CSE211: Compiler Design

Oct. 13, 2021

* Topic: Local value numbering

* Questions:

* What sort of IRs did we talk about
last week?

 What were some of the
applications of the IRs?

Announcements

e Homework 1:

 Due on Monday (at 11:59 pm)

* Do not count on support from me during the weekends or
evenings

* Office Hours are tomorrow: there will be a sign up sheet

* Updates:
* Attendance is updated on canvas
* Docker has all requested SW
* Let me know if there are issues

Announcements

Next week:

* Wednesday and Friday’s class will be remote:

* | will be in Chicago

* | will give a live lecture (zoom link on canvas), | would
appreciate it if you attended

* | will record the lecture and make it available online if you
would prefer to attend asynchronously

CSE211: Compiler Design

Oct. 13, 2021

* Topic: Local value numbering

* Questions:

* What sort of IRs did we talk about
last week?

 What were some of the
applications of the IRs?

Review [Rs: x /
/ \
o —b::\/b2—4ac _/Jn l\a
:I/‘ — q
2a]
/ \
Xx = (-b - sgrt(b*b - 4 * a * ¢c)) / (2*a) b/l ‘\C

r0
ril
r2
r3

r5
ro6
r
r8

neg(b);
b * b;

4 * a;
r2 * c;
rl — r3;
sgrt(r4)
r0 — r5;
2 * a;
re / ri;
r8;

°
4

What are some properties of 3 address code?

Control flow in 3 address code

Control flow in 3 address code

Add labels to the 3 address code and have branch instructions

3 address code typically contains a conditional branch:
br <reg>, <label0>, <labell>

if the value in <reg> is true, branch to <label0>, else branch to <labell>

unconditional branch
br <labelO>

Structure of 3 address code

 What is a basic block?

Structure of 3 address code

* How many basic blocks are in each of the snippets?

Label x: .
Label x: opl; if (x) {
opl; op2;
op2; op3; }
op3; else {
br label z; Label y:

op4; }

op5;

Local optimizations

e Optimizations that occur in a single basic block
 What property can we exploit?

Local optimizations

Label O0:
X a + b;
Yy a + b;

Label O0:
X = a + b;

Label 1:
y = a + b;

code could skip Label O,
leaving x undefined!

optimized
to
_—

CANNOT
always optimized
to
—_

Label O0:
X a + b;

y X

Label O0:
X = a + b;

Label 1:
y = X;

br Label 1;

Label O0:

X = a + b;

Label 1:

y = a + b;

Today’s lecture: A local optimization

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.

C;
d;
C;
d;

O o9 O
I+ 1 +

Q. Q O 9w

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.

a=>b + c; a=>b + c;
b =a - d; valid? b =a - d;
c =b+c;| — " |c = a;

d = a - d; d =a - d;

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.

a=>b + c; a=>b + c;

b=a-d:; valid? b=a-4d; No! Because b is redefined
c=b+c;| " |c=a;

d = a - d; d = a - d;

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.

a=>b + c; a=>b + c;
b =a - d; valid? b=a-d:;
c=b+c;| " |c=Db+ c;
d =a - d; d = b;

Local value numbering

* A local optimization over 3 address code

* Attempts to replace arithmetic operations (expensive) with copy
instructions (cheap)

* Can be extended to a regional optimization using flow analysis
* We will cover in later lectures.

a=>b + c; a=>b + c;

b =a - d; valid? b=a-d:;
c=b+c;| — > |c=Db+ c; yes!
d =a - d; d = b;

Local value numbering

Algorithm:

* Provide a number to each variable. Update the number each time the
variable is updated.

* Keep a global counter; increment with new variables or assignments

a2 = b0 + cl; Global_counter =7
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;

Local value numbering

Algorithm:

* Provide a number to each variable. Update the number each time the
variable is updated.

* Keep a global counter; increment with new variables or assighnments

a2 = b0 + cl; Global_counter =7
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl;
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; o
bd = a2 - d3;
cS = bd + cl;
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

—|az = b0 + cl; t “b0 + cl” : “a2”
b4 = a2 - d3; } '
cS = bd + cl;
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

az = b0 + clj H={”b0+cl":a2
— |b4 = a2 - d3;) '

cS = bd + cl;

dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

_ . H =
a2z = b0 + clj “b0 + cl” “a2",
— |b4d = a2 - d3; “a2 - d3” : "b4",
c5 = bd + cl; }
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

_ . H = {
a2z = b0 + clj “b0 + cl” “a2",
bd = a2 - d3; “a2 - d3” : "ba",
—— |c5 = bd + cl; }
dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

az = b0 + cl; i WpO 4 ol : “g2n mismatch due to

b4 = a2 - d3; va2 - d3" : "bdr, numberings!
—— |c5 = bd + cl; }

dé = a2 - d3;

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T po 1 s vane,
bd = a2 - d3; “a2 - d3” : "b4",

_ »|c5 = b4 + Cl; “b4d + cl” : “c5”,
d6 = a2 - d3; }

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T po 1 s vane,

bd = a2 - d3; “a2 - d3” : "b4",

cS5 = bd + Cl; “b4d + cl” : “c5”,
_ . |d6 = a2 - d3; }

Local value numbering

Algorithm: Now that variables are numbered

* |[terate sequentially through instructions. Keep a hash table of the rhs
(numbered variables and operation) mapped to their |hs.

* At each step, check to see if the rhs has already been computed.

a2 = b0 + cl; T po 1 s vane,

bd = a2 - d3; “a2 - d3” : "b4",

c5 = bd + cl; “b4 + cl” : "e57, match!
_ . |d6 = b4; }

What else can we do?

What else can we do?

Consider this snippet:

az2
f4
ch
dé6

cl
d3
b0
a2

- b0;

az2;

- cl;

d3;

Commutative operations

What is the definition of commutative?

Commutative operations

What is the definition of commutative?
X OP y ==y OP x

What operators are commutative? Which ones are not?

Adding commutativity to local value
numbering

* For commutative operators (e.g. + *), the analysis should consider a
deterministic order of operands.

* You can use variable numbers or lexigraphical order

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

— a2 = cl - b0; ?z '
fd = d3 * a2;
c5 = b0 - cl;
dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

cannot re-order because - is not commutative

f4 = d3 * a2; }
c5 = b0 - cl;
dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; t “cl = bO” : “a2”
—— | f4 = d3 * a2; } '

c5 = b0 - cl;

dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

re-ordered because a2 < d3 lexigraphically

az = cl - b0; t “cl - b0” : “a2”
— | £f4 = d3 * a2; "a2 * d3” “f4":

c5 = b0 - cl; }

dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; “cl - b0” : “a2",

f4 = d3 * a2; "a2 * d3" : “f4r,
——|c5 = b0 - cl; }

dé = a2 * d3;

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; t “cl - b0” : “a2”,
f4 = d3 * a2; "a2 * d3” : “f4",

—|c5 = b0 - cl; "b0 - cl “c5",
d6 = a2 * d3; }

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

az = cl - b0; t “cl - b0” : “a2”,

f4 = d3 * a2; "a2 * d3” : “f4",

c5 = b0 - cl; "b0 - cl” : “c5”,
—|d6 = a2 * d3; }

Local value numbering: commutative
operations

Algorithm optimization:

e for commutative operations, re-order operands into a deterministic
order

_ H = {
a2 - C]. bO, ucl - bO" . ua2",
f4 = d3 * a2; "a2 * d3” : “f4",
CS — bO — Cl; "bO - Cl" : ”C5",
—|d6 = f4; '

Other considerations?

Local value numbering w/out adding registers

e We've assumed we have access to an unlimited number of virtual
registers.

* In some cases we may not be able to add virtual registers
* |f an expensive register allocation pass has already occurred.

e New constraint:

* We need to produce a program such that variables without the numbers is
still valid.

Local value numbering w/out adding registers

* Example:
a = x + vy,
a = z;

b =x+vy;

numbering

local value
numbering with
unlimited virtual

registers
a3 = x1 + y2;
ab = z4;
b6 = x1 + y2;

a3 = x1 + y2;
a5 = z4;
b6 = a3;
a = x + vy;
a = 2z;
b = a;

if we drop the
numbers, the
optimization is
invalid.

Local value numbering w/out adding registers

e Solutions?
a = X *+ ¥Y; | numbering
a = z;
b =x+vy;

a3
ab
b6

X1 + y2;
z4
X1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

X+y;

Q O 9 9

X +Y;
X + vy

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

o))

X + vy
We cannot optimize the first
line, but we can optimize the

BEEEEE | cconc

C X t+ vy

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

X+y;

Q O 9 9

X +Y;
X + vy

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

X+y;

Q O 9 9

X +Y;
X + vy

First we number

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

a3 = x1 + y2;
ab = z4;

b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {

}

— la3 = x1 + y2; H = {
a5 = z4; '
b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 3,
}
— a3 = x1 + y2; H = {
a5=z4; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 3,
}
a3 = x1 + y2; H={
. |a5 = 24; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
. |a5 = 24; , X1 + y2 a3
b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
a5 = 24; , X1 + y2 a3
— |b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
a 5,
}
a3 = x1 + y2; H={
a5 = 24; , X1 + y2 a3
— |b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
— |b6 = x1 + y2;
c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— |c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— |c7 = x1 + y2;

Local value numbering w/out adding registers

* Keep another hash table to keep the current variable number

Current val = {
"a" 5,
"b" 6
}
a3 = x1 + y2; H={
a5 = z4; } x1l + y2 b6
b6 = x1 + y2;
— | c7 = bb6;

Anything else we can add to local value
numbering?

Anything else we can add to local value
numbering?

* Final heuristic: keep sets of possible values

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {

}

X+y;
X+y;

Q o O o
1 [| I |
~ m
I

X+y;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {

}

a3 = x1 + y2;

bd = x1 + y2; o
a6 = z5;

c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val

Il
P

llbll
}
= X1 + y2;
a3 - X ‘ V2; Ho= g
b4 = a3; “x1 + y2" : “a3
a6 = z5; }
— |c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val

Il
P

llbll
}
= X1 + y2;
a3 - X ‘ V2; Ho= g
b4 = a3; “x1 + y2" : “a3
a6 = z5; }
— |c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall 6,
llbll 4
}
a3 = x1 + y2;
bd = a3 H={ but we could have
! “x1l + y2" @ *a3” replaced it with b4!
a6 = z5; }
— |7 = X1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall
}
rewind to
this point a3 = xl1 + Yz; H = {
— > |bd = x1 + y2; ixl + y2r a3
a6 = z5; }
c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
ua" 3,
"b" 4
}
a3 = x1 + y2; {
H =
EE— e °
b4 a3, uxl + y2" . [ua3", ub4"],

a6 = z5; }
c7 = x1 + y2; hash a list of possible values

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall 6,
llbll 4
}
a3 = x1 + y2;
b4 = a3; S,
fast forward - a’; “x1 + y2" : [“a3", "b4"],
again a6 = z5; }
— |c7 = x1 + y2;

Local value numbering: value sets

* Final heuristic: keep sets of possible values

Current val = {
llall 6,
llbll 4
}
a3 = x1 + y2; {
H =
fast forward bd = a3; “x1 + y2" : ["a3", "b4"],
again a6 = z5; }
— |c7 = bé;

Local value numbering: Memory

e Consider a 3 address code that allows memory accesses

a[i] = x[]J] + y[k];
b[1] = x[]] + y[k];
is this transformation allowed? only if the compiler can prove that a does not alias x and y
No!
a[i] = x[]J] + y[k];
b[i] = a[i]; In the worst case, every time a memory location is updated,
- the compiler must update the value for all pointers.

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

(a[i1,3) = (x[31,1) + (y[k1l,2);
b[i1] = x[]] + y[k];

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[i1,3) = (x[31,1) + (y[k1l,2);
(b[1]1,6) = (x[]],4) + (y[k]l,5);

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

compiler analysis:

(a[i1,3) = (x[31,1) + (y[k1l,2);

can we trace a, X,y to

(b[i],6) = (x[J1,4) + (y[k1,5); e tea
x = malloc(..);
y = malloc(..);

// a,x,y are never overwritten

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

compiler analysis:

(a[i],3) = (x[31,1) + (y[k1,2);
(b[i1,6) = (x[31,1) + (y[k1,2); A A

X malloc(..);

in this case we do not have to update the number
Yy malloc(..);

// a,x,y are never overwritten

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[1],3) = (x[J1,1) + (y[k],2);
(b[1],6) = (x[]J1,4) + (vI[k],5); programmer annotations can also tell

the compiler that no other pointer
can access the memory pointed to by a

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[1]1,3)
(b[1]1,6)

= (x[J1,1) + (y[kl,2);
= (x[J],4) + (v[k]l,5);

in this case we do not have to update the number

restrict a

programmer annotations can also tell
the compiler that no other pointer
can access the memory pointed to by a

Local value numbering: Memory

* How to number:
* Number each pointer/index pair

* Any pointer/index pair that might alias must be incremented at each
instruction

(a[i1,3) = (x[31,1) + (y[k1l,2);
(b[1]1,6) = (a[1],3);

Optimizing over wider regions
* Local value numbering operated over just one basic block.

* We want optimizations that operate over several basic blocks (a
region), or across an entire procedure (global)

* For this, we need Control Flow Graphs and Flow Analysis

On Friday

* Finish up Local value numbering

* Introduce control flow graphs

