CSE211: Compiler Design

Oct. 11, 2021

* Topic: Introduction to
Module 2: optimizations!

* Questions:

* What sort of compiler
optimizations do you know
about?

* What sort of intermediate
representations do you know
about?

Announcements

e Homework 1 is out
* Due on the 18th
e One week!

* One more office hour:

* Signup sheet: released sometime between 12 -1 PM on
Thursday

e 10 minute slot
 Remote or in-person

* |f you want a slot, but are unable to get one, please
message me!

CSE211: Compiler Design

Oct. 11, 2021

* Topic: Introduction to
Module 2: optimizations!

* Questions:

* What sort of compiler
optimizations do you know
about?

* What sort of intermediate
representations do you know
about?

On to Module 2!
Optimizations and flow

analysis

Input

A string

Accept

continue to the rest
of compilation

=)

Language

Reject

Recognizer for
language L

=

structured data
(e.g. AST)

On to Module 2!
Optimizations and flow

analysis

Input

A string

Accept

continue to the rest
of compilation

=)

Language

Reject

Recognizer for
language L

=

structured data
(e.g. AST)

Where most
optimizations
and flow analysis
happens!

Intermediate representations (IRs)

* Intermediate step between human-accessible programming
languages and horrible machine ISAs

* |deal for analysis because:
* More regularity than high-level languages (simple instructions)
* Less constraints than ISA languages (virtual registers)
* Machine-agnostic optimizations
e See Godbolt example

+ +
N N
g
I
X

g
|
K

Different IRs

Many different IRs, each have different purposes

* Trees
* Abstract syntax trees
e Data-dependency trees
* Good for instruction scheduling

e Textual

* 3 address code
* Good for local value numberings, removing redundant expressions

* Graphs
e Control flow graphs
* Good for data flow analysis

Different IRs

Many different IRs, each have different purposes

* Trees
* Abstract syntax trees
e Data-dependency trees
* Good for instruction scheduling

e Textual

* 3 address code
* Good for local value numberings, removing redundant expressions

* Graphs
e Control flow graphs
* Good for data flow analysis

What are some examples
of a modern compiler
pipeline?

GPUs often have many
IRs... why?

Abstract Syntax Trees

* Remember the expression parse tree

m

+,- expr : expr PLUS term
| expr MINUS term
| term

*/ term : term TIMES pow
| term DIV pow
| Pow

2 pow : factor CARROT pow
| factor

() factor : LPAR expr RPAR
| NUM

input: 2-3-4

expr
expr <MINUS> term
expr <MINUS> teTm factor
term factor <NUM, 4>
| |
factor <NUM, 3>

<NUM, 2>

Abstract Syntax Trees

e Convert into an AST

T T

2 3

Much more compact!

input: 2-3-4

expr

expr <M|NUS> term
expr <MINUS> term factor
term fac’tor <NUM, 4>
factor <NUM, 3>

<NUM, 2>

Abstract Syntax Trees

« Convert into an AST input: 2-3-4

nodes are operators Mexpr\
4 expr <M|NUS> term
2 3 expr <MINUS> term factor
nodes are
production fact
rules actor <NUM, 4>
Much more compact! ’
factor <NUM, 3>

<NUM, 2>

Abstract Syntax Trees

 Easier to see bigger trees, e.g. quadratic formula:

_ 2 __
T — b__\/2b dac
a

X =(-b-sqrt(b*b-4 *a*c))/(2*%a)

Thanks to Sreepathi Pai for the example!

X =(-b-sqrt(b*b -4 *a*c))/(2%a)

3 address code IR

e Each instruction consists of 3 “addresses”
e Address here means a virtual register or value
* unlimited virtual registers

* represented many ways:
rx = ry op rz;

r5 = r3 + r6;
r6 = r0 * r7;

3 address code IR

e Each instruction consists of 3 “addresses”
e Address here means a virtual register or value
* unlimited virtual registers

* represented many ways:
rXx«<—ry Op rz;

r5<r3 + ré6;
r6—r0 * r7;

3 address code IR

e Each instruction consists of 3 “addresses”
e Address here means a virtual register or value
* unlimited virtual registers

* represented many ways:
rx = op ry, rz;

r5 = add r3, ré6;
ré6 = mult r0, r7;

3 address code IR

e Each instruction consists of 3 “addresses”
e Address here means a virtual register or value
* unlimited virtual registers

* some instructions don’t fit the pattern:
store ry, rz;

r5 = copy r3;
r6 = call(r0, rl, r2, r3..);

3 address code IR

e Each instruction consists of 3 “addresses”

e Address here means a virtual register or value
* unlimited virtual registers

 Other information:
 Annotated
* Typed
e Alignment

r5 = r3 + r6; !dbg 122
r6 = r0 *(1nt32) 67;
store(rl,r2), aligned 8

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0 = neg(b);

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0
rl

i
3

D

Q
o

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0 = neg(b);
rl = b * b;
r2 =4 * a;

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0 = neg(b);
rl = b * b;
r2 = 4 * a;
r3 = r2 * c;

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0
ril
r2
r3
ri

neg(b);
b * b;
4 * a;
r2 * c;
rl — r3;

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0
ril
r2
r3
ri
r5

neg(b);
b * b;
4 * a;
r2 * c;
rl — r3;
sgrt(r4);

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0
ril
r2
r3
ri
r5
ro6

neg(b);
b * b;
4 * a;
r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0
ril
r2
r3
ri
r5
ro6
r

neg(b);
b * b;
4 * a;
r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;
2 * a;

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0
ril
r2
r3
ri
r5
ro6
r
r8

neg(b);
b * b;

4 * a;

r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;
2 * a;

re / ri;

Convert this code to 3 address code

post-order traversal, creating virtual
registers for each node

r0
ril
r2
r3
ri
r5
ro6
r
r8
X

neg(b);
b * b;

4 * a;

r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;
2 * a;

re / ri;
r8;

Convert this code to 3 address code

post-order traversal, creating virtual

registers for each node

r0
ril
r2
r3
ri
r5
ro6
r
r8
X

= neg(b);
b * b;
4 * a;
r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;
2 * a;
re / ri;

= r8;

This is the exact code we’d see in LLVM!
See Godbolt example

What now?

We can more easily compile to machine code

OR

r0 = neg(b);
rl = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4d = rl — r3;
r5 = sqgrt(r4);
r6 = r0 — r5;
r7 = 2 * a;
r8 = r6 / ri;
X = r8;

What now?

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);
rl = b * b;

r2 = 4 * a;

r3 = r2 * c;
r4d = rl — r3;
r5 = sqgrt(r4d);
r6 = r0 — r5;
r7 = 2 * a;

r8 =r6 / r7;
X = r8;

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);

rl = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4d = rl — r3;
r5 = sqgrt(r4d);
r6 = r0 — r5;
r7 = 2 * a;
r8 =r6 / r7;

X = r8;

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0 = neg(b);

rl = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4d = rl — r3;
r5 = sqgrt(r4d);
r6 = r0 — r5;
r7 = 2 * a;
r8 =r6 / r7;

X = r8;

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0
ril
r2
r3
ri
r5
ro6
r
r8
X

= neg(b);

b * b;
4 * a;
r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;
2 * a;
re / ri;

= r8;

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0
ril
r2
r3
ri
r5
ro6
r
r8
X

= neg(b);

b * b;
4 * a;
r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;
2 * a;
re / ri;

= r8;

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

r0
ril
r2
r3
ri
r5
ro6
r
r8
X

= neg(b);

b * b;
4 * a;
r2 * c;
rl — r3;
sgrt(r4);
r0 — r5;
2 * a;
re / ri;

= r8;

We can perform more optimizations, example:

by making a data-dependency graph (DDG) 0 e
r0 = neg(b);

rl = b * b; 0

r2 = 4 * a;

r3 = r2 * cj; 0 @

r4d = rl — r3;

r5 = sqgrt(r4d);

r6 = r0 — r5; ° a
r7 = 2 * a;

r8 =

X = r8;

re / ri; °
(0

We can perform more optimizations, example:

by making a data-dependency graph (DDG) 0
r0 = neg(b);

rl = b * b; a
r2 = 4 * a;

r3 = r2 * c; 0 @
r4d = rl — r3;

r5 = sqgrt(r4d);

r6 = r0 — r5; ° a
r7 = 2 * a;

r8 =r6 / r7; °
X = r8;

We can perform more optimizations, example:

by making a data-dependency graph (DDG) 0
r0 = neg(b);

rl = b * b; a
r2 = 4 * a;

r3 = r2 * c; 0 @
r4d = rl — r3;

r5 = sqgrt(r4d);

r6 = r0 — r5; What can this tell us? ° Q
r7 = 2 * a;

r8 =r6 / r7; °
X = r8;

r2

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

rl Q
i(l) i geg(]g:7 can be done in parallel! @
r2 = 4 * a;
r3 = r2 * c; ° °
r4d = rl — r3;
r5 = sqrt(r4d); ° 7
r6 = r0 — r5;
r7 = 2 * a;
r8 =r6 / ri; °
X = r8;

We can perform more optimizations, example:
by making a data-dependency graph (DDG)

ro =

ril
r2
r3
ri
r5
ro6
r
r8
X

can be done in parallel!

ro

Can be hoisted!

rl

r2

r/7

We can perform more optimizations, example: @
by making a data-dependency graph (DDG)

r3
ro =
rl =
r2

r3 r2 * C, should we hoist this one?
ré = rl — r3; ° G

e

N
N o>
* % \Q
pUT

r5 = sqgrt(r4d);
r6 = r0 — r5;
r8 =r6 / r7;

X = r8;

Lots of considerations in optimizing

* More on instruction scheduling later
* Processor agnostic?

 Back to 3-address code

* We looked at expressions, but how about conditionals?

What about control flow?

* 3 address code typically contains a conditional branch:
br <reg>, <label0>, <labell>
if the value in <reg> is true, branch to <label0>, else branch to <labell>

br <label(O>

unconditional branch

What about control flow?

if (expr) {
// conditional statements

}

// after if statements

First, produce an AST

What about control flow?

if (expr) {
// conditional statements

}

// after if statements

Next lower to 3 address code

IF

/N

<expression> <conditional_statements> <after_if statements>

What about control flow?

if (expr) {
// conditional statements

}

// after if statements

r0 = <expression>; IF

br r0, conditional stmts, after 1if;

conditional stmts:

<conditional_statements>; <expression> <conditional_statements> <after_if statements>
after if:

<after if statements>;

What about control flow?

while (expr) {
// inside loop statements

}

// after loop statements

What about control flow?

while (expr) {
// inside loop statements

}

// after loop statements

First, produce an AST

What about control flow?

while (expr) {
// inside loop statements

}

// after loop statements WHILE

/N

<expr> <inside loop_statements> <after_loop_ statements>

What about control flow?

while (expr) {
// inside loop statements

}
// after loop statements WHILE
beginning label: ///////////////[\\\\\\\\\\\\\\\\\\\\

r0 = <expr> .
<expr> <inside loop_statements> <after_loop_ statements>

br r0, inside loop, after loop;

inside loop:
<inside loop_ statements>
br beginning label;

after loop:
<after loop statements>

For loop

for (assignment; cond expr; update expr) {
// inside loop statements

}

// after loop statements

For loop

for (assignment; cond expr; update expr) {
// inside loop statements

}

// after loop statements

FOR

<assignment> <cond expr> <update expr> <after loop_statements>

<inside loop statements>

For loop FoR

<assignment> <cond expr> <update expr> <after loop statements

<inside loop statement

Can be de-sugared into a while loop:

<assignment>

sequenced

WHILE

< cond expr > <inside loop statements>; <after loop statements>
<update_ expr>

For loop FoR

<assignment> <cond expr> <update expr> <after loop statements

<inside loop statement

Can be de-sugared into a while loop:

<assignment>
Pros? Cons? d
sequenced
WHILE
< cond expr > <inside loop statements>; <after loop statements>

<update_ expr>

IR Program structure

* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:
* There is a single entry, single exit

Single Basic Block

. . Label x:
* Important property: an instruction opl;
in a basic block can assume that all op2;
preceding instructions will execute gi3iabel .

IR Program structure

* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:

* There is a single entry, single exit
Two Basic Blocks

Single Basic Block Label_ x:
el opl;
. . Label x: .
o lmportant property: an instruction opl: ggir

in a basic block can assume that all op2;

preceding instructions will execute oP3;

Label y:
br label z;

op4;
op5;

How might they appearin a

| R P rog ra m St |" u Ct u re Z)i(gaf;lsl\;esl?language? What are some
* A sequence of 3 address instructions

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that:

* There is a single entry, single exit
Two Basic Blocks

Single Basic Block Label x:
bel opl;
. . Label Xx: .
* Important property: an instruction opl; ggi:
in @ basic block can assume that all op2; '
I I i i op3; Label vy:
preceding instructions will execute br 1abel z: Lake ¥

op5;

How might they appearin a

| R P rog Faim St 'y Ct ure high-level language?

Four Basic Blocks

* A sequence of 3 address instructions if (x) {
}

else {

* Programs can be split into Basic Blocks:
* A sequence of 3 address instructions such that: }
* There is a single entry, single exit

Two Basic Blocks

Single Basic Block Label_ x:
el opl;
. . Label x: .
o ImpOI’tht property: an instruction opl: ggir

in a basic block can assume that all op2;

preceding instructions will execute oP3;

Label y:
br label z;

op4;
op>5;

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O0:

n
o o

O O

e

e

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O0:

n
o o

O O

e

e

optimized

to
—

Label O0:
X = a + b;
y = X;

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O0:

O O

n
o o

Label O0:
X = a + b;

Label 1:
y = a + b;

optimized
to
—_

CANNOT
always optimized
to
—_

Label 0:
X = a + b;

Label 1:
y = X;

Optimization levels

* Local optimizations:
* Optimizes an individual basic block

* Regional optimizations:
e Combines several basic blocks

* Global optimizations:
* operates across an entire procedure
* what about across procedures?

Label O0:
X = a + b;

Label 1:
y = a + b;

code could skip Label O,
leaving x undefined!

optimized

to
e

CANNOT
always optimized
to
—_

Label O0:
X = a + b;
y = X;

Label 0:
X = a + b;

Label 1:
y = X;

br Label 1;

Label O0:

X = a + b;

Label 1:

y = a + b;

Regional Optimization

if (%) {

}

else {
X = a + b;

}
y = a + b;

at a higher-level,
we cannot replace:
y=a+b.
with
y=X

Regional Optimization

zf (x) A

}

else {
X = a + b;

}
y = a + b;

X = a + b;
if (%) {

else {

at a higher-level,
we cannot replace:
y=a+b.
with
y=X

But if a and b are
not redefined, then
y=a+b;
can be replaced with
y=X

Next Wednesday

* A basic-block local optimization
* local value numbering

* Friday: Control flow graphs and intra-block analysis

 Work on the homework! Thanks for all the discussion and patience!
* | am still working on tuning the assignments for this class
* Please give feedback!

