
CSE211: Compiler Design 
Nov. 8, 2021

• Topic: parallelizing DOALL loops

0 1 3 4

thread 1thread 0

worklist 0 worklist 1



Announcements

• Homework 3 is due next Wednesday
• 1 more office hour before then on Thursday
• Feel free to share results (not code!) on slack
• Part 2 uses a lot of memory. Feel free to reduce the array size, but try not to

reduce it too far.

• Friday’s class will be canceled
• Work on homework 3 and project/paper proposals

• Guest lecture for Nov. 22
• Aviral Goel will talk about laziness in R



Paper and project proposals

• Due on Nov. 14
• Thanks to everyone who has messaged me so far!
• I will try to have grades for HW2 and midterm by then



CSE211: Compiler Design 
Nov. 8, 2021

• Topic: Topic: parallelizing DOALL loops

0 1 3 4

thread 1thread 0

worklist 0 worklist 1



Implementing SMP parallelism in a compiler

• Where to do it?
• High-level: DSL, Python, etc.
• Mid-level: C/C++
• Low-level: LLVM-IR
• ISA: e.g. x86



Implementing SMP parallelism in a compiler

• Where to do it?
• High-level: DSL, Python, etc.
• Mid-level: C/C++
• Low-level: LLVM-IR
• ISA: e.g. x86

Tradeoffs at all levels



Implementing SMP parallelism in a compiler

• Where to do it?
• High-level: DSL, Python, etc.
• Mid-level: C/C++
• Low-level: LLVM-IR
• ISA: e.g. x86

Here you’ve lost information about for loops, but SSA provides
a nice foundation for analysis



Implementing SMP parallelism in a compiler

• Where to do it?
• High-level: DSL, Python, etc.
• Mid-level: C/C++
• Low-level: LLVM-IR
• ISA: e.g. x86

Good frameworks available for managing threads (C++, OpenMP).
Good tooling for analysis and codegen clang visitors, pycparser, etc.



Implementing SMP in a compiler

• Where to do it?
• High-level: DSL, Python, etc.
• Mid-level: C/C++
• Low-level: LLVM-IR
• ISA: e.g. x86

In many cases, DSLs compiler down to, or link to C/C++:
DNN libraries, Graph analytic DSLs, Numpy.

Some DSLs compile to LLVM: Numba



Implementing SMP parallelism in a compiler

• Where to do it?
• High-level: DSL, Python, etc.
• Mid-level: C/C++
• Low-level: LLVM-IR
• ISA: e.g. x86

We will assume this level for the lecture



Regular Parallel Loops

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• How to implement in a compiler:



Regular Parallel Loops

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• How to implement in a compiler:

0 1 2 3 4 5 6 7 SIZE -1



Regular Parallel Loops

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• How to implement in a compiler:

0 1 2 3 4 5 6 7 SIZE -1

say SIZE / NUM_THREADS = 4



Regular Parallel Loops

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• How to implement in a compiler:

0 1 2 3 4 5 6 7 SIZE -1

say SIZE / NUM_THREADS = 4

Thread 0 Thread 1 Thread N



Regular Parallel Loops

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• How to implement in a compiler:

make a new function with the for loop inside. Pass all needed variables as arguments. Take an extra argument for a thread id



Regular Parallel Loops

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• How to implement in a compiler:

void parallel_loop(..., int tid) {

for (x = 0; x < SIZE; x++) {
// work based on x

}
}

make a new function with the for loop inside. Pass all needed variables as arguments. Take an extra argument for a thread id



Regular Parallel Loops

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• How to implement in a compiler:

void parallel_loop(..., int tid) {

int chunk_size = SIZE / NUM_THREADS;
for (x = 0; x < SIZE; x++) {
// work based on x

}
}

determine chunk size in new function



Regular Parallel Loops

void foo() {
...
for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time
}

...
}

• How to implement in a compiler:

void parallel_loop(..., int tid) {

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size
for (x = start; x < end; x++) {
// work based on x

}
}

Set new loop bounds



Regular Parallel Loops

void foo() {
...
for (int t = 0; t < NUM_THREADS; t++) {
spawn(parallel_loop(..., t))

}
join();

...
}

• How to implement in a compiler:

void parallel_loop(..., int tid) {

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size
for (x = start; x < end; x++) {
// work based on x

}
}

Spawn threads



Regular Parallel Loops

• Example, 2 threads/cores, array of size 8

void parallel_loop(..., int tid) {

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size
for (x = start; x < end; x++) {
// work based on x

}
}

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size =4

0: start=0

0: end=4

1: start=4

1: end=8



Regular Parallel Loops

• Example, 2 threads/cores, array of size 8

void parallel_loop(..., int tid) {

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size
for (x = start; x < end; x++) {
// work based on x

}
}

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8



Regular Parallel Loops

• Example, 2 threads/cores, array of size 9

void parallel_loop(..., int tid) {

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size
for (x = start; x < end; x++) {
// work based on x

}
}

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = ?

0: start= ?

0: end= ?

1: start= ?

1: end= ?

8



Regular Parallel Loops

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

8
void parallel_loop(..., int tid) {

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size
for (x = start; x < end; x++) {
// work based on x

}
}

• Example, 2 threads/cores, array of size 9



Regular Parallel Loops

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

8
void parallel_loop(..., int tid) {

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
if (tid == NUM_THREADS - 1) {
end += (end - SIZE);

}
for (x = start; x < end; x++) {
// work based on x

}
}

• Example, 2 threads/cores, array of size 9



Regular Parallel Loops

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 9

8
void parallel_loop(..., int tid) {

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
if (tid == NUM_THREADS - 1) {
end += (end - SIZE);

}
for (x = start; x < end; x++) {
// work based on x

}
}

• Example, 2 threads/cores, array of size 9

last thread gets more work



Regular Parallel Loops

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8

8
void parallel_loop(..., int tid) {

int chunk_size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size
for (x = start; x < end; x++) {
// work based on x

}
}

• Example, 2 threads/cores, array of size 9 ceiling division



Regular Parallel Loops

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 5

0: start = 0

0: end = 5

1: start = 5

1: end = 10

8
void parallel_loop(..., int tid) {

int chunk_size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size
for (x = start; x < end; x++) {
// work based on x

}
}

• Example, 2 threads/cores, array of size 9

9

out of bounds



Regular Parallel Loops

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 5

0: start = 0

0: end = 5

1: start = 5

1: end = 10

void parallel_loop(..., int tid) {

int chunk_size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
int start = chunk_size * tid;
int end =
min(start+chunk_size, SIZE)
for (x = start; x < end; x++) {
// work based on x

}
}

• Example, 2 threads/cores, array of size 9

9

out of bounds

8



Regular Parallel Loops

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 5

0: start = 0

0: end = 5

1: start = 5

1: end = 9

void parallel_loop(..., int tid) {

int chunk_size =
(SIZE+(NUM_THREADS-1))/NUM_THREADS;
int start = chunk_size * tid;
int end =
min(start+chunk_size, SIZE)
for (x = start; x < end; x++) {
// work based on x

}
}

• Example, 2 threads/cores, array of size 9

8

most threads do equal amounts
of work, last thread may do less.



Good for SMP parallelism

C1C0

L1 
cache

L1 
cache

L2 cache

DRAM

thread 0 thread 1

0 1 2 3 4 5 6 7

stays in thread 0’s
L1 cache

stays in thread 1’s
L1 cache

SMP parallelism



What about streaming multiprocessors 
(GPUs)?

CE1CE0

one streaming
multiprocessor
contains many 
small Compute
Elements (CE)

thread 0 thread 1

streaming multiprocessor

L1 cache

DRAM

0 1 2 3 4 5 6 7

is this partition good for GPUs??

CEs Can load adjacent
memory locations
simultaneously. 

CEs execute iterations
synchronously 

load/
store 
unit



What about streaming multiprocessors 
(GPUs)?

one streaming
multiprocessor
contains many 
small Compute
Elements (CE)

0

1 2 3

4

5 6 7

CEs Can load adjacent
memory locations
simultaneously. 

CEs execute iterations
synchronously 

is this partition good for GPUs??

ITER 0:

CE1CE0

thread 0 thread 1

streaming multiprocessor

L1 cache

DRAM

load/
store 
unit



What about streaming multiprocessors 
(GPUs)?

one streaming
multiprocessor
contains many 
small Compute
Elements (CE)

0

1 2 3

4

5 6 7

CEs Can load adjacent
memory locations
simultaneously. 

CEs execute iterations
synchronously 

is this partition good for GPUs??

ITER 0:

not adjacent, so the loads have to be serialized

CE1CE0

thread 0 thread 1

streaming multiprocessor

L1 cache

DRAM

load/
store 
unit



What about streaming multiprocessors 
(GPUs)?

one streaming
multiprocessor
contains many 
small Compute
Elements (CE)

0 1 2 3 4 5 6 7

CEs Can load adjacent
memory locations
simultaneously 

What about a striped pattern?

ITER 0:

CE1CE0

thread 0 thread 1

streaming multiprocessor

L1 cache

DRAM

load/
store 
unit



What about streaming multiprocessors 
(GPUs)?

one streaming
multiprocessor
contains many 
small Compute
Elements (CE)

0 1

2 3 4 5 6 7

CEs Can load adjacent
memory locations
simultaneously 

What about a striped pattern?

ITER 0:

adjacent memory locations can be loaded at the
same time!

CE1CE0

thread 0 thread 1

streaming multiprocessor

L1 cache

DRAM

load/
store 
unit



Kepler architecture

From:
https://www.nvidia.com/content/dam
/en-zz/Solutions/Data-Center/tesla-
product-literature/NVIDIA-Kepler-
GK110-GK210-Architecture-
Whitepaper.pdf



How to compiler for GPUs?

• Example, 2 threads/cores, array of size 8. 
Change code for a GPU

void parallel_loop(..., int tid) {

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size;
for (x = tid; x < SIZE; x+=NUM_THREADS) {
// work based on x

}
}

0 1 2 3 4 5 6 7

thread 1thread 0



How to compiler for GPUs?

• Example, 2 threads/cores, array of size 8

0 1 2 3 4 5 6 7

x: 0 

ITER 0

x: 1

void parallel_loop(..., int tid) {

for (x = tid; x < SIZE; x+=NUM_THREADS) {
// work based on x

}
}

thread 1thread 0



How to compiler for GPUs?

• Example, 2 threads/cores, array of size 8

0 1 2 3 4 5 6 7

thread 1thread 0

x: 2 

ITER 0

x: 3

void parallel_loop(..., int tid) {

for (x = tid; x < SIZE; x+=NUM_THREADS) {
// work based on x

}
}



How to compiler for GPUs?

• Example, 2 threads/cores, array of size 8

void parallel_loop(..., int tid) {

for (x = tid; x < end; x+=NUM_THREADS) {
// work based on x

}
}

0 1 2 3 4 5 6 7

thread 1thread 0

x: 2 

ITER 1

x: 3



Demo



Takeaways:

• Chunk data for SMP parallelism. Cores have disjoint L1 caches.

• Stride data for SM (GPU) parallelism, adjacent threads can more 
efficiently access adjacent memory.

• Easily compute bounds using runtime variables 
• SIZE, NUM_THREADS, THREAD_ID

• Create one function parameterized by thread id (SPMD parallelism)



Irregular parallelism in loops

• Independent iterations have different amount of work to compute

• Threads with longer tasks take longer to compute. 

• Threads with shorter tasks are underutilized.

example: regular (or embarrassingly) 
parallelism:
each x iteration performs the same 
amount of work

for (x = 0; x < SIZE; x++) {
for (y = 0; y < SIZE; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}



Irregular parallelism in loops

• Independent iterations have different amount of work to compute

• Threads with longer tasks take longer to compute. 

• Threads with shorter tasks are underutilized.

irregular (or unbalanced) parallelism:
each x iteration performs different 
amount of work.

for (x = 0; x < SIZE; x++) {
for (y = 0; y < x; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}



Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = 0; y < x; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}



Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = 0; y < x; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

Calculate how much total work:

total_work = &
!"#

$%&'

𝑛



Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

Calculate how much total work:

total_work = &
!"#

$%&'

𝑛

Calculate work done by first thread:

t1_work = &
!"#

$%&'/)

𝑛
for (x = 0; x < SIZE; x++) {
for (y = 0; y < x; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}



Irregular parallelism in loops

• Calculate imbalance cost if x is chunked:
• Thread 1 takes iterations 0 - SIZE/2
• Thread 2 takes iterations SIZE/2 - SIZE

Calculate how much total work:

total_work = &
!"#

$%&'

𝑛

Calculate work done by second thread:

t1_work = &
!"#

$%&'/)

𝑛

Calculate work work done by first thread:

t2_work = total_work − t1_work

for (x = 0; x < SIZE; x++) {
for (y = 0; y < x; y++) {
a[x,y] = b[x,y] + c[x,y];

}
}



Irregular parallelism in loops

Example: SIZE = 64

total_work = 2016
t1_work = 496
t2_work = 1520

t2 does ~3x more work than t1

Only provides ~1.3x speedup

Calculate how much total work:

total_work = &
!"#

$%&'

𝑛

Calculate work done by second thread:

t1_work = &
!"#

$%&'/)

𝑛

Calculate work work done by first thread:

t2_work = total_work − t1_work

Potential solution:
Have T1 do only ¼ of the iterations
Gives a better speedup of 1.77x

Doesn’t always work as loop bounds are not always 
statically known!



Demo



Where does irregular parallelism show up?



from “PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs”, OSDI 2012



from “PowerGraph: Distributed Graph-
Parallel Computation on Natural Graphs”, 
OSDI 2012

• Vertex programming model 
iterates over each node in 
parallel. 

• Each node pulls in values 
from neighbors 

• Similar to flow analysis!



Sparse Neural Nets

from: “A PROGRAMMABLE APPROACH TO 
MODEL COMPRESSION”. arxiv 2019. 



How can we deal with load imbalance?

• Great research question! Changes per domain/architecture/input etc.



Work stealing

• Tasks are dynamically assigned to threads. 



Work stealing - global implicit worklist

• Pros
• Simple to implement

• Cons:
• High contention on global counter
• Potentially bad memory locality.



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 1 2 3 4 5 6 7 SIZE -1

thread 1thread 0

cannot color initially!



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 1 2 3 4 5 6 7 SIZE -1

thread 1thread 0



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 1

2 3 4 5 6 7 SIZE -1

thread 1thread 0



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0

2 3 4 5 6 7 SIZE -1

thread 1thread 0 1 finished tasks



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0

2 3 4 5 6 7 SIZE -1

Dynamically take the next iteration

thread 1thread 0 1 finished tasks



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 2

3 4 5 6 7 SIZE -1

thread 1thread 0 1 finished tasks



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0

3 4 5 6 7 SIZE -1

thread 1thread 0 1 2 finished tasks



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0

3 4 5 6 7 SIZE -1

thread 1thread 0 1 2 finished tasks



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 3

4 5 6 7 SIZE -1

thread 1thread 0 1 2 finished tasks



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

3

4 5 6 7 SIZE -1

thread 1thread 0 1 20 finished tasks



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

3

4 5 6 7 SIZE -1

thread 1thread 0 1 20 finished tasks



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

34

5 6 7 SIZE -1

thread 1thread 0 1 20 finished tasks



Work stealing - global implicit worklist

• How to implement in a compiler:

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}



Work stealing - global implicit worklist

• How to implement in a compiler:

void parallel_loop(...) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Replicate code in a new function. Pass all needed variables as arguments. 
This creates SPMD parallelism.



Work stealing - global implicit worklist

• How to implement in a compiler:

move loop variable to be a global atomic variable

atomic_int x = 0;
void parallel_loop(...) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}



Work stealing - global implicit worklist

• How to implement in a compiler:

change loop bounds in new function to use a local variable using global variable.

atomic_int x = 0;
void parallel_loop(...) {

for (int local_x = x++; 
local_x < SIZE; 
local_x = x++) {

// dynamic work based on x
}

}

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}



Work stealing - global implicit worklist

• How to implement in a compiler:

atomic_int x = 0;
void parallel_loop(...) {

for (int local_x = x++;
local_x < SIZE; 
local_x = x++) {

// dynamic work based on x
}

}

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

These must be
atomic updates!

change loop bounds in new function to use a local variable using global variable.



Work stealing - global implicit worklist

• How to implement in a compiler:

Spawn threads in original function and join them afterwards

atomic_int x = 0;
void parallel_loop(...) {

for (int local_x = x++; 
local_x < SIZE; 
local_x = x++) {

// dynamic work based on x
}

}

void foo() {
...
for (t = 0; x < THREADS; t++) {
spawn(parallel_loop);

}
join();
...

}



Work stealing - global implicit worklist

• How to implement in a compiler:

Are we finished?

atomic_int x = 0;
void parallel_loop(...) {

for (int local_x = x++; 
local_x < SIZE; 
local_x = x++) {

// dynamic work based on x
}

}

void foo() {
...
for (t = 0; x < THREADS; t++) {
spawn(parallel_loop);

}
join();
...

}



Work stealing - global implicit worklist

• How to implement in a compiler:

Are we finished?

atomic_int x = 0;
void parallel_loop(...) {

for (int local_x = x++; 
local_x < SIZE; 
local_x = x++) {

// dynamic work based on x
}

}

void foo() {
...
for (t = 0; x < THREADS; t++) {
spawn(parallel_loop);

}
join();
x = 0;
...

}



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 1 2 3 4 5 6 7 SIZE -1

thread 1thread 0

x: 0
0 - local_x - UNDEF
1 - local_x - UNDEF

atomic_int x = 0;
void parallel_loop(...) {

for (int local_x = x++; 
local_x < SIZE; 
local_x = x++) {

// dynamic work based on x
}

}



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 1 2 3 4 5 6 7 SIZE -1

atomic_int x = 0;
void parallel_loop(...) {

for (int local_x = x++; 
local_x < SIZE; 
local_x = x++) {

// dynamic work based on x
}

}

x: 2
0 - local_x - 0
1 - local_x - 1

thread 1thread 0



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 1

2 3 4 5 6 7 SIZE -1

atomic_int x = 0;
void parallel_loop(...) {

for (int local_x = x++; 
local_x < SIZE; 
local_x = x++) {

// dynamic work based on x
}

}

x: 2
0 - local_x - 0
1 - local_x - 1

thread 1thread 0



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0

2 3 4 5 6 7 SIZE -1

thread 1thread 0

atomic_int x = 0;
void parallel_loop(...) {

for (int local_x = x++; 
local_x < SIZE; 
local_x = x++) {

// dynamic work based on x
}

}

x: 2
0 - local_x - 0
1 - local_x - 1



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0

2 3 4 5 6 7 SIZE -1

thread 1thread 0

atomic_int x = 0;
void parallel_loop(...) {

for (int local_x = x++; 
local_x < SIZE; 
local_x = x++) {

// dynamic work based on x
}

}

x: 3
0 - local_x - 0
1 - local_x - 2



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 2

3 4 5 6 7 SIZE -1

atomic_int x = 0;
void parallel_loop(...) {

for (int local_x = x++; 
local_x < SIZE; 
local_x = x++) {

// dynamic work based on x
}

}

x: 3
0 - local_x - 0
1 - local_x - 2

thread 1thread 0



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0

3 4 5 6 7 SIZE -1

thread 1thread 0

atomic_int x = 0;
void parallel_loop(...) {

for (int local_x = x++; 
local_x < SIZE; 
local_x = x++) {

// dynamic work based on x
}

}

x: 3
0 - local_x - 0
1 - local_x - 2



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0

3 4 5 6 7 SIZE -1

thread 1thread 0

atomic_int x = 0;
void parallel_loop(...) {

for (int local_x = x++; 
local_x < SIZE; 
local_x = x++) {

// dynamic work based on x
}

}

x: 4
0 - local_x - 0
1 - local_x - 3



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 3

4 5 6 7 SIZE -1

atomic_int x = 0;
void parallel_loop(...) {

for (int local_x = x++; 
local_x < SIZE; 
local_x = x++) {

// dynamic work based on x
}

}

x: 4
0 - local_x - 0
1 - local_x - 3

thread 1thread 0



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

3

4 5 6 7 SIZE -1

atomic_int x = 0;
void parallel_loop(...) {

for (int local_x = x++; 
local_x < SIZE; 
local_x = x++) {

// dynamic work based on x
}

}

thread 1thread 0

x: 4
0 - local_x - 0
1 - local_x - 3



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

3

4 5 6 7 SIZE -1

atomic_int x = 0;
void parallel_loop(...) {

for (int local_x = x++; 
local_x < SIZE; 
local_x = x++) {

// dynamic work based on x
}

}

thread 1thread 0

x: 5
0 - local_x - 4
1 - local_x - 3



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

34

5 6 7 SIZE -1

atomic_int x = 0;
void parallel_loop(...) {

for (int local_x = x++; 
local_x < SIZE; 
local_x = x++) {

// dynamic work based on x
}

}

x: 5
0 - local_x - 4
1 - local_x - 3

thread 1thread 0



End example



Next implementation



Work stealing - local worklists

• More difficult to implement: typically requires concurrent data-
structures

• low contention on local data-structures

• potentially better cache locality



• local worklists: divide tasks into different worklists for each thread

0 1 2 3

thread 1thread 0

Work stealing - local worklists



• local worklists: divide tasks into different worklists for each thread

0 1 3 4

thread 1thread 0

worklist 0 worklist 1

Work stealing - local worklists



• local worklists: divide tasks into different worklists for each thread

0

1

3

4

thread 1thread 0

worklist 0 worklist 1

Work stealing - local worklists



• local worklists: divide tasks into different worklists for each thread

0

1 4

thread 1thread 0

worklist 0 worklist 1

Work stealing - local worklists



• local worklists: divide tasks into different worklists for each thread

0

1 4

thread 1thread 0

worklist 0 worklist 1

Work stealing - local worklists



• local worklists: divide tasks into different worklists for each thread

0

1

4

thread 1thread 0

worklist 0 worklist 1

Work stealing - local worklists



• local worklists: divide tasks into different worklists for each thread

0

1

thread 1thread 0

worklist 0 worklist 1

Work stealing - local worklists



• local worklists: divide tasks into different worklists for each thread

0

1

thread 1thread 0

worklist 0 worklist 1

steal!

Work stealing - local worklists



• local worklists: divide tasks into different worklists for each thread

0 1

thread 1thread 0

worklist 0 worklist 1

Work stealing - local worklists



• How to implement in a compiler:

Work stealing - local worklists

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}



• How to implement in a compiler:

Work stealing - local worklists

void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Make a new function, taking any variables used in loop body as args. Additionally take in a thread id

void parallel_loop(..., int tid) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}



• How to implement in a compiler:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
...

}

Make a global array of concurrent queues

void parallel_loop(..., int tid) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}



• How to implement in a compiler:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
int chunk = SIZE/NUM_THREADS;
for (x = 0; x < SIZE; x++) {
int tid = x / chunk;
cq[tid].enqueue(x);

}
...

}

initialize queues in main thread

void parallel_loop(..., int tid) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}



• How to implement in a compiler:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
int chunk = SIZE/NUM_THREADS;
for (x = 0; x < SIZE; x++) {
int tid = x / chunk;
cq[tid].enqueue(x);

}
...

}

initialize queues in main thread

0 1 2 3x

0 0 1 1tid

NUM_THREADS = 2;
SIZE = 4;
CHUNK = 2;



• How to implement in a compiler:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
int chunk = ceil(SIZE/NUM_THREADS);
for (x = 0; x < SIZE; x++) {
int tid = x / chunk;
cq[tid].enqueue(x);

}
...

}

initialize queues in main thread

0 1 2 3x

0 0 1 1tid

NUM_THREADS = 2;
SIZE = 4;
CHUNK = 2;



• How to implement in a compiler:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
int chunk = ceil(SIZE/NUM_THREADS);
for (x = 0; x < SIZE; x++) {
int tid = x / chunk;
cq[tid].enqueue(x);

}
...

}

initialize queues in main thread

0 1 2 3x

0 0 1 1tid

NUM_THREADS = 2;
SIZE = 4;
CHUNK = 2;

use ceiling division to make sure all work gets assigned
to a valid thread



• How to implement in a compiler:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
int chunk = ceil(SIZE/NUM_THREADS);
for (x = 0; x < SIZE; x++) {
int tid = x / chunk;
cq[tid].enqueue(x);

}
...

}

loop bounds in parallel function

void parallel_loop(..., int tid) {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}
}



• How to implement in a compiler:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
int chunk = ceil(SIZE/NUM_THREADS);
for (x = 0; x < SIZE; x++) {
int tid = x / chunk;
cq[tid].enqueue(x);

}
...

}

loop bounds in parallel function, enqueue stores result in argument, returns false if queue is empty.

void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
}



• How to implement in a compiler:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
int chunk = ceil(SIZE/NUM_THREADS);
for (x = 0; x < SIZE; x++) {
int tid = x / chunk;
cq[tid].enqueue(x);

}
...

}

new global variable to track the number of threads that are finished

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;

}



• How to implement in a compiler:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
int chunk = ceil(SIZE/NUM_THREADS);
for (x = 0; x < SIZE; x++) {
int tid = x / chunk;
cq[tid].enqueue(x);

}
...

}

Steal values from threads that are not finished

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != num_threads) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}



• How to implement in a compiler:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
int chunk = ceil(SIZE/NUM_THREADS);
for (x = 0; x < SIZE; x++) {
int tid = x / chunk;
cq[tid].enqueue(x);

}
for (t = 0; t < NUM_THREADS; t++) {

spawn(parallel_loop(..., t)
}
join();
finished_threads = 0;
...

} launch threads, join, reinitialize

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}



thread 1thread 0

Work stealing - local worklists

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

0 1 3 4

worklist 0 worklist 1



thread 1thread 0

Work stealing - local worklists

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

0 1 3 4

worklist 0 worklist 1



thread 1thread 0

Work stealing - local worklists

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

0

1

3

4

worklist 0 worklist 1



thread 1thread 0

Work stealing - local worklists

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

0

1 4

worklist 0 worklist 1



thread 1thread 0

Work stealing - local worklists

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

0

1 4

worklist 0 worklist 1



thread 1thread 0

Work stealing - local worklists

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

0

1

4

worklist 0 worklist 1



Work stealing - local worklists

0

1

worklist 0 worklist 1

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

thread 1thread 0



Work stealing - local worklists

0

1

worklist 0 worklist 1

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

thread 1thread 0

finished_threads: 1



Work stealing - local worklists

0

1

worklist 0 worklist 1

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

thread 1thread 0

finished_threads: 1



Work stealing - local worklists

0

1

worklist 0 worklist 1

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

thread 1thread 0

finished_threads: 1



Work stealing - local worklists

0

1

worklist 0 worklist 1

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

thread 1thread 0

finished_threads: 1



Work stealing - local worklists

0 1

worklist 0 worklist 1

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

thread 1thread 0

finished_threads: 1



Work stealing - local worklists

1

worklist 0 worklist 1

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

thread 1thread 0

finished_threads: 1



Work stealing - local worklists

1

worklist 0 worklist 1

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

thread 1thread 0

finished_threads: 1



Work stealing - local worklists

1

worklist 0 worklist 1

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

thread 1thread 0

finished_threads: 2



Work stealing - local worklists

1

worklist 0 worklist 1

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

thread 1thread 0

finished_threads: 2



Work stealing - local worklists

1

worklist 0 worklist 1

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

thread 1thread 0

finished_threads: 2



Work stealing - local worklists

worklist 0 worklist 1

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

thread 1thread 0

finished_threads: 2



Work stealing - local worklists

worklist 0 worklist 1

atomic_int finished_threads = 0;
void parallel_loop(..., int tid) {

int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished_threads++;
while (finished_threads != NUM_THREADS) {
target = //select a random thread
if (cq[target].dequeue(&task))

// dynamic work based on task
}

}

thread 1thread 0

finished_threads: 2



• How to implement in a compiler:

Work stealing - local worklists

concurrent_queues cq[NUM_THREADS];
void foo() {
...
int chunk = ceil(SIZE/NUM_THREADS);
for (x = 0; x < SIZE; x++) {
int tid = x / chunk;
cq[tid].enqueue(x);

}
for (t = 0; t < NUM_THREADS; t++) {

spawn(parallel_loop(..., t)
}
join();
finished_threads = 0;
...

}

Final note: initializing the worklists may become 
a bottleneck. Amdahl's law 

Can be made parallel using regular parallelism 
constructs



Summary

• Many ways to parallelize DOALL loops
• Independent iterations are key to giving us this freedom!

• Some are more complicated than others.
• Local worklists require concurrent data structures
• Global worklist requires read-modify-write

• Compiler implementation can enable rapid exploration and 
experimentation.



Next class

• Topics:
• Compiling to relaxed memory models


