
CSE211: Compiler Design 
Oct. 15, 2021

• Topic: Regional optimizations, 
intro to global optimizations

• Questions:
• Can we apply local value 

numbering to an entire program?
• What are examples of having

unlimited registers vs. having 
limited registers?



Announcements

• Homework 1:
• Due on Monday (at 11:59 pm)
• Help will be sparse in evenings and weekends!
• zip up files and submit on Canvas

• one or two zip files, doesn’t matter as long as I can easily get to the
code!

• Homework 2:
• Released Monday by midnight
• 2 weeks to complete

• Local Value Numbering
• Live variable analysis (Monday)



Announcements

Next week:

• Wednesday and Friday’s class will be remote:
• I will be in Chicago
• I will give a live lecture (zoom link on canvas), I would 

appreciate it if you attended
• I will record the lecture and make it available online if you 

would prefer to attend asynchronously



CSE211: Compiler Design 
Oct. 15, 2021

• Topic: Regional optimizations, 
intro to global optimizations

• Questions:
• Can we apply local value 

numbering to an entire program?
• What are examples of having 

unlimited registers vs. having 
limited registers?



Review local value numbering

• First step?

a2 = b0 + c1;
b4 = a2 - d3;
c = b + c;
d = a - d;

global_counter: 5



Review local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
}



Review local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,

}



Review local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,

}



Review local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,

}



Review local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,

}



Review local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,

}

mismatch due to
numberings!



Review local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,
“b4 + c1” : “c5”,

}



Review local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = a2 - d3;

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,
“b4 + c1” : “c5”,

}



Review local value numbering

a2 = b0 + c1;
b4 = a2 - d3;
c5 = b4 + c1;
d6 = b4;

match!

H = {
“b0 + c1” : “a2”,
“a2 - d3” : ”b4”,
“b4 + c1” : “c5”,

}



Optimizing over wider regions

• Local value numbering operated over just one basic block.

• We want optimizations that operate over: 
• several basic blocks (regional)
• across an entire procedure (global)

• For this, we need Control Flow Graphs



Control flow graphs

A graph where:

• nodes are basic blocks

• edges mean that it is 
possible for one block to 
branch to another

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;

end_if:
r4 = ...;



Control flow graphs

A graph where:

• nodes are basic blocks

• edges mean that it is 
possible for one block to 
branch to another

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;



Control flow graphs

A graph where:

• nodes are basic blocks

• edges mean that it is 
possible for one block to 
branch to another

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3



Interesting CFGs



Interesting CFGs

• Exceptions

• Break in a loop

• Switch statement (consider break, no break)

• first class branches (or functions)



Regional optimizations

• Usually constrained to a 
“common” subset of the CFG:

• For example: if/else statements

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;

end_if:
r4 = ...;



Regional optimizations

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

• Usually constrained to a 
“common” subset of the CFG:

• For example: if/else statements



start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

• Usually constrained to a 
“common” subset of the CFG:

• For example: if/else statements

What are the implications of doing local
value numbering in each of the basic blocks?

Super local value 
numbering



Super local value 
numbering

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

• Usually constrained to a 
“common” subset of the CFG:

• For example: if/else statements

What are the implications of doing local
value numbering in each of the basic blocks?

Global counter would need
to be kept across blocks when 
numbering



start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

• Usually constrained to a 
“common” subset of the CFG:

• For example: if/else statements

What are the implications of doing local
value numbering in each of the basic blocks?

b0_H = {
“...” : “r0”,
“...” : ”r1”,

}

breadth first traversal, creating hash tables for each block

Super local value 
numbering



start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

• Usually constrained to a 
“common” subset of the CFG:

• For example: if/else statements

Do local value numbering, but start off
with a non-empty hash table!

Which blocks can use which hash tables?

b0_H = {
“...” : “r0”,
“...” : ”r1”,

}

Super local value 
numbering



start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

• Usually constrained to a 
“common” subset of the CFG:

• For example: if/else statements

Is it possible to re-write so that b3 can use 
expressions from b1 or b2?

breadth first traversal, creating hash tables for each block

b0_H = {
“...” : “r0”,
“...” : ”r1”,

}

Super local value 
numbering



start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
#br end_if;

else:
r3 = ...;
#br end_if;

#end_if:
r4 = ...;

b0

b1 b2

b3

• Usually constrained to a 
“common” subset of the CFG:

• For example: if/else statements

Is it possible to re-write so that b3 can use 
expressions from b1 and b2? Duplicate blocks and 
merge!

Pros? Cons?
#end_if:
r4 = ...;

b0_H = {
“...” : “r0”,
“...” : ”r1”,

}

Super local value 
numbering



Loop unrolling:
FOR

<after_loop_statements><cond_expr><assignment> <update_expr>

<inside_loop_statements>

If all of these are basic blocks then the CFG looks like:



Loop unrolling:

<after_loop_statements>

<cond_expr>

<assignment>

<update_expr>

<inside_loop_statements>

If all of these are basic blocks then the CFG looks like:



Loop unrolling: <assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

<inside_loop_statements>

<update_expr>



Loop unrolling: <assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

Assume we 
know that the loop will
iterate an even number
of times:



Loop unrolling: <assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

Assume we 
know that the loop will
iterate an even number
of times:

<inside_loop_statements>

<update_expr>



Loop unrolling: <assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

Assume we 
know that the loop will
iterate an even number
of times:

<inside_loop_statements>

<update_expr>

What have we saved here?



Loop unrolling: <assignment>

<cond_expr>

<after_loop_statements>

<inside_loop_statements>

<update_expr>

Assume we 
know that the loop will
iterate an even number
of times:

<inside_loop_statements>

<update_expr>

What have we saved here?

merge into
1 basic block
and locally optimize!



Code placement:

• Back to if/else

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;



Code placement:

• Back to if/else

• Eventually we will 
straight line the 
code:

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;



Code placement:

• Back to if/else

• Eventually we will 
straight line the 
code:

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

one option, what else?



Code placement:

• Back to if/else

• Eventually we will 
straight line the 
code:

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

one option, what else?

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

Performance impact between the two?



Code placement:

• Back to if/else

• Eventually we will 
straight line the 
code:

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

one option, what else?

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

If we know that one branch is taken more often than the other...
say the branch is true most often



Code placement:

• Back to if/else

• Eventually we will 
straight line the 
code:

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

If we know that one branch is taken more often than the other...
say the branch is true most often

How many branches here



Code placement:

• Back to if/else

• Eventually we will 
straight line the 
code:

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;
br next_lbl

If we know that one branch is taken more often than the other...
say the branch is true most often

How many branches here



Code placement:

• Back to if/else

• Eventually we will 
straight line the 
code:

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;
br next_lbl

If we know that one branch is taken more often than the other...
say the branch is true most often

How many branches here reduced branching by 1

start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;
br next_lbl



Global optimizations

• Difference between regional:
• handle arbitrary CFGs, cannot rely on structure!
• Algorithms become more general
• Potential for more optimizations!

• Highly suggest reading for this part of the class
• Chapter 9 of EAC



First concept:

• Dominance in a CFG

• Builds up a framework for reasoning

• Building block for many algorithms
• global local value numbering when unlimited registers
• Conversion to SSA



Dominance
start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

• a block bx dominates block by iff
every path from the start to block 
bx goes through by

• definition: 
• domination (includes itself) 
• strict domination (does not include 

itself)



Dominance
start:
r0 = ...;
r1 = ...;
br r0, if, else;

if:
r2 = ...;
br end_if;

else:
r3 = ...;
br end_if;

end_if:
r4 = ...;

b0

b1 b2

b3

dominators
b0,b1

dominators
b0,b2

dominators
b0,b3

dominators
b0

• a block bx dominates block by iff
every path from the start to block 
bx goes through by

• definition: 
• domination (includes itself) 
• strict domination (does not include 

itself)

• Can we apply this to local value 
numbering?



Node Dominators

B0 B0

B1 B0, B1

B2 B0, B1, B2

B3 B0, B1, B3

B4 B0,B1,B3,B4

B5 B0, B1,B5

B6 B0, B1, B5, B6

B7 B0, B1, B5, B7

B8 B0, B1, B5, B8



Node Dominators

B0 B0

B1 B0, B1

B2 B0, B1, B2

B3 B0, B1, B3

B4 B0, B1, B3, B4

B5 B0, B1, B5

B6 B0, B1, B5, B6

B7 B0, B1, B5, B7

B8 B0, B1, B5, B8



Node Dominators

B0 B0

B1 B0, B1

B2 B0, B1, B2

B3 B0, B1, B3

B4 B0, B1, B3, B4

B5 B0, B1, B5

B6 B0, B1, B5, B6

B7 B0, B1, B5, B7

B8 B0, B1, B5, B8

Concept introduced in 1959, algorithm not not given until 10 years later



Have a nice weekend!

• We will discuss other flow algorithms on Monday

• Remember: 
• Wednesday and Friday class next week is virtual
• Homework due on Monday!


