CSE211: Compiler Design

Nov. 8, 2021

* Topic: parallelizing DOALL loops

worklist 0 worklist 1

0 1 3 4

N

thread O thread 1

Announcements

* Homework 3 is due next Wednesday
* 1 more office hour before then on Thursday
* Feel free to share results (not code!) on slack

e Part 2 uses a lot of memory. Feel free to reduce the array size, but try not to
reduce it too far.

* Friday’s class will be canceled
* Work on homework 3 and project/paper proposals

e Guest lecture for Nov. 22
e Aviral Goel will talk about laziness in R

Paper and project proposals

* Due on Nov. 14
* Thanks to everyone who has messaged me so far!
* | will try to have grades for HW2 and midterm by then

CSE211: Compiler Design

Nov. 8, 2021

* Topic: Topic: parallelizing DOALL loops

worklist 0 worklist 1

0 1 3 4

N

thread O thread 1

Implementing SMP parallelism in a compiler

* Where to do it?
* High-level: DSL, Python, etc.
* Mid-level: C/C++
* Low-level: LLVM-IR
* ISA: e.g. x86

Implementing SMP parallelism in a compiler

* Where to do it?
* High-level: DSL, Python, etc.
* Mid-level: C/C++
* Low-level: LLVM-IR
* ISA: e.g. x86

Tradeoffs at all levels

Implementing SMP parallelism in a compiler

e Where to do it?
* High-level: DSL, Python, etc.
* Mid-level: C/C++

* Low-level: LLVM-IR Here you’ve lost information about for loops, but SSA provides
a nice foundation for analysis
« ISA: e.g. x86 J for analy

Implementing SMP parallelism in a compiler

e Wheretodo it?

° i - .
ngh level: DSL, Python’ etc. Good frameworks available for managing threads (C++, OpenMP).
 Mid-level: C/ C++ Good tooling for analysis and codegen clang visitors, pycparser, etc.

* Low-level: LLVM-IR
* ISA: e.g. x86

Implementing SMP in a compiler

e Wheretodo it?

* High-level: DSL, Python, etc. In many cases, DSLs compiler down to, or link to C/C++:
) DNN libraries, Graph analytic DSLs, Numpy.
* Mid-level: C/C++

 Low-level: LLVM-IR Some DSLs compile to LLVM: Numba
* ISA: e.g. x86

Implementing SMP parallelism in a compiler

* Where to do it?
* High-level: DSL, Python, etc.
* Mid-level: C/C++
* Low-level: LLVM-IR
* ISA: e.g. x86

We will assume this level for the lecture

Regular Parallel Loops

* How to implement in a compiler:

void foo() {

for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time

}

Regular Parallel Loops

* How to implement in a compiler:

void foo() {

for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time

}

SIZE -1

Regular Parallel Loops

* How to implement in a compiler:

void foo() {

for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time

}

, say SIZE / NUM_THREADS = 4

0 1 2 3 4 5 6 7 SIZE -1

Regular Parallel Loops

* How to implement in a compiler:

void foo() {

for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time

}

, say SIZE / NUM_THREADS = 4

Thread O Thread 1 Thread N

0 1 2 3 4 5 6 7 SIZE -1

Regular Parallel Loops

* How to implement in a compiler:

void foo() {

for (int x = 0; x < SIZE; x++) {
// Each iteration takes roughly
// equal time

}

make a new function with the for loop inside. Pass all needed variables as arguments. Take an extra argument for a thread id

Regular Parallel Loops

* How to implement in a compiler:

void foo() { void parallel loop(..., int tid) {
=—v7 7 for (x = 0; x < SIZE; x++) {

—F/—Fach—iteration—takes—roughly // work based on x

—//—egual—time }

—r }

}

make a new function with the for loop inside. Pass all needed variables as arguments. Take an extra argument for a thread id

Regular Parallel Loops

* How to implement in a compiler:

void foo() { void parallel loop(..., int tid) {
' =67 ; int chunk size = SIZE / NUM THREADS;
—//—Fach—iteration—takesroughly for (x = 0; x < SIZE; x++) {
77/ —equal—time // work based on x
—r }
e }
}

determine chunk size in new function

Regular Parallel Loops

* How to implement in a compiler:

void foo() { void parallel loop(..., int tid) {

=07 7 int chunk size = SIZE / NUM THREADS;

—//—Each—iteration—takes roughily int start = chunk size * tid;
—//—egqual—time int end = start + chunk size
—r for (x = start; x < end; x++) {
<. // work based on x
} }

}

Set new loop bounds

Regular Parallel Loops

* How to implement in a compiler:

void foo() { void parallel loop(..., int tid) {

for (int t = 0; t < NUM_THREADS; t++) { int chunk size = SIZE / NUM THREADS;

spawn(parallel loop(..., t)) int start = chunk size * tid;

} int end = start + chunk size

join(); for (x = start; x < end; x++) {
.« // work based on x
} }

}

Spawn threads

Regular Parallel Loops

* Example, 2 threads/cores, array of size 8

void parallel loop(..., int tid) {

int chunk size = SIZE / NUM THREADS;
int start = chunk size * tid;
0: start=0 1: start=4 int end = start + chunk size
for (x = start; x < end; x++) {
// work based on x
}
}

chunk size =4

0: end=4 1: end=8

thread O thread 1

Regular Parallel Loops

* Example, 2 threads/cores, array of size 8

void parallel loop(..., int tid) {

int chunk size = SIZE / NUM THREADS;
int start = chunk size * tid;
int end = start + chunk size
for (x = start; x < end; x++) {
// work based on x
}
}

chunk size = 4

O: start = 0 l: start

I
=

O: end = 4 l: end = 8

thread O thread 1

Regular Parallel Loops

* Example, 2 threads/cores, array of size 9

void parallel loop(..., int tid) {

int chunk size = SIZE / NUM THREADS;
int start = chunk size * tid;
0: start= ? 1: start= ? int end = start + chunk size
for (x = start; x < end; x++) {
// work based on x

chunk size = ?

O: end= ? l: end= ?

}

thread O thread 1 }

Regular Parallel Loops

* Example, 2 threads/cores, array of size 9

void parallel loop(..., int tid) {

int chunk size = SIZE / NUM THREADS;
int start = chunk size * tid;
int end = start + chunk size
for (x = start; x < end; x++) {
// work based on x

chunk size = 4

O: start = 0 l: start

I
=

O: end = 4 l: end = 8

}

thread O thread 1 }

Regular Parallel Loops

* Example, 2 threads/cores, array of size 9

void parallel loop(..., int tid) {

int chunk size = SIZE / NUM THREADS;

chunk size = 4 i _ _
- int start = chunk size * tid;

0: start = 0 1: start = 4 int end = start + chunk size;
if (tid == NUM THREADS - 1) {
O: end = 4 . = .
1: end 8 end += (end - SIZE);
}
= ; < s X++
thread O thread 1 for (x start; x end; x++) {

// work based on x

}

Regular Parallel Loops

last thread gets more work

* Example, 2 threads/cores, array of size 9

void parallel loop(..., int tid) {

int chunk size = SIZE / NUM THREADS;

chunk size = 4 i _ _
- int start = chunk size * tid;

0: start = 0 1: start = 4 int end = start + chunk size;
if (tid == NUM THREADS - 1) {
O: end = 4 . = .
1: end 2 end += (end - SIZE);
}
= ; < s X++
thread O thread 1 for (x start; x end; x++) {

// work based on x

}

Regular Parallel Loops

* Example, 2 threads/cores, array of size 9 ceiling division

void parallel loop(..., int tid) {

int chunk size =

chunk size = 4
- (SIZE+(NUM THREADS-1))/NUM THREADS;

0: start = 0 1: start = 4 int start = chunk size * tid;
_ int end = start + chunk size
O: end = 4 l: end = 8 —
for (x = start; x < end; x++) {
// work based on x
thread O thread 1 }

Regular Parallel Loops

* Example, 2 threads/cores, array of size 9

out of bounds

void parallel loop(..., int tid) {

int chunk size =
(SIZE+(NUM THREADS-1))/NUM THREADS;
0: start = 0 1: start = 5 int start = chunk size * tid;
int end = start + chunk size
for (x = start; x < end; x++) {
// work based on x

chunk size = 5

0: end = 5 1: end = 10

thread O thread 1 }

Regular Parallel Loops

* Example, 2 threads/cores, array of size 9

out of bounds

void parallel loop(..., int tid) {

int chunk size =
(SIZE+(NUM THREADS-1))/NUM THREADS;
0: start = 0 1: start = 5 int start = chunk size * tid;
int end =
min(start+chunk size, SIZE)
for (x = start; x < end; x++) {
// work based on x

chunk size = 5

0: end = 5 1: end = 10

thread O thread 1)

}

Regular Parallel Loops

* Example, 2 threads/cores, array of size 9

0 1 2 3 4 5
chunk size = 5
O: start = 0 l: start =
0: end = 5 l1: end = 9
thread O thread 1

most threads do equal amounts
of work, last thread may do less.

void parallel loop(..., int tid) {

}

int chunk size =
(SIZE+(NUM THREADS-1))/NUM THREADS;
int start = chunk size * tid;
int end =
min(start+chunk size, SIZE)
for (x = start; x < end; x++) {
// work based on x

}

Good for SMP parallelism

thread O

CcO

L1
cache

thread 1

C1

L1
cache

SMP parallelism

stays in thread 0’s
L1 cache

stays in thread 1’s
L1 cache

L2 cache

DRAM

What about streaming multiprocessors

(GPUs)?

one streaming
multiprocessor
contains many
small Compute
Elements (CE)

streaming multiprocessor

is this partition good for GPUs??

CEs Can load adjacent

memory locations
simultaneously.

thread O thread 1 load/

store

CEO CE1l unit
L1 cache

CEs execute iterations

synchronously

DRAM

What about streaming multiprocessors

(GPUs)?

one streaming
multiprocessor
contains many
small Compute
Elements (CE)

streaming multiprocessor

CEs Can load adjacent

memory locations
simultaneously.

thread O thread 1 load/

store

CEO CE1l unit
L1 cache

CEs execute iterations

synchronously

DRAM

ITER O:

is this partition good for GPUs??

What about streaming multiprocessors

(GPUs)?

one streaming
multiprocessor
contains many
small Compute
Elements (CE)

streaming multiprocessor

CEs Can load adjacent

memory locations
simultaneously.

thread O thread 1 load/

store

CEO CE1l unit
L1 cache

CEs execute iterations

synchronously

DRAM

ITER O:

is this partition good for GPUs??

not adjacent, so the loads have to be serialized

What about streaming multiprocessors

(GPUs)?

one streaming
multiprocessor
contains many
small Compute
Elements (CE)

streaming multiprocessor

CEs Can load adjacent

memory locations
simultaneously

thread O thread 1 load/

store

CEO CE1l unit
L1 cache

DRAM

ITER O:

What about a striped pattern?

What about streaming multiprocessors
(GPUs)?

: streaming multiprocessor
one streaming

multiprocessor

What about a striped pattern?

contains many thread 0 thread 1
small Compute load/ 2 3 4 5
Elements (CE) CEO CE1 SLEcr)lirte

CEs Can load adjacent ITER O: 0 L

memory locations

simultaneously L1 cache

adjacent memory locations can be loaded at the
same time!

DRAM

SMX
Instruction Cache

Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch
RS RS R 3 s R3 £

Register File (65,536 x 32-bit GK110) | (131,072 x32-bit GK210)

4 4 4+ I3 I 3 3 3+ 3 3 33 3
Core Core Core

-

Lo/st SFU Core Core Core Core Core Core

SFU Core Core Core - Core Core Core
SFU Core Core Core - Core Core Core
SFU Core Core Core - Core Core Core
SFU Core Core Core - Core Core
SFU Core Core Core - Core Core
SFU Core Core Core - Core Core
SFU Core Core Core - Core Core
SFU Core Core Core - Core Core
SFU Core Core Core - Core Core
SFU Core Core Core - Core Core
SFU Core Core Core - Core Core
SFU Core Core Core - Core Core
SFU Core Core Core - Core Core
SFU [Core Core Core - Core Core
Lo/sT SFU Core Core Core - Core Core

R 3 ‘Interconnect Network: :
(64 KB Shared Memory / L1 Cache GK110) | (128 KB Shared Memory / L1 Cache GK210)

48 KB Read-Only Data Cache

(2]
S
)

Core Core

[
°
)

Core Core

(2]
°
@

Core Core

[2)
o
3
2]
o
a

Core Core

o
[~}
)
(<)
<
o

Core Core

Core Core

(2]
9
)

Core Core

(2]
=
C

Core Core

g

g

Core Core

o
3
[2)
-4
o

Core Core

o
E
(<)
°
3

()
]
o

Core Core

(<)
o
a

Core Core Kepler architecture

Core Core

Core Core

[2)
o
3

From:
https://www.nvidia.com/content/dam
/en-zz/Solutions/Data-Center/tesla-
product-literature/NVIDIA-Kepler-

= == GK110-GK210-Architecture-

Tex Tex Whitepaper.pdf

Core Core

3
o

How to compiler for GPUs?

* Example, 2 threads/cores, array of size 8.
Change code for a GPU

thread O

thread 1

void parallel loop(..., int tid) {

}

int chunk size = SIZE / NUM THREADS;

int start = chunk size * tid;

int end = start + chunk size;

for (x = tid; x < SIZE; x+=NUM THREADS) {

}

// work based on x

How to compiler for GPUs?

* Example, 2 threads/cores, array of size 8

ITERO

thread O

thread 1

void parallel loop(..., int tid) {

}

for (x = tid; x < SIZE; x+=NUM THREADS) ({

}

// work based on x

How to compiler for GPUs?

* Example, 2 threads/cores, array of size 8

0 1 4
ITERO

X: 2 X: 3

thread O thread 1

void parallel loop(..., int tid) {

}

for (x = tid; x < SIZE; x+=NUM THREADS) ({

}

// work based on x

How to compiler for GPUs?

* Example, 2 threads/cores, array of size 8

0 1 4
ITER 1

X: 2 X: 3

thread O thread 1

void parallel loop(..., int tid) {

}

for (x = tid; x < end; x+=NUM THREADS) ({

}

// work based on x

Demo

Takeaways:

* Chunk data for SMP parallelism. Cores have disjoint L1 caches.

e Stride data for SM (GPU) parallelism, adjacent threads can more
efficiently access adjacent memory.

* Easily compute bounds using runtime variables
 SIZE, NUM THREADS, THREAD ID

* Create one function parameterized by thread id (SPMD parallelism)

Irregular parallelism in loops

* Independent iterations have different amount of work to compute
* Threads with longer tasks take longer to compute.

e Threads with shorter tasks are underutilized.

for (x = 0; x < SIZE; x++) { example: regular (or embarrassingly)
for (y = 0; y < SIZE; y++) { parallelism:
a[x,y] = b[x,y] + ¢c[x,V]; each x iteration performs the same

} amount of work

}

Irregular parallelism in loops

* Independent iterations have different amount of work to compute

* Threads with longer tasks take longer to compute.

e Threads with shorter tasks are underutilized.

for (x = 0; x < SIZE; x++) { irregular (or unbalanced) parallelism:
for (y = 0; y < x; y++) { each x iteration performs different
a[x,y] = b[x,y] + ¢c[x,V]; amount of work.

}
}

Irregular parallelism in loops

e Calculate imbalance cost if x is chunked:
* Thread 1 takes iterations O - SIZE/2
* Thread 2 takes iterations SIZE/2 - SIZE

for (x = 0; x < SIZE; x++) {
for (y = 0; y < x; y++) {
a[x,y] = b[x,y] + c[x,Y];
}
}

Irregular parallelism in loops

Calculate how much total work:
e Calculate imbalance cost if x is chunked: o

* Thread 1 takes iterations O - SIZE/2 total work = Z n
* Thread 2 takes iterations SIZE/2 - SIZE n=0

for (x = 0; x < SIZE; x++) {
for (y = 0; y < x; y++) {
a[x,y] = b[x,y] + c[x,Y];
}
}

Irregular parallelism in loops

Calculate how much total work:
e Calculate imbalance cost if x is chunked: o

* Thread 1 takes iterations O - SIZE/2 total work = z n
* Thread 2 takes iterations SIZE/2 - SIZE n=0

Calculate work done by first thread:

for (x = 0; x < SIZE; xt++) { SIZE /2
for (y = 0; y < x; y++) { t1l work = Z n
a[XIY] = b[XIY] + C[XIY]; n=0

}

}

Irregular parallelism in loops

Calculate how much total work:
e Calculate imbalance cost if x is chunked: o

* Thread 1 takes iterations O - SIZE/2 total work = Z n
* Thread 2 takes iterations SIZE/2 - SIZE n=0

Calculate work done by second thread:

for (x = 0; x < SIZE; x++) { SIZE /2
for (y = 0; v < x; y++) { tl_work = Z n
a[XIY] = b[XIY] + C[XIY]; n=0
}
} Calculate work work done by first thread:

t2_work = total_work - t1_work

Irregular parallelism in loops

Calculate how much total work:

Example: SIZE = 64 SIZE

total _work = Z n
total_work = 2016 —
tl _work = 496

t2_work = 1520
Calculate work done by second thread:

t2 does ~“3x more work than t1
SIZE/2

Only provides ~1.3x speedup tl_work = Z n

n=0

Potential solution:
Have T1 do only % of the iterations

Gives a better speedup of 1.77x

Calculate work work done by first thread:

t2_work = total_work - t1_work

Doesn’t always work as loop bounds are not always
statically known!

Demo

Where does irregular parallelism show up?

10
6) * .l Ll
% 10 - Tyler Sorensen
O
y Computer Science Researcher
g Assistant Professor at UC Santa Cruz in 2020
— 4
o 10
j -
)]
0
=
= 2
= -
107 «
- B .
0 e ——- - Following
10 0 2 4 DN Lindsey Kuper | |
10 10 10 10
I n Deg ree Mommy; blogger. CS professor at (PL, distributed systems, verification).

"“Permit yourself to open a book and start reading from anywhere.”

(a) Twitter In-Degree

from “PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs”, OSDI 2012

o) Following

Barack Obama &

Dad, husband, President, citizen.

* Vertex programming model
iterates over each node in

parallel.

* Each node pulls in values
from neighbors

Number of Vertices
o

10
100 ' -
10° 10° 10* 10° Similar to flow analysis!
In Degree
(a) Twitter In-Degree

from “PowerGraph: Distributed Graph- 7 . - ——— -]
Parallel Computation on Natural Graphs”, : s o
0SDI 2012 (3 G

Barack Obama &

Dad, husband, President, citizen.

Sparse Neural Nets

from: “A PROGRAMMABLE APPROACH TO
MODEL COMPRESSION”. arxiv 2019.

Top-1 Test Accuracy (%)

VGG-19 Filter Pruning (CIFAR-10)

100 :
W

—— Condensa Compression AcE. T . R
807 —s— Throughput (fps) : 3500
— 3000
— 2500
— 2000
— 1500
1000

— 500

0.0 0.2 0.4 0.6 0.8 1.0

Sparsity Ratio

Throughput (fps)

How can we deal with load imbalance?

* Great research question! Changes per domain/architecture/input etc.

Work stealing

* Tasks are dynamically assigned to threads.

Work stealing - global implicit worklist

* Pros
e Simple to implement

* Cons:
* High contention on global counter
* Potentially bad memory locality.

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

cannot color initially!

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

0 1 2 3 4 5 6 7 SIZE -1

thread O thread 1

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

2 3 4 5 6 7 SIZE -1

thread O thread 1

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

Dynamically take the next iteration

thread 1 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

SIZE -1

thread O

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

SIZE -1

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

SIZE -1

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

SIZE -1

thread 1

finished tasks

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

SIZE -1

thread 1

finished tasks

Work stealing - global implicit worklist

* How to implement in a compiler:

void foo() {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}

Work stealing - global implicit worklist

* How to implement in a compiler:

void foo() { void parallel loop(...) {
—for—(x—=0;—=x<S5IZE;—=x+H)—< for (x = 0; x < SIZE; x++) {
H—dynamie—work—based—on—=x% // dynamic work based on x
—r }
}
}

Replicate code in a new function. Pass all needed variables as arguments.
This creates SPMD parallelism.

Work stealing - global implicit worklist

* How to implement in a compiler:

atomic_int x = 0;

id f
void foo() { void parallel loop(...) {

—for—(x—=0;—=x<S5IZE;—=x+H)—<
i’ _ for (x = 0; x < SIZE; x++) {
dynamice—work based—on—=
77 Gy // dynamic work based on x
; }
} }

move loop variable to be a global atomic variable

Work stealing - global implicit worklist

* How to implement in a compiler:

atomic_int x = 0;

id f
void foo() { void parallel loop(...) {

/7 ,],,: . e] ' i for (int local x = x++;
o local x < SIZE;
B local x = x++) {
} // dynamic work based on
}
}

change loop bounds in new function to use a local variable using global variable.

Work stealing - global implicit worklist

* How to implement in a compiler:

atomic_int x = 0;

id f
void foo() { void parallel loop(...) {

—for(x=0;—x<STFE;—=x+H)—+< .
., . for (int local x = x++;
dynmamic—work basedon—=x —
T local x < SIZE;
local x = x++) {
}

// dynamic work based on

change loop bounds in new function to use a local variable using global variable.

These must be
atomic updates!

Work stealing - global implicit worklist

* How to implement in a compiler:

void foo() {
atomic_int x = 0;

for (t = 0; x < THREADS; t++) { void parallel loop(...) {
spawn (parallel loop);
} for (int local x = x++;
join(); local x < SIZE;
local x = x++) {

// dynamic work based on

Spawn threads in original function and join them afterwards

Work stealing - global implicit worklist

* How to implement in a compiler:

void foo() {
atomic_int x = 0;

for (t = 0; x < THREADS; t++) { void parallel loop(...) {
spawn (parallel loop);
} for (int local x = x++;
join(); local x < SIZE;
local x = x++) {

// dynamic work based on x

Are we finished?

Work stealing - global implicit worklist

* How to implement in a compiler:

void foo() {
atomic_int x = 0;

for (t = 0; x < THREADS; t++) { void parallel loop(...) {
spawn (parallel loop);
} for (int local x = x++;
join(); local x < SIZE;
x = 0; local x = x++) {
} // dynamic work based on x
}
}

Are we finished?

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

x: 0
0 - local x - UNDEF
1l - local x - UNDEF

X++;
SIZE;

0] 1 3 | 4 SIZE -1
atomic_int x = 0;
void parallel loop(...) {
for (int local x
local x
thread 0 thread 1 local x

n A

x++) {

// dynamic work based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

0] 1 3 | 4 SIZE -1
atomic_int x = 0;
void parallel loop(..
for (int local x =
local x <
thread 0 thread 1 local_x =

// dynamic work

X: 2
0 - local x - 0
l - local x -1

) A
X++;

SIZE;
x++) {

based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

3 4 SIZE -1
atomic_int x = 0;
void parallel loop(..
1
for (int local x =
local x <
thread 1 local x =

// dynamic work

X: 2
0 - local x - 0
l - local x -1

) A
X++;

SIZE;
x++) {

based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

3 4 SIZE -1
atomic_int x = 0;
void parallel loop(..
for (int local x =
local x <
thread 1 _CeEL T

// dynamic work

X: 2
0 - local x - 0
l - local x -1

) A
X++;

SIZE;
x++) {

based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

3 4 SIZE -1
atomic_int x = 0;
void parallel loop(..
for (int local x =
local x <
thread 1 _CeEL T

// dynamic work

x: 3
0 - local x - 0
l - local x - 2

) A
X++;

SIZE;
x++) {

based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

3 4 SIZE -1
atomic_int x = 0;
void parallel loop(..
2
for (int local x =
local x <
thread 1 local x =

// dynamic work

x: 3
0 - local x - 0
l - local x - 2

) A
X++;

SIZE;
x++) {

based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

3 4 SIZE -1
atomic_int x = 0;
void parallel loop(..
for (int local x =
local x <
thread 1 _CeEL T

// dynamic work

x: 3
0 - local x - 0
l - local x - 2

) A
X++;

SIZE;
x++) {

based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

3 4 SIZE -1
atomic_int x = 0;
void parallel loop(..
for (int local x =
local x <
thread 1 _CeEL T

// dynamic work

x: 4
0 - local x - 0
l - local x - 3

) A
X++;

SIZE;
x++) {

based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

4 SIZE -1
atomic_int x = 0;
void parallel loop(..
3
for (int local x =
local x <
thread 1 local x =

// dynamic work

x: 4
0 - local x - 0
l - local x - 3

) A
X++;

SIZE;
x++) {

based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

4 SIZE -1
atomic_int x = 0;
void parallel loop(..
3
for (int local x =
local x <
thread 1 _CeEL T

// dynamic work

x: 4
0 - local x - 0
l - local x - 3

) A
X++;

SIZE;
X++) {

based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

4 SIZE -1
atomic_int x = 0;
void parallel loop(..
3
for (int local x =
local x <
thread 1 _CeEL T

// dynamic work

X: 5
0 - local x - 4
l - local x - 3

) A
X++;

SIZE;
X++) {

based on x

Work stealing - global implicit worklist

* Global worklist: threads take tasks (iterations) dynamically

thread O

SIZE -1

thread 1

atomic_int x = 0;
void parallel loop(...) {

}

for (int local x

}

local x
local x
// dynamic work

X: 5
0 - local x - 4
l - local x - 3

X++;
SIZE;
x++) {
based on x

n A

End example

Next implementation

Work stealing - local worklists

* More difficult to implement: typically requires concurrent data-
structures

* low contention on local data-structures

* potentially better cache locality

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

worklist O worklist 1

0 1 3 4

N

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

worklist O worklist 1

1 4

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

worklist O worklist 1

1 4

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

worklist O worklist 1

1 4

N

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

worklist O worklist 1

1

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

worklist O worklist 1

1

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

worklist O worklist 1

1

steal!

thread O thread 1

Work stealing - local worklists

e |local worklists: divide tasks into different worklists for each thread

worklist O worklist 1

thread O thread 1

Work stealing - local worklists

* How to implement in a compiler:

void foo() {

for (x = 0; x < SIZE; x++) {
// dynamic work based on x

}

Work stealing - local worklists

* How to implement in a compiler:

void foo() { void parallel loop(..., int tid) {
—for—(x—=0;—=x<S5IZE;—=x+H)—< for (x = 0; x < SIZE; x++) {
H—dynamie—work—based—on—=x% // dynamic work based on x
—r }
}
}

Make a new function, taking any variables used in loop body as args. Additionally take in a thread id

Work stealing - local worklists

* How to implement in a compiler:

concurrent queues cg[NUM THREADS]; void parallel loop(..., int tid) {
void foo() {
.« for (x = 0; x < SIZE; x++) {
—for(x—=03—% < SIZE;—=x+H)—< // dynamic work based on x
H—dynramie—work—based—on—=x% }
—r }

Make a global array of concurrent queues

Work stealing - local worklists

* How to implement in a compiler:

concurrent queues cg[NUM THREADS]; void parallel loop(..., int tid) {
void foo() {
.« for (x = 0; x < SIZE; x++) {
int chunk = SIZE/NUM THREADS; // dynamic work based on x
for (x = 0; x < SIZE; x++) { }
int tid = x / chunk; }
cg[tid].enqueue(x);

}

initialize queues in main thread

Work stealing - local worklists

* How to implement in a compiler:

concurrent queues cg[NUM THREADS];

void foo() {

int chunk = SIZE/NUM THREADS;

for (x = 0; x < SIZE; x++) {
int tid = x / chunk;
cg[tid].enqueue(x);

}

initialize queues in main thread

NUM_THREADS = 2;

SIZE = 4;
CHUNK = 2;
X 0 1 2 3

tid 0 0 1 1

Work stealing - local worklists

* How to implement in a compiler:

NUM_ THREADS = 2;
concurrent_queues cq[NUM THREADS]; -

. SIZE = 4;
void fOO() { CHUNK = 2;
int chunk = ceil (SIZE/NUM THREADS) ;
for (x = 0; x < SIZE; x++) {
int tid = x / chunk; X 0 1 2 3
cg[tid].enqueue(x);
}
} tid 0 0 1 1

initialize queues in main thread

Work stealing - local worklists

use ceiling division to make sure all work gets assigned

* How to implement in a compiler: t0 a valid thread

NUM_ THREADS = 2;
concurrent_queues cq[NUM THREADS]; -

. SIZE = 4;
void fOO() { CHUNK = 2;
int chunk = ceil (SIZE/NUM THREADS) ;
for (x = 0; x < SIZE; x++) {
int tid = x / chunk; X 0 1 2 3
cg[tid].enqueue(x);
}
} tid 0 0 1 1

initialize queues in main thread

Work stealing - local worklists

* How to implement in a compiler:

concurrent queues cg[NUM THREADS]; void parallel loop(..., int tid) {
void foo() {

.« for (x = 0; x < SIZE; x++) {
int chunk = ceil (SIZE/NUM THREADS) ; // dynamic work based on x

for (x = 0; x < SIZE; x++) { }
int tid = x / chunk; }
cg[tid].enqueue(x);
}
}

loop bounds in parallel function

Work stealing - local worklists

* How to implement in a compiler:

concurrent queues cq[NUM THREADS]; void parallel loop(..
void foo() {

., int tid) {

c o int task = 0;
int chunk = ceil (SIZE/NUM THREADS) ; while (cq[tid].dequeue(&task)) {

for (x = 0; x < SIZE; x++) { // dynamic work based on task
int tid = x / chunk; }
cg[tid].enqueue(x); }

}

loop bounds in parallel function, enqueue stores result in argument, returns false if queue is empty.

Work stealing - local worklists

* How to implement in a compiler:

concurrent _queues cg[NUM THREADS]; atomic_int finished threads = 0;
void foo() { void parallel loop(..., int tid) {
int chunk = ceil (SIZE/NUM THREADS) ; int task = 0;
for (x = 0; x < SIZE; x++) { while (cq[tid].dequeue(&task)) {
int tid = x / chunk; // dynamic work based on task
cg[tid].enqueue(x); }
} finished threads++;
}

new global variable to track the number of threads that are finished

Work stealing - local worklists

* How to implement in a compiler:

atomic_int finished threads = 0;

void parallel loop(..., int tid) {
concurrent queues cg[NUM THREADS]; -

void foo() { int task = 0;

while (cq[tid].dequeue(&task)) {

int chunk = ceil (SIZE/NUM THREADS) ; // dynamic work based on task

for (x = 0; x < SIZE; x++) {

int Fid = x / chunk; ;inished threads++;
cq[tid].enqueue(x); while (fInished_threads != num threads) {
} target = //select a random thread
if (cg[target].dequeue(&task))
} // dynamic work based on task
}

Steal values from threads that are not finished

Work stealing - local worklists

* How to implement in a compiler:

atomic_int finished threads = 0;
concurrent_queues cq[NUM_THREADS]; void parallel loop(..., int tid) {
void foo() {

int task = 0;

int chunk = ceil (SIZE/NUM THREADS) ; while (cg[tid].dequeue(&task)) {
for (x = 0; x < SIZE; x++) { // dynamic work based on task

int tid = x / chunk; }

cg[tid].enqueue(x); finished threads++;
} while (finished threads != NUM THREADS) ({
for (t = 0; t < NUM _THREADS; t++) { target = //select a random thread

spawn (parallel loop(..., t) if (cg[target].dequeue(&task))

} // dynamic work based on task
join(); }
finished threads = 0; }

} launch threads, join, reinitialize

Work stealing - local worklists

atomic_int finished threads = 0;
void parallel loop(..., int tid) {

worklist O worklist 1 int task = 0;
while (cq[tid].dequeue(&task)) {
0 1 3 4 // dynamic work based on task
}
finished threads++;
while (finished threads != NUM THREADS) ({

target = //select a random thread
if (cg[target].dequeue(&task))
// dynamic work based on task

thread O thread 1 }

Work stealing - local worklists

atomic_int finished threads = 0;
void parallel loop(..., int tid) {

worklist O worklist 1 int task = 0;
while (cq[tid].dequeue(&task)) {
0 1 3 4 // dynamic work based on task
}
finished threads++;
while (finished threads != NUM THREADS) ({

target = //select a random thread
if (cg[target].dequeue(&task))
// dynamic work based on task

thread O thread 1 }

Work stealing - local worklists

atomic_int finished threads = 0;
void parallel loop(..., int tid) {

worklist O worklist 1 int task = 0;
while (cq[tid].dequeue(&task)) {
1 4 // dynamic work based on task
}
finished threads++;
while (finished threads != NUM THREADS) {
0 3 T =
target = //select a random thread

if (cg[target].dequeue(&task))

// dynamic work based on task

thread O thread 1 }

Work stealing - local worklists

atomic_int finished threads = 0;
void parallel loop(..., int tid) {

worklist O worklist 1 int task = O

while (CIEICINGETUENE(REASK)) |

1 4 // dynamic work based on task
}
finished threads++;
while (finished threads != NUM THREADS) {
0 _ _
target = //select a random thread

if (cg[target].dequeue(&task))

// dynamic work based on task

thread O -)

Work stealing - local worklists

atomic_int finished threads = 0;
void parallel loop(..., int tid) {

worklist O worklist 1 int task = O

while (CIEICINGETUENE(REASK)) |

1 4 // dynamic work based on task
}
finished threads++;
while (finished threads != NUM THREADS) {
0 _ _
target = //select a random thread

if (cg[target].dequeue(&task))

// dynamic work based on task

thread O -)

Work stealing - local worklists

atomic_int finished threads = 0;
void parallel loop(..., int tid) {

worklist O worklist 1 int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task
}
finished threads++;
while (finished threads != NUM THREADS) {
0 4 - -
target = //select a random thread
if (cg[target].dequeue(&task))
// dynamic work based on task

thread O thread 1 }

Work stealing - local worklists

atomic_int finished threads = 0;
void parallel loop(..., int tid) {

worklist O worklist 1 int task = O

while (CIEICINGETUENE(REASK)) |

// dynamic work based on task

1
}
finished threads++;
while (finished threads != NUM THREADS) ({
0 target = //select a random thread

if (cg[target].dequeue(&task))
// dynamic work based on task

thread O -)

Work stealing - local worklists

finished threads: 1 atomic_int finished threads = 0;

void parallel loop(..., int tid) {

worklist 0 worklist 1 int task = 0;

while (cq[tid].dequeue(&task)) {
// dynamic work based on task

1
}
finished threads++;
0 while (finished threads != NUM THREADS) ({
target = //select a random thread

if (cg[target].dequeue(&task))
// dynamic work based on task

thread O -)

Work stealing - local worklists

finished threads: 1 atomic_int finished threads = 0;

void parallel loop(..., int tid) {

worklist 0 worklist 1 int task = 0;

while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}

finished threads++;

while (finished threads != NUM THREADS) {

0 target = //select a random thread
if (cg[target].dequeue(&task))
// dynamic work based on task

thread O -)

Work stealing - local worklists

finished threads: 1 atomic_int finished threads = 0;

void parallel loop(..., int tid) {

worklist 0 worklist 1 int task = 0;

while (cq[tid].dequeue(&task)) {
// dynamic work based on task

1
}
finished threads++;
while (finished threads != NUM THREADS) ({

° target = //select a random thread

if (cg[target].dequeue(&task))
thread O -)

// dynamic work based on task

Work stealing - local worklists

finished threads: 1 atomic_int finished threads = 0;

void parallel loop(..., int tid) {

worklist 0 worklist 1 int task = 0;

while (cq[tid].dequeue(&task)) {
// dynamic work based on task

1
}
finished threads++;
while (finished threads != NUM THREADS) ({
0 target = //select a random thread

if (cq[target].dequeue(&task))

// dynamic work based on task

thread O -)

Work stealing - local worklists

finished threads: 1 atomic_int finished threads = 0;
void parallel loop(..., int tid) {
worklist 0 worklist 1 int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished threads++;
0 1 while (finished threads != NUM THREADS) ({
target = //select a random thread

if (cg[target].dequeue(&task))

// dynamic work based on task
thread O -)

Work stealing - local worklists

finished threads: 1 atomic_int finished threads = 0;
void parallel loop(..., int tid) {
worklist 0 worklist 1 int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished threads++;
1 while (finished threads != NUM THREADS) ({
target = //select a random thread

if (cg[target].dequeue(&task))

// dynamic work based on task
thread O -)

Work stealing - local worklists

finished threads: 1 atomic_int finished threads = 0;
void parallel loop(..., int tid) {
worklist 0 worklist 1 int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished threads++;
1 while (finished threads != NUM THREADS) ({
target = //select a random thread

if (cg[target].dequeue(&task))

// dynamic work based on task
thread O -)

Work stealing - local worklists

finished threads: 2 atomic_int finished threads = 0;
void parallel loop(..., int tid) {
worklist 0 worklist 1 int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished threads++;
1 while (finished threads != NUM THREADS) ({
target = //select a random thread

if (cg[target].dequeue(&task))

// dynamic work based on task
thread O -)

Work stealing - local worklists

finished threads: 2 atomic_int finished threads = 0;
void parallel loop(..., int tid) {
worklist 0 worklist 1 int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished threads++;
1 while (finished threads != NUM THREADS) {
target = //select a random thread

if (cg[target].dequeue(&task))

// dynamic work based on task
thread O -)

Work stealing - local worklists

finished threads: 2 atomic_int finished threads = 0;
void parallel loop(..., int tid) {
worklist 0 worklist 1 int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished threads++;
1 while (finished threads != NUM THREADS) ({
target = //select a random thread

if (cg[target].dequeue(&task))

// dynamic work based on task
thread O -)

Work stealing - local worklists

finished threads: 2 atomic_int finished threads = 0;
void parallel loop(..., int tid) {
worklist 0 worklist 1 int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}

finished threads++;

while (finished threads != NUM THREADS) {

target = //select a random thread
if (cg[target].dequeue(&task))
// dynamic work based on task

thread O -)

Work stealing - local worklists

finished threads: 2 atomic_int finished threads = 0;
void parallel loop(..., int tid) {
worklist 0 worklist 1 int task = 0;
while (cq[tid].dequeue(&task)) {
// dynamic work based on task

}
finished threads++;
while (finished threads != NUM THREADS) ({

target = //select a random thread
if (cg[target].dequeue(&task))
// dynamic work based on task

thread O thread 1 }

Work stealing - local worklists

* How to implement in a compiler:

concurrent_queues cq[NUM THREADS];
void foo() {

int chunk = ceil (SIZE/NUM THREADS) ;
for (x = 0; x < SIZE; x++) {
int tid = x / chunk;
cg[tid].enqueue(x);
}
for (t = 0; t < NUM THREADS; t++) {
spawn (parallel loop(..., t)
}

join();
finished threads = 0;

Final note: initializing the worklists may become
a bottleneck. Amdahl's law

Can be made parallel using regular parallelism
constructs

Summary

* Many ways to parallelize DOALL loops

* Independent iterations are key to giving us this freedom!

* Some are more complicated than others.
* Local worklists require concurrent data structures
* Global worklist requires read-modify-write

* Compiler implementation can enable rapid exploration and
experimentation.

Next class

* Topics:
* Compiling to relaxed memory models

