
CSE211: Compiler Design
Oct. 11, 2021

• Topic: Introduction to
Module 2: optimizations!

• Questions:
• What sort of compiler

optimizations do you know
about?
• What sort of intermediate

representations do you know
about?

Announcements

• Homework 1 is out
• Due on the 18th

• One week!

• One more office hour:
• Signup sheet: released sometime between 12 - 1 PM on

Thursday
• 10 minute slot
• Remote or in-person
• If you want a slot, but are unable to get one, please

message me!

CSE211: Compiler Design
Oct. 11, 2021

• Topic: Introduction to
Module 2: optimizations!

• Questions:
• What sort of compiler

optimizations do you know
about?
• What sort of intermediate

representations do you know
about?

On to Module 2!
Optimizations and flow
analysis

ParserInput

A string Language
Recognizer for

language L

Reject

Accept
structured data

(e.g. AST)

continue to the rest
of compilation

ParserInput

A string Language
Recognizer for

language L

Reject

Accept
structured data

(e.g. AST)

continue to the rest
of compilation

Where most
optimizations
and flow analysis
happens!

On to Module 2!
Optimizations and flow
analysis

Intermediate representations (IRs)

• Intermediate step between human-accessible programming
languages and horrible machine ISAs

• Ideal for analysis because:
• More regularity than high-level languages (simple instructions)
• Less constraints than ISA languages (virtual registers)
• Machine-agnostic optimizations
• See Godbolt example

x = y + z;
w = y + z;

x = y + z;
w = x;

Different IRs

Many different IRs, each have different purposes

• Trees
• Abstract syntax trees
• Data-dependency trees
• Good for instruction scheduling

• Textual
• 3 address code
• Good for local value numberings, removing redundant expressions

• Graphs
• Control flow graphs
• Good for data flow analysis

Different IRs

Many different IRs, each have different purposes

• Trees
• Abstract syntax trees
• Data-dependency trees
• Good for instruction scheduling

• Textual
• 3 address code
• Good for local value numberings, removing redundant expressions

• Graphs
• Control flow graphs
• Good for data flow analysis

What are some examples
of a modern compiler
pipeline?

GPUs often have many
IRs... why?

Abstract Syntax Trees

• Remember the expression parse tree

Operator Name Productions

+,- expr : expr PLUS term
| expr MINUS term
| term

*,/ term : term TIMES pow
| term DIV pow
| Pow

^ pow : factor CARROT pow
| factor

() factor : LPAR expr RPAR
| NUM

input: 2-3-4

expr

expr <MINUS>

<MINUS>expr

<NUM, 2>

term

<NUM, 3>

term

factor

factor <NUM, 4>

term

factor

Abstract Syntax Trees

• Convert into an AST input: 2-3-4

expr

expr <MINUS>

<MINUS>expr

<NUM, 2>

term

<NUM, 3>

term

factor

factor <NUM, 4>

term

factor

-

2 3

4-

Much more compact!

Abstract Syntax Trees

• Convert into an AST input: 2-3-4

expr

expr <MINUS>

<MINUS>expr

<NUM, 2>

term

<NUM, 3>

term

factor

factor <NUM, 4>

term

factor

-

2 3

4-

Much more compact!

nodes are operators

nodes are
production

rules

Abstract Syntax Trees

• Easier to see bigger trees, e.g. quadratic formula:

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

Thanks to Sreepathi Pai for the example!

x = (-b - sqrt(b*b - 4 * a * c)) / (2*a)

3 address code IR

• Each instruction consists of 3 “addresses”
• Address here means a virtual register or value
• unlimited virtual registers

• represented many ways:

rx = ry op rz;

r5 = r3 + r6;
r6 = r0 * r7;

3 address code IR

• Each instruction consists of 3 “addresses”
• Address here means a virtual register or value
• unlimited virtual registers

• represented many ways:

rx ⃪ ry op rz;

r5 ⃪ r3 + r6;
r6 ⃪ r0 * r7;

3 address code IR

• Each instruction consists of 3 “addresses”
• Address here means a virtual register or value
• unlimited virtual registers

• represented many ways:

rx = op ry, rz;

r5 = add r3, r6;
r6 = mult r0, r7;

3 address code IR

• Each instruction consists of 3 “addresses”
• Address here means a virtual register or value
• unlimited virtual registers

• some instructions don’t fit the pattern:

store ry, rz;

r5 = copy r3;
r6 = call(r0, r1, r2, r3…);

3 address code IR

• Each instruction consists of 3 “addresses”
• Address here means a virtual register or value
• unlimited virtual registers

• Other information:
• Annotated
• Typed
• Alignment

r5 = r3 + r6; !dbg !22
r6 = r0 *(int32) 67;
store(r1,r2), aligned 8

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0 = neg(b);

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0 = neg(b);
r1 = b * b;

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

This is the exact code we’d see in LLVM!
See Godbolt example

What now?

We can more easily compile to machine code
OR

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

What now?

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

x

r8

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r2

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r2

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

What can this tell us?

x

r8

r6 r7

r0 r5

r4

r1 r3

r2

can be done in parallel!

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r2

can be done in parallel!

Can be hoisted!

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
r8 = r6 / r7;
x = r8;

x

r8

r6 r7

r0 r5

r4

r1 r3

r2

should we hoist this one?

Lots of considerations in optimizing

• More on instruction scheduling later
• Processor agnostic?

• Back to 3-address code

• We looked at expressions, but how about conditionals?

What about control flow?

• 3 address code typically contains a conditional branch:

br <reg>, <label0>, <label1>

if the value in <reg> is true, branch to <label0>, else branch to <label1>

br <label0>

unconditional branch

What about control flow?

First, produce an AST

if (expr) {
// conditional statements
}
// after if statements

What about control flow?

IF

<after_if_statements><conditional_statements><expression>

Next lower to 3 address code

if (expr) {
// conditional statements
}
// after if statements

What about control flow?
if (expr) {
// conditional statements
}
// after if statements

IF

<after_if_statements><conditional_statements><expression>

r0 = <expression>;
br r0, conditional_stmts, after_if;

conditional_stmts:
<conditional_statements>;

after_if:
<after_if_statements>;

What about control flow?
while (expr) {
// inside_loop_statements
}
// after_loop_statements

What about control flow?
while (expr) {
// inside_loop_statements
}
// after_loop_statements

First, produce an AST

What about control flow?
while (expr) {
// inside_loop_statements
}
// after_loop_statements WHILE

<after_loop_statements><inside_loop_statements><expr>

What about control flow?
while (expr) {
// inside_loop_statements
}
// after_loop_statements WHILE

<after_loop_statements><inside_loop_statements><expr>

beginning_label:
r0 = <expr>

br r0, inside_loop, after_loop;

inside_loop:
<inside_loop_statements>
br beginning_label;

after_loop:
<after_loop_statements>

For loop
for (assignment; cond_expr; update_expr) {
// inside_loop_statements
}
// after_loop_statements

For loop
for (assignment; cond_expr; update_expr) {
// inside_loop_statements
}
// after_loop_statements

FOR

<after_loop_statements><cond_expr><assignment> <update_expr>

<inside_loop_statements>

For loop FOR

<after_loop_statements><cond_expr><assignment> <update_expr>

<inside_loop_statements

WHILE

<after_loop_statements><inside_loop_statements>;
<update_expr>

< cond_expr >

<assignment>

sequenced

Can be de-sugared into a while loop:

For loop FOR

<after_loop_statements><cond_expr><assignment> <update_expr>

<inside_loop_statements

WHILE

<after_loop_statements><inside_loop_statements>;
<update_expr>

< cond_expr >

<assignment>

sequenced

Can be de-sugared into a while loop:

Pros? Cons?

IR Program structure

• A sequence of 3 address instructions

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceding instructions will execute

Label_x:
op1;
op2;
op3;
br label_z;

Single Basic Block

IR Program structure

Label_x:
op1;
op2;
op3;
br label_z;

Single Basic Block

Two Basic Blocks

Label_x:
op1;
op2;
op3;

Label_y:
op4;
op5;

• A sequence of 3 address instructions

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceding instructions will execute

IR Program structure

Label_x:
op1;
op2;
op3;

Label_y:
op4;
op5;

Label_x:
op1;
op2;
op3;
br label_z;

How might they appear in a
high-level language? What are some
examples?

Single Basic Block

Two Basic Blocks

• A sequence of 3 address instructions

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceding instructions will execute

IR Program structure

Label_x:
op1;
op2;
op3;

Label_y:
op4;
op5;

Label_x:
op1;
op2;
op3;
br label_z;

How might they appear in a
high-level language?

…
if (x) {

…
}
else {
…

}
…

Single Basic Block

Two Basic Blocks

Four Basic Blocks

• A sequence of 3 address instructions

• Programs can be split into Basic Blocks:
• A sequence of 3 address instructions such that:
• There is a single entry, single exit

• Important property: an instruction
in a basic block can assume that all
preceding instructions will execute

Optimization levels

• Local optimizations:
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure
• what about across procedures?

Optimization levels

• Local optimizations:
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure
• what about across procedures?

Label_0:
x = a + b;
y = a + b;

Optimization levels

• Local optimizations:
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure
• what about across procedures?

Label_0:
x = a + b;
y = a + b;

Label_0:
x = a + b;
y = x;

optimized
to

Optimization levels

• Local optimizations:
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure
• what about across procedures?

Label_0:
x = a + b;
y = a + b;

Label_0:
x = a + b;

Label_1:
y = a + b;

Label_0:
x = a + b;
y = x;

optimized
to

CANNOT
always optimized

to

Label_0:
x = a + b;

Label_1:
y = x;

Optimization levels

• Local optimizations:
• Optimizes an individual basic block

• Regional optimizations:
• Combines several basic blocks

• Global optimizations:
• operates across an entire procedure
• what about across procedures?

Label_0:
x = a + b;
y = a + b;

Label_0:
x = a + b;

Label_1:
y = a + b;

Label_0:
x = a + b;
y = x;

optimized
to

CANNOT
always optimized

to

Label_0:
x = a + b;

Label_1:
y = x;

br Label_1;

Label_0:
x = a + b;

Label_1:
y = a + b;

code could skip Label_0,
leaving x undefined!

Regional Optimization
…
if (x) {

…
}
else {

x = a + b;
}
y = a + b;
…

at a higher-level,
we cannot replace:

y = a + b.
with
y = x;

Regional Optimization
…
if (x) {

…
}
else {

x = a + b;
}
y = a + b;
…

at a higher-level,
we cannot replace:

y = a + b.
with
y = x;

x = a + b;
if (x) {

…
}
else {

…
}
y = a + b;
…

But if a and b are
not redefined, then

y = a + b;
can be replaced with

y = x;

Next Wednesday

• A basic-block local optimization
• local value numbering

• Friday: Control flow graphs and intra-block analysis

• Work on the homework! Thanks for all the discussion and patience!
• I am still working on tuning the assignments for this class
• Please give feedback!

