CSE211: Compiler Design

Nov. 5, 2021

- Topic: restructuring loops

Announcements

- Homework 3 is due Nov. 17
- 1 more office hour before then (next Thursday)
- part 1 and 2: generating c code from python
- part 3: creating and checking z3 constraints

Paper/Project proposals

- Please start thinking about these.
- Message me for recommendations
- Tell me what you're interested in so we can find a good fit!
- Proposals due on Nov. 14 (less than 2 weeks)
- Please be pro-active about this. If you don't have one in mind, please send me an email with some of your interests ASAP
- Midterm is a good indicator for how the final will be.

CSE211: Compiler Design

Nov. 3, 2021

- Topic: restructuring loops

Review

- Compiler approach for checking if DOALL loops are safe to do in parallel
- What is a DOALL loop?
- What conditions are required for safety?

Review

- Creating constraints

```
for (i = 0; i < 128; i++) {
    a[i]= a[i]*2;
}
\[
\begin{array}{ll} 
& \text { two integers: } i_{\mathrm{x}}!=i_{\mathrm{y}} \\
& i_{\mathrm{x}}>=0 \\
& i_{\mathrm{x}}<128 \\
& i_{\mathrm{y}}>=0 \\
& i_{\mathrm{y}}<128 \\
\text { write-write conflict } & i_{\mathrm{x}}==i_{\mathrm{y}} \\
\text { read-write conflict } & i_{\mathrm{x}}==i_{\mathrm{y}}
\end{array}
\]
```


Review: another example

```
for (i = 0; i < 128; i++) {
    a[i%64]= a[i+64]*2;
}
```

```
two integers: \(i_{x}!=i_{y}\)
\(i_{\mathrm{x}}>=0\)
\(\mathrm{i}_{\mathrm{x}}<128\)
\(\mathrm{i}_{\mathrm{y}}>=0\)
\(\mathrm{i}_{\mathrm{y}}<128\)
```

push bounds
constraints

Review: another example

```
for (i = 0; i < 128; i++) {
    a[i%64]= a[i+64]*2;
}
```

```
    two integers: }\mp@subsup{i}{x}{
        i
        ix}<12
pushbounds i < i <=0
push bounds
constraints
```

write-write

Review: another example

```
for (i = 0; i < 128; i++) {
    a[i%64]= a[i+64]*2;
}
```

```
    two integers: }\mp@subsup{i}{x}{
    i ix >= 0
    ix}<<12
    i}\mp@subsup{\textrm{y}}{\textrm{y}}{<= 0
push bounds _ i i < < 128
constraints
```


Review: another example

```
for (i = 0; i < 128; i++) {
    a[i%64]= a[i+64]*2;
}
```

```
    two integers: }\mp@subsup{i}{x}{
    i
        ix}<12
```


read-write conflict checking

Moving onto loop structures

Transforming Loops

- Locality is key for good parallel performance:

Transforming Loops

- Locality is key for good parallel performance:
- Two types of locality:
- Temporal locality
- Spatial locality

Transforming Loops

- Locality is key for good parallel performance:
- Two types of locality:
- Temporal locality
- Spatial locality

how far apart can memory locations be?

Transforming Loops

- Locality is key for good parallel performance:
good data locality: cores will
spend most of their time accessing private caches

Transforming Loops

- Locality is key for good parallel performance:

Bad data locality: cores will
pressure and thrash shared memory resources

How multi dimensional arrays are stored:

How multi dimensional arrays are stored:

Row major

How multi dimensional arrays are stored:

Row major

How multi dimensional arrays are stored:

Row major

How multi dimensional arrays are stored:

Column major?
Fortran
Matlab
R

How multi dimensional arrays are stored:

How multi dimensional arrays are stored:

$$
\begin{aligned}
& \mathrm{x} 1=\mathrm{a}[0,0] ; \\
& \mathrm{x} 2=\mathrm{a}[0,1] ;
\end{aligned}
$$

good pattern for row major bad pattern for column major

How multi dimensional arrays are stored:

unrolled row major: still has locality

```
x1 = a[x,y];
x2 = a[x, y+1];
```

good pattern for row major bad pattern for column major

How multi dimensional arrays are stored:

```
x1 = a[x,y];
x2 = a[x, y+1];
```

good pattern for row major bad pattern for column major

How multi dimensional arrays are stored:

unrolled
column
major:
Bad locality

```
x1 = a[x,y];
x2 = a[x, y+1];
```

good pattern for row major bad pattern for column major

How multi dimensional arrays are stored:

```
x1 = a[0,0];
x2 = a[1, 0];
```

good pattern for column major bad pattern for row major

How multi dimensional arrays are stored:

row major unrolled: bad spatial locality

$$
\begin{aligned}
& x 1=a[x, y] ; \\
& x 2=a[x+1, y] ;
\end{aligned}
$$

good pattern for column major bad pattern for row major

How multi dimensional arrays are stored:

unrolled
column
major:
good locality

```
x1 = a[x,y];
x2 = a[x+1, y];
```

good pattern for column major bad pattern for row major

How much does this matter?

```
for (int x = 0; x < x_size; x++) {
    for (int y = 0; y < Y_size; y++) {
        a[x,y] = b[x,y] + c[x,y];
        }
}
```

```
for (int y = 0; y < y_size; y++) {
    for (int x = 0; x < x_size; x++) {
            a[x,y] = b[x,y] + c[x,y];
    }
}
```

which will be faster? by how much?

Demo

How to reorder loop nestings?

- For a DOALL loop, if loop bounds are independent, they can simply be re-ordered.
- If they are dependent...

Example:

```
for (y = 0; y <= 5; y++) {
    for (x = y; x <= 7; x++) {
        a[x,y] = b[x,y] + c[x,y];
    }
}
```


Example:

```
for (y = 0; y <= 5; y++) {
    for (x = y; x <= 7; x++) {
        a[x,y] = b[x,y] + c[x,y];
    }
}
```

bad nesting order for row-major!

Example:

```
for (y = 0; y <= 5; y++) {
    for (x = y; x <= 7; x++) {
        a[x,y] = b[x,y] + c[x,y];
    }
}
```

bad nesting order for
row-major!
but iteration variables are dependent

Example:

```
for (y = 0; y <= 5; y++) {
    for (x = y; x <= 7; x++) {
            a[x,y] = b[x,y] + c[x,y];
    }
}
```

loop constraints
$\mathrm{y}>=0$
$\mathrm{y}<=5$
$\mathrm{x}>=\mathrm{y}$
$x<=7$
bad nesting order for
row-major!
but iteration variables are dependent

Example:

Fourier-Motzkin elimination:

- Given a system of inequalities with N variables, reduce it to a system with $\mathrm{N}-1$ variables.
- A system of inequalities describes an N -dimensional polyhedron. Produce a system of equations that projects the polyhedron onto an N -1 dimensional space

Example:

loop constraints
$y>=0$
$y<=5$
$x>=y$
$x<=7$

System with N variables can be viewed as an N dimensional polyhedron

$$
x=y
$$

Fourier-Motzkin elimination:

- To eliminate variable x_{i} :

For every pair of lower bound L_{i} and upper bound U_{i} on x_{i}, create:

$$
L_{i} \leq x_{i} \leq U_{i}
$$

Then simply remove x_{i} :

$$
L_{i} \leq U_{i}
$$

Example: remove y from the constraints

```
for (y = 0; y <= 5; y++) {
    for (x = y; x <= 7; x++) {
        a[x,y] = b[x,y] + c[x,y];
    }
}
```

All pairs of upper/lower bounds on y :

```
y >= 0
y <= 5
x >= y
x <= 7
```

loop constraints

Example: remove y from the constraints

```
for (y = 0; y <= 5; y++) {
    for (x = y; x <= 7; x++) {
        a[x,y] = b[x,y] + c[x,y];
    }
}
```

All pairs of upper/lower bounds on y :

```
loop constraints
y >= 0
y <= 5
x >= y
x <= 7
```


Example: remove y from the constraints

```
for (y = 0; y <= 5; y++) {
    for (x = y; x <= 7; x++) {
        a[x,y] = b[x,y] + c[x,y];
    }
}
```

All pairs of upper/lower bounds on y :

```
y >= 0
y <= 5
x >= y
x <= 7
```

loop constraints
$0<=y<=5$
$0<=y<=x$

Then eliminate y :

$$
\begin{aligned}
& 0<=5 \\
& 0<=x
\end{aligned}
$$

Example: remove y from the constraints

```
for (y = 0; y <= 5; y++) {
    for (x = y; x <= 7; x++) {
        a[x,y] = b[x,y] + c[x,y];
    }
}
```

All pairs of upper/lower bounds on y :

```
\[
y>=0
\]
y >= 0
\(y<=5\)
\(x>=y\)
\(x<=7\)
```

loop constraints

$$
0<=y<=5
$$

$$
0<=y<=x
$$

Then eliminate y :

$$
\begin{aligned}
& 0<=5 \\
& 0<=x
\end{aligned}
$$

Example: remove y from the constraints

```
for (y = 0; y <= 5; y++) {
    for (x = y; x <= 7; x++) {
        a[x,y] = b[x,y] + c[x,y];
    }
}
```

All pairs of upper/lower bounds on y :

```
loop constraints
y >= 0
y <= 5
x >= y
x <= 7
```

$0<=y<=5$
$0<=y<=5$
$0<=y<=x$
Then eliminate y :

$$
0<=x
$$

Example: remove y from the constraints

```
for (y = 0; y <= 5; y++) {
    for (x = y; x <= 7; x++) {
        a[x,y] = b[x,y] + c[x,y];
    }
}
```

All pairs of upper/lower bounds on y :

loop constraints

$\mathrm{y}>=0$
$y<=5$
$x>=y$
$x<=7$
$0<=y<=5$
$0<=\mathrm{y}<=\mathrm{x}$
Then eliminate y :

$$
0<=x
$$

loop constraints without y :

$$
\begin{aligned}
& x>=0 \\
& x<=7
\end{aligned}
$$

Example:

loop constraints
$y>=0$
$y<=5$
$x>=y$
$x<=7$

System with N variables can be viewed as an N dimensional polyhedron

$$
x=y
$$

Reording Loop bounds:

- Given a new order: $\left[x_{0}, x_{1}, x_{2}, \ldots x_{n}\right]$
- For each variable x_{i} : perform Fourier-Motzkin elimination to eliminate any variables that come after x_{i} in the new order.
- Instantiate loop conditions for x_{i}, potentially using max/min operators

Example:

```
for (y = 0; y <= 5; y++) {
    for (x = y; x <= 7; x++) {
        a[x,y] = b[x,y] + c[x,y];
    }
}
```

loop constraints
$\mathrm{y}>=0$
$y<=5$
$x>=y$
$x<=7$

Example:

```
for (y = 0; y <= 5; y++) {
    for (x = y; x <= 7; x++) {
        a[x,y] = b[x,y] + c[x,y];
    }
}
```

loop constraints
$\mathrm{y}>=0$
$y<=5$
$x>=y$
$\mathrm{x}<=7$
new order: $[x, y]$
for x : eliminate y using FM elimination:

Example:

```
for (y = 0; y <= 5; y++) {
    for (x = y; x <= 7; x++) {
        a[x,y] = b[x,y] + c[x,y];
    }
}
```

new order: $[x, y]$
for x : eliminate y using FM elimination:
x loop constraints without y :

$$
\begin{aligned}
& \mathrm{x}>=0 \\
& \mathrm{x}<=7
\end{aligned}
$$

```
loop constraints
y >= 0
y<= 5
x >= y
x <= 7
```


Example:

```
for (y = 0; y <= 5; y++) {
    for (x = y; x <= 7; x++) {
        a[x,y] = b[x,y] + c[x,y];
    }
}
```

new order: $[x, y]$
for x : eliminate y using FM elimination:
x loop constraints without y :

$$
\begin{aligned}
& \mathrm{x}>=0 \\
& \mathrm{x}<=7
\end{aligned}
$$

loop constraints
$\mathrm{y}>=0$
$y<=5$
$\mathrm{x}>=\mathrm{y}$
$x<=7$

Example:

```
for (y = 0; y <= 5; y++) {
    for (x = y; x <= 7; x++) {
        a[x,y] = b[x,y] + c[x,y];
    }
}
```

new order: $[x, y]$
for x : eliminate y using FM elimination:
x loop constraints without y :

$$
\begin{aligned}
& x>=0 \\
& x<=7
\end{aligned}
$$

loop constraints
$\mathrm{y}>=0$
$y<=5$
$\mathrm{x}>=\mathrm{y}$
$x<=7$

Example:

```
for (y = 0; y <= 5; y++) {
    for (x = y; x <= 7; x++) {
        a[x,y] = b[x,y] + c[x,y];
    }
}
```

new order: $[x, y]$
for x : eliminate y using FM elimination:
x loop constraints without y :

$$
\begin{aligned}
& \mathrm{x}>=0 \\
& \mathrm{x}<=7
\end{aligned}
$$

loop constraints
$\mathrm{y}>=0$
$y<=5$
$x>=y$
$x<=7$

Example:

```
for (x = 0; x <= 7; x++) {
    for (y = 0; y <= min(x,5); y++) {
        a[x,y] = b[x,y] + c[x,y];
    }
}
```

x loop constraints without y :

```
\(x>=0\)
\(\mathrm{x}<=7\)
```


x
y loop constraints:
y >= 0
$\mathrm{y}<=\min (\mathrm{x}, 5)$

Reordering loop bounds

- only works if loop increments by 1 ; assumes a closed polyhedron
- best performance when array indexes are simple:
- e.g.: a[x,y]
- harder with, e.g.: $a[x * 5+127, y+x * 37]$
- There exists schemes to automatically detect locality. Reach chapter 10 of the Dragon book
- compiler implementation allows exploration and auto-tuning

Adding loop nestings

- In some cases, there might not be a good nesting order for all accesses:

$$
A=B+C^{T}
$$

A

B

C

Adding loop nestings

- In some cases, there might not be a good nesting order for all accesses:

$$
A=B+C^{T}
$$

A

cold miss for all of them

Adding loop nestings

- In some cases, there might not be a good nesting order for all accesses:

$$
A=B+C^{T}
$$

A

Hit on A and B. Miss on C

Adding loop nestings

- In some cases, there might not be a good nesting order for all accesses:

$$
A=B+C^{T}
$$

A

C

Hit on A and B. Miss on C

Adding loop nestings

- Blocking operates on smaller chunks to exploit locality in column increment accesses. Example 2×2

$$
A=B+C^{T}
$$

Adding loop nestings

- Blocking operates on smaller chunks to exploit locality in column increment accesses. Example 2×2

$$
A=B+C^{T}
$$

Adding loop nestings

- Blocking operates on smaller chunks to exploit locality in column increment accesses. Example 2×2

$$
A=B+C^{T}
$$

cold miss for all of them

Adding loop nestings

- Blocking operates on smaller chunks to exploit locality in column increment accesses. Example 2×2

$$
A=B+C^{T}
$$

Miss on C

Adding loop nestings

- Blocking operates on smaller chunks to exploit locality in column increment accesses. Example 2×2

$$
A=B+C^{T}
$$

Miss on A, B, hit on C

Adding loop nestings

- Blocking operates on smaller chunks to exploit locality in column increment accesses. Example 2×2

$$
A=B+C^{T}
$$

A

Adding loop nestings

- Add two outer loops for both x and y

```
for (int x = 0; x < SIZE; x++) {
    for (int y = 0; y < SIZE; y++) {
        a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];
        }
    }
```


Adding loop nestings

- Add two outer loops for both x and y

```
for (int xx = 0; xx < SIZE; xx += B) {
    for (int yy = 0; yy < SIZE; yy += B) {
            for (int x = xx; x < xx+B; x++) {
            for (int y = yy; y < yy+B; y++) {
            a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];
            }
        }
    }
}
```


Adding loop nestings

- Add two outer loops for both x and y

```
for (int xx = 0; xx < SIZE; xx += B) {
    for (int yy = 0; yy < SIZE; yy += B) {
            for (int x = xx; x < xx+B; x++) {
            for (int y = yy; y < yy+B; y++) {
            a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];
            }
            }
    }
}
```


Adding loop nestings

- Add two outer loops for both x and y

```
for (int xx = 0; xx < SIZE; xx += B) {
    for (int yy = 0; yy < SIZE; yy += B) {
            for (int x = xx; x < xx+B; x++) {
            for (int y = yy; y < yy+B; y++) {
            a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];
            }
        }
    }
}
```


Adding loop nestings

- Add two outer loops for both x and y

```
for (int xx = 0; xx < SIZE; xx += B) {
    for (int yy = 0; yy < SIZE; yy += B) {
            for (int x = xx; x < xx+B; x++) {
            for (int y = yy; y < yy+B; y++) {
            a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];
            }
            }
    }
}
```

Demo

Next class

- Topics:
- Implementing parallelism for DOALL loops
- Enjoy your weekend

