
CSE211: Compiler Design
Oct. 18, 2021

• Topic: Flow analysis and Live
variables

• Questions:
• How can we deal with arbitrary

control flow graphs?

Announcements

• Homework 1:
• Due today (at 11:59 pm)
• zip up files and submit on Canvas

• one or two zip files, doesn’t matter as long as I can easily get to the
code!

• Homework 2:
• Out now: specification is out. Code skeletons are released
• 2 weeks to complete

• Local Value Numbering
• Live variable analysis (today)

Announcements

Next two classes:

• Wednesday:
• Will be canceled L timing conflict that I miscalculated at

the conference.
• You can spend the time working on HW2

• Friday will be remote
• I will give a live lecture (zoom link on canvas), Please try to

attend, although I won’t be taking attendance
• I will record the lecture and make it available online if you

would prefer to attend asynchronously

CSE211: Compiler Design
Oct. 18, 2021

• Topic: global optimizations

• Questions:
• How can we deal with arbitrary

control flow graphs?

Review

• Local optimizations:
• Examples?

Local optimizations: local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

Review

• Regional optimizations:
• Examples?

Regional optimization: Loop
unrolling:

<assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

Assume we
know that the loop will
iterate an even number
of times:

<assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

Assume we
know that the loop will
iterate an even number
of times:

<inside_loop_statements>

<update_expr>

Regional optimization: Loop
unrolling:

Review

• Global optimizations:
• Examples?

Global optimizations

• Difference between regional:
• handle arbitrary CFGs, cannot rely on structure!
• Algorithms become more general
• Potential for more optimizations!

• Highly suggest reading for this part of the class
• Chapter 9 of EAC

First concept:

• Dominance in a CFG

• Builds up a framework for reasoning

• Building block for many algorithms
• global local value numbering when unlimited registers
• Conversion to SSA

Dominance
start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

• a block bx dominates block by iff
every path from the start to block
by goes through bx

• definition:
• domination (includes itself)
• strict domination (does not include

itself)

Dominance
start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

dominators
b0,b1

dominators
b0,b2

dominators
b0,b3

dominators
b0

• a block bx dominates block by iff
every path from the start to block
bx goes through by

• definition:
• domination (includes itself)
• strict domination (does not include

itself)

• Can we apply this to local value
numbering?

Node Dominators

B0 B0

B1 B0, B1

B2 B0, B1, B2

B3 B0, B1, B3

B4 B0, B1, B3, B4

B5 B0, B1, B5

B6 B0, B1, B5, B6

B7 B0, B1, B5, B7

B8 B0, B1, B5, B8

Node Dominators

B0 B0

B1 B0, B1

B2 B0, B1, B2

B3 B0, B1, B3

B4 B0, B1, B3, B4

B5 B0, B1, B5

B6 B0, B1, B5, B6

B7 B0, B1, B5, B7

B8 B0, B1, B5, B8

Concept introduced in 1959, algorithm not not given until 10 years later

Computing dominance

• Iterative fixed point algorithm

• Initial state, all nodes start with all other nodes are dominators:
• Dom(n) = N
• Dom(start) = {start}

iteratively compute:

Dom(n) = {n} ∪ (⋂m in preds(n) Dom(m))

Building intuition behind the math

• This algorithm is vertex centric
• local computations consider only a target node and its immediate neighbors

• At least one node is instantiated with ground truth:
• starting node dominator is itself

• Information flows through the graph as nodes are updated

For example: Bellman Ford Shortest path

• Root node is initialized to 0
• Every node determines new distances based on incoming distances.
• When distances stop updating, the algorithm is converged

n

p0 p1 p2

d0
d1

d2
Update:
for all parents p: min(p + d)

the next iteration, another parent
may have found a shorter path.

Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Now lets think about dominance

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Forward flow, as updates flow from
parents to children.

Lets try it

Node Initial Iteration 1

B0 B0 ...

B1 N B0, B1

B2 N B0, B1, B2

B3 N B0, B1, B2, B3

B4 N B0, B1, B2, B3, B4

B5 N B0, B1, B5

B6 N B0, B1, B5, B6

B7 N B0, B1, B5, B6, B7

B8 N B0, B1, B5, B8

Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Lets try it

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B3 N B0,B1,B2,B3 B0,B1,B3 ...

B4 N B0,B1,B2,B3,B4 B0,B1,B3,B4 ...

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B7 N B0,B1,B5,B6,B7 B0,B1,B5,B7 ...

B8 N B0,B1,B5,B8

How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B3 N B0,B1,B2,B3 B0,B1,B3 ...

B4 N B0,B1,B2,B3,B4 B0,B1,B3,B4 ...

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B7 N B0,B1,B5,B6,B7 B0,B1,B5,B7 ...

B8 N B0,B1,B5,B8

How can we optimize the algorithm?

This can be any order...

How can we optimize the order?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B3 N B0,B1,B2,B3 B0,B1,B3 ...

B4 N B0,B1,B2,B3,B4 B0,B1,B3,B4 ...

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B7 N B0,B1,B5,B6,B7 B0,B1,B5,B7 ...

B8 N B0,B1,B5,B8

Given this intuition, what ordering would be best?

• Root node is initialized to itself
• Every node determines new dominators based on parent dominators

n

p0 p1 p2

update:
intersection of parent values

D = {x,y,z} D = {x,y} D = {a,x,y}

Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Forward flow, as updates flow from
parents to children.

How can we optimize the algorithm?

Node New Order

B0 B0

B1 B1

B2 B2

B3 B5

B4 B6

B5 B8

B6 B7

B7 B3

B8 B4

Reverse
post-order (rpo),
where parents are visited
first

How can we optimize the algorithm?

Node New Order

B0 B0

B1 B1

B2 B2

B3 B5

B4 B6

B5 B8

B6 B7

B7 B3

B8 B4

Reverse
post-order (rpo),
where parents are visited
first

How can we optimize the algorithm?

Node New Order

B0 B0

B1 B1

B2 B2

B3 B5

B4 B6

B5 B8

B6 B7

B7 B3

B8 B4

Reverse
post-order (rpo),
where parents are visited
first

How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B8 N B0,B1,B5, B8

B7 N B0,B1,B5,B7

B3 N B0,B1,B3

B4 N B0,B1,B3

How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B8 N B0,B1,B5,B8

B7 N B0,B1,B5,B7

B3 N B0,B1,B3

B4 N B0,B1,B4

How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0

B1 N B0,B1

B2 N B0,B1,B2

B5 N B0,B1,B5

B6 N B0,B1,B5,B6

B8 N B0,B1,B5,B8

B7 N B0,B1,B5,B7

B3 N B0,B1,B3

B4 N B0,B1,B4

How can we optimize the algorithm?

Node Initial Iteration 1 Iteration 2 Iteration 3

B0 B0 B0 ...

B1 N B0,B1 ...

B2 N B0,B1,B2 ...

B5 N B0,B1,B5 ...

B6 N B0,B1,B5,B6 ...

B8 N B0,B1,B5,B8 ...

B7 N B0,B1,B5,B7 ...

B3 N B0,B1,B3 ...

B4 N B0,B1,B4 ...

A quick aside about graph algorithms:

• Does node ordering matter in SSSP?
• Yes! Dijkstra’s algorithm uses a priority queue
• Prioritize nodes with the lowest value

n

p0 p1 p2

d0
d1

d2
Update:
for all parents p: min(p + d)

the next iteration, another parent
may have found a shorter path.

Traversal order in graph algorithms
is a big research area!

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Live variables: z, w
p

x = 5
if (z):

y = 6
else:

y = x
print(y)
print(w)

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Live variables: x,z,w
px = 5

if (z):
y = 6

else:
y = x

print(y)
print(w)

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Live variables: x
px = 5

...
if (z):

y = 6
else:

y = x
print(y)
print(w)

x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

Live variables: x

Live variables: ?

p

p

x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: x
x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: y

p

p

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: x

//start
x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: ?

p

p

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: x

//start
x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: w

p

p

Another analysis: Live Variable Analysis

• A variable v is live at some point p in the program if there exists a
path from p to some use of v where v has not been redefined

• examples:

x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: x

//start
x = 5
...
if (z):

y = 6
else:

y = x
print(y)
print(w)

Live variables: w

p

p

Accessing an uninitialized
variable!

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

For each block Bx : we want to compute LiveOut:
The set of variables that are live at the end of Bx

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Live variables: i, s

Live variables: i,s

Live variables: s,i

Live variables: {}

Live variables: s

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Live variables: i, s

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Live variables: i, s

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

Live variables: i, s

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b
is any variable in b that is read before being overwritten

Block VarKill UEVar

B0

B1

B2

B3

B4

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b
is any variable in b that is read before being overwritten

Block VarKill UEVar

B0 i

B1 {}

B2 s

B3 s,i

B4 {}

Live variable analysis in the CFG:
i = 1;

<some branch on i>

s = 0;

s = s + 1;
i = i + 1;
<some branch on i>

print(s);

B0

B1

B2

B3

B4

To compute the LiveOut sets, we need two
initial sets:

VarKill for block b is any variable in block b that gets
overwritten

UEVar (upward exposed variable) for block b
is any variable in b that is read before being overwritten

Block VarKill UEVar

B0 i {}

B1 {} i

B2 s {}

B3 s,i s,i

B4 {} s

Live variable analysis in the CFG:

• Initial condition: LiveOut(n) = {} for all nodes
• Ground truth, no variables are live at the exit of the program, i.e. end node

nend has LiveOut(nend)= {}

Live variable analysis in the CFG:

Now we can perform the iterative fixed point computation:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

• Initial condition: LiveOut(n) = {} for all nodes
• Ground truth, no variables are live at the exit of the program, i.e. end node

nend has LiveOut(nend)= {}

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2

Backwards flow analysis
because values flow from
successors

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2 any variable in UEVar(s)
is live at n

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2 variables that are not
overwritten in s

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2 variables that are live
at the end of s

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2 variables that are live
at the end of s, and not
overwritten by s

Live variable analysis in the CFG:

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))

n

s0 s1 s2

LiveOut is a union
rather than an intersection

Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Consider the language we use for each:

• Dominance of node bx contains by if:
• every path from the start to bx goes through by

• LiveOut of node bx contains variable y if:
• some path from bx contains a usage of y

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))
Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

Consider the language we use for each:

• Dominance of node bx contains by if:
• every path from the start to bx goes through by

• LiveOut of node bx contains variable y if:
• some path from bx contains a usage of y

• Some vs. Every

LiveOut(n) = ∪s in succ(n) (UEVar(s) ∪ (LiveOut(s) ⋂ VarKill(s)))
Dom(n) = {n} ∪ (⋂p in preds(n) Dom(p))

See you virtually on Friday

• We will discuss other flow algorithms

• Start talking about SSA construction

• Remember: no class on Wednesday! Get started on HW2!

