: 1 + 5 * 6

expr

expr <TIMES> expr

<NUM, 6><PLUS>expr expr

<NUM, 5><NUM, 1>

expr

expr <PLUS> expr

<NUM, 1> <TIMES>expr expr

<NUM, 6><NUM, 5>

expr : NUM

| expr PLUS expr

| expr TIMES expr

| LPAREN expr RPAREN

Review

• How do we encode precedence in a CFG?

Now lets create a parse tree
input: 1+5*6

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

Now lets create a parse tree

expr

expr <PLUS> expr

<NUM, 1>

<TIMES>term term

term

factor

input: 1+5*6

term

<NUM, 5>

factor

<NUM, 6>

factor

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LPAREN expr RPAREN
| NUM

CSE211: Compiler Design
Oct. 1, 2021

• Topic: Parsing overview 3 (associativity
and production actions)

• Questions:
• What is associativity?

• What are some operators that are
associative and what are some that are not?

Let’s make some more parse trees

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LP expr RP
| NUM

input: 2+3+4

Let’s make some more parse trees
input: 2+3+4

expr

expr <PLUS> expr

<NUM, 2>

<PLUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

Operator Name Productions

+ expr : expr PLUS expr
| term

* term : term TIMES term
| factor

() factor : LP expr RP
| NUM

This is ambiguous, is it an issue?

input: 2+3+4
expr

expr <PLUS> expr

<NUM, 2>

<PLUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <PLUS> expr

<PLUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor

What about for a different operator?
input: 2-3-4

What about for a different operator?
input: 2-3-4

expr

expr <MINUS> expr

<NUM, 2>

<MINUS>expr exprterm

factor

<NUM, 3>

term

<NUM, 4>

term

factor factor

expr

expr <MINUS> expr

<MINUS>expr expr

<NUM, 2>

term

<NUM, 3>

term

factor factor
<NUM, 4>

term

factor

Which one is right?

Associativity

The order in which we evaluate the same operator

Sometimes it doesn’t matter:
• Integer arithmetic
• Integer multiplication
• What else?

Good test:
• ((a OP b) OP c) == (a OP (b OP c))

What about floating point arithmetic?

Associativity

The order in which we evaluate the same operator

• left to right (left-associative)
• 2-3-4 is evaluated as ((2-3) - 4)
• What other operators are left-associative

• right-to-left (right-associative)
• Any operators you can think of?

Associativity

The order in which we evaluate the same operator

• left to right (left-associative)
• 2-3-4 is evaluated as ((2-3) - 4)
• What other operators are left-associative

• right-to-left (right-associative)
• Any operators you can think of?
• Assignment, power operator

How to encode associativity?

• Like precedence, some tools (e.g. YACC) allow associativity
specification through keywords:
• “+”: left, “^”: right

• Like precedence, we can also encode it into the production rules

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS> expr

<NUM, 2> <MINUS>expr expr

<NUM, 3> <NUM, 4>

Operator Name Productions

- expr : expr MINUS expr
| NUM

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS> expr

<NUM, 2> <MINUS>expr expr

<NUM, 3> <NUM, 4>

Operator Name Productions

- expr : expr MINUS NUM
| NUM

No longer allowed

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS>
Operator Name Productions

- expr : expr MINUS NUM
| NUM

<NUM,?>

Lets start over

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS>
Operator Name Productions

- expr : expr MINUS NUM
| NUM

<NUM,4>

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS>
Operator Name Productions

- expr : expr MINUS NUM
| NUM

<NUM,4>

<MINUS>expr <NUM,3>

Associativity for a single operator
input: 2-3-4

expr

expr <MINUS>
Operator Name Productions

- expr : expr MINUS NUM
| NUM

<NUM,4>

<MINUS>expr

<NUM, 2>

<NUM, 3>

Should you have associativity when its not
required?

input: 2+3+4
expr

expr <PLUS>
Operator Name Productions

+ expr : expr PLUS NUM
| NUM

<NUM,4>

<PLUS>expr

<NUM, 2>

<NUM, 3>

Benefits?
Drawbacks?

Should you have associativity when its not
required?

input: 2+3+4
expr

expr <PLUS>
Operator Name Productions

+ expr : expr PLUS NUM
| NUM

<NUM,4>

<PLUS>expr

<NUM, 2>

<NUM, 3>

Benefits?
Drawbacks?

Good design principle to avoid ambiguous grammars,
even when strictly not required too.

Helps with debugging, etc. etc.

Many tools will warn if it detects ambiguity

Let’s make a richer grammar

Operator Name Productions

+,- expr : expr PLUS term
| expr MINUS term
| term

*,/ term : term TIMES pow
| term DIV pow
| pow

^ pow : factor CARROT pow
| factor

() factor : LPAR expr RPAR
| NUM

Let’s add minus, division and power to our grammar

Tokens:
NUM = [0-9]+
PLUS = ‘\+’
TIMES = ’*’
LP = ‘\(’
RP = \)’
MINUS = ‘-’
DIV = ‘/’
CARROT = ‘\^’

Let’s make a richer grammar

Operator Name Productions

+,- expr : expr PLUS term
| expr MINUS term
| term

*,/ term : term TIMES pow
: term DIV pow
| pow

^ pow : factor CARROT pow
: factor

() factor : LPAR expr RPAR
| NUM

Let’s add minus, division and power to our grammar

Tokens:
NUM = [0-9]+
PLUS = ‘\+’
TIMES = ’*’
LP = ‘\(’
RP = \)’
MINUS = ‘-’
DIV = ‘/’
CARROT =’ \^’

Let’s make a richer grammar

Operator Name Productions

+,- expr : expr PLUS term
| expr MINUS term
| term

*,/ term : term TIMES pow
: term DIV pow
| pow

^ pow : factor CARROT pow
: factor

() factor : LPAR expr RPAR
| NUM

input: 2-3-4

expr

expr <MINUS>

<MINUS>expr

<NUM, 2>

term

<NUM, 3>

term

factor

factor <NUM, 4>

term

factor

Production rules in a compiler

• Great to check if a string is grammatically correct

• But can the production rules actually help us with compilation??

Production actions

• Each production option is associated with a code block
• It can use values from its children
• it returns a value to its parent
• Executed in a post-order traversal (natural order traversal)

Production actions
Example: executing a mathematical expression during parsing

Children values are passed in as an array C, indexed from left to right expr

expr <PLUS>

<NUM, 1>

<TIMES>termterm

factor

input: 1+5*6

term

<NUM, 5>

factor <NUM, 6>

factor

Operator Name Productions Actions

+,- expr : expr PLUS term
| expr MINUS term
| term

{ret C[0] + C[2]}
{}
{ret C[0]}

*,/ term : term TIMES factor
: term DIV factor
| factor

{ret C[0] * C[2]}
{}
{ret C[0]}

() factor : LPAR expr RPAR
| NUM

{}
{ret int(C[0])}

Production actions

Operator Name Productions Actions

+,- expr : expr PLUS term
| expr MINUS term
| term

{ret C[0] + C[2]}
{ret C[0] - C[2]}
{ret C[0]}

*,/ term : term TIMES factor
: term DIV factor
| factor

{ret C[0] * C[2]}
{ret C[0] / C[2]}
{ret C[0]}

() factor : LPAR expr RPAR
| NUM

{ret C[1]}
{ret int(C[0])}

Example: executing a mathematical expression during parsing

Children values are passed in as an array C, indexed from left to right expr

expr <PLUS>

<NUM, 1>

<TIMES>termterm

factor

input: 1+5*6

term

<NUM, 5>

factor <NUM, 6>

factor

We have just implemented a simple arithmetic interpreter!
Could this be in a compiler?

Next week

• We will look at LEX and YACC

• Homework will be released on Monday

• Enjoy your weekend!

