
CSE211: Compiler Design 
Nov. 5, 2021

• Topic: restructuring loops C1 C2 C3C0

L1 
cache

L1 
cache

L1 
cache

L1 
cache

L2 cache

DRAM



Announcements

• Homework 3 is due Nov. 17
• 1 more office hour before then (next Thursday)
• part 1 and 2: generating c code from python
• part 3: creating and checking z3 constraints



Paper/Project proposals

• Please start thinking about these.
• Message me for recommendations
• Tell me what you’re interested in so we can find a good fit!

• Proposals due on Nov. 14 (less than 2 weeks)
• Please be pro-active about this. If you don’t have one in mind, please send me 

an email with some of your interests ASAP

• Midterm is a good indicator for how the final will be. 



CSE211: Compiler Design 
Nov. 3, 2021

• Topic: restructuring loops C1 C2 C3C0

L1 
cache

L1 
cache

L1 
cache

L1 
cache

L2 cache

DRAM



Review

• Compiler approach for checking if DOALL loops are safe to do in 
parallel
• What is a DOALL loop?
• What conditions are required for safety?



Review

• Creating constraints

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}
two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix == iy
ix == iy

write-write conflict
read-write conflict

Ask if these constraints are satisfiable (if so, it is not safe to parallelize)



Review: another example

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]*2;

}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128push bounds 

constraints



Review: another example

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]*2;

}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix % 64 == iy % 64

push bounds 
constraints

write-write
conflict
checking



Review: another example

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]*2;

}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128push bounds 

constraints

pop



Review: another example

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]*2;

}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix % 64 == iy + 64

push bounds 
constraints

read-write
conflict checking



Moving onto loop structures



Transforming Loops

• Locality is key for good parallel performance:



Transforming Loops

• Locality is key for good parallel performance:

• Two types of locality:
• Temporal locality
• Spatial locality

r1 = a[2];
...
r2 = a[2];

temporal locality



Transforming Loops

• Locality is key for good parallel performance:

• Two types of locality:
• Temporal locality
• Spatial locality

r1 = a[2];
...
r2 = a[3];

spatial locality

how far apart can memory locations be?



Transforming Loops

• Locality is key for good parallel performance:

C1 C2 C3C0

L1 
cache

L1 
cache

L1 
cache

L1 
cache

L2 cache

DRAM

good data locality: cores will
spend most of their time accessing 
private caches



Transforming Loops

• Locality is key for good parallel performance:

C1 C2 C3C0

L1 
cache

L1 
cache

L1 
cache

L1 
cache

L2 cache

DRAM

Bad data locality: cores will
pressure and thrash shared memory 
resources



How multi dimensional arrays are stored:



How multi dimensional arrays are stored:

Row major



How multi dimensional arrays are stored:

Row major



How multi dimensional arrays are stored:

Row major



How multi dimensional 
arrays are stored:

Column major?
Fortran
Matlab
R



How multi dimensional 
arrays are stored:

Column major?
Fortran
Matlab
R



How multi dimensional arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[0,0];
x2 = a[0,1];



How multi dimensional arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[x,y];
x2 = a[x, y+1];

unrolled row major: still has locality



How multi dimensional arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[x,y];
x2 = a[x, y+1];



How multi dimensional 
arrays are stored:

good pattern for row major
bad pattern for column major

x1 = a[x,y];
x2 = a[x, y+1];

unrolled
column 
major:
Bad locality



How multi dimensional arrays are stored:

good pattern for column major
bad pattern for row major

x1 = a[0,0];
x2 = a[1, 0];



How multi dimensional arrays are stored:

row major unrolled: bad spatial locality

good pattern for column major
bad pattern for row major

x1 = a[x,y];
x2 = a[x+1, y];



How multi dimensional 
arrays are stored:

good pattern for column major
bad pattern for row major

x1 = a[x,y];
x2 = a[x+1, y];

unrolled
column 
major:
good locality



How much does this matter?

for (int x = 0; x < x_size; x++) {
for (int y = 0; y < y_size; y++) {

a[x,y] = b[x,y] + c[x,y];
}

}

for (int y = 0; y < y_size; y++) {
for (int x = 0; x < x_size; x++) {

a[x,y] = b[x,y] + c[x,y];
}

}

which will be faster?
by how much?

Demo



How to reorder loop nestings?

• For a DOALL loop, if loop bounds are independent, they can simply be 
re-ordered.

• If they are dependent...



Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}



Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

bad nesting order for
row-major!



Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

bad nesting order for
row-major!

but iteration variables are 
dependent



Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

bad nesting order for
row-major!

but iteration variables are 
dependent

loop constraints
y >= 0
y <= 5
x >= y
x <= 7



Example:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

System with N variables can be viewed as an N
dimensional polyhedron

x

y

5

0 7

x = y



Fourier-Motzkin elimination:

• Given a system of inequalities with N variables, reduce it to a system 
with N - 1 variables.

• A system of inequalities describes an N-dimensional polyhedron. 
Produce a system of equations that projects the polyhedron onto an 
N-1 dimensional space 



Example:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

System with N variables can be viewed as an N
dimensional polyhedron

x

y

5

0 7

x = y



Fourier-Motzkin elimination:

• To eliminate variable 𝑥!:
For every pair of lower bound 𝐿! and upper bound 𝑈! on 𝑥!, create: 

𝐿! ≤ 𝑥! ≤ 𝑈!
Then simply remove 𝑥! :

𝐿! ≤ 𝑈!



Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:



Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

0 <= y <= 5
0 <= y <= x



Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

0 <= y <= 5
0 <= y <= x

Then eliminate y:

0 <= 5
0 <= x



Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

0 <= y <= 5
0 <= y <= x

Then eliminate y:

0 <= 5
0 <= x



Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

0 <= y <= 5
0 <= y <= x

Then eliminate y:

0 <= x



Example: remove y from the constraints

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

All pairs of upper/lower bounds on y:

0 <= y <= 5
0 <= y <= x

Then eliminate y:

0 <= x

loop constraints without y:

x >= 0
x <= 7



Example:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

System with N variables can be viewed as an N
dimensional polyhedron

x

y

5

0 7

x = y



Reording Loop bounds:

• Given a new order: 𝑥", 𝑥#, 𝑥$, … 𝑥%

• For each variable 𝑥! : perform Fourier-Motzkin elimination to 
eliminate any variables that come after 𝑥! in the new order.

• Instantiate loop conditions for 𝑥!, potentially using max/min 
operators



Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

loop constraints
y >= 0
y <= 5
x >= y
x <= 7



Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

new order: [x,y]

for x: eliminate y using FM elimination:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7



Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

new order: [x,y]

for x: eliminate y using FM elimination:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

x loop constraints without y:

x >= 0
x <= 7



Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

new order: [x,y]

for x: eliminate y using FM elimination:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

x loop constraints without y:

x >= 0
x <= 7

y loop constraints:
y >= 0
y <= 5
y <= x



Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

new order: [x,y]

for x: eliminate y using FM elimination:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

x loop constraints without y:

x >= 0
x <= 7

y loop constraints:
y >= 0
y <= 5
y <= x



Example:

for (y = 0; y <= 5; y++) {
for (x = y; x <= 7; x++) {
a[x,y] = b[x,y] + c[x,y];

}
}

new order: [x,y]

for x: eliminate y using FM elimination:

loop constraints
y >= 0
y <= 5
x >= y
x <= 7

x loop constraints without y:

x >= 0
x <= 7

y loop constraints:
y >= 0
y <= min(x,5)



Example:

for (x = 0; x <= 7; x++) {
for (y = 0; y <= min(x,5); y++) {
a[x,y] = b[x,y] + c[x,y];

}
}

x loop constraints without y:

x >= 0
x <= 7

y loop constraints:
y >= 0
y <= min(x,5)

x

y



Reordering loop bounds

• only works if loop increments by 1; assumes a closed polyhedron

• best performance when array indexes are simple:
• e.g.: a[x,y]
• harder with, e.g.: a[x*5+127, y+x*37]
• There exists schemes to automatically detect locality. Reach chapter 10 of the 

Dragon book

• compiler implementation allows exploration and auto-tuning



Adding loop nestings

• In some cases, there might not be a good nesting order for all 
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶



Adding loop nestings

• In some cases, there might not be a good nesting order for all 
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

cold miss for all of them



Adding loop nestings

• In some cases, there might not be a good nesting order for all 
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on A and B. Miss on C



Adding loop nestings

• In some cases, there might not be a good nesting order for all 
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on A and B. Miss on C



Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶



Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶



Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

cold miss for all of them



Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Miss on C



Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Miss on A,B, hit on C



Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on all!



Adding loop nestings

• Add two outer loops for both x and y

for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];

}
}



Adding loop nestings

• Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
for (int yy = 0; yy < SIZE; yy += B) {
for (int x = xx; x < xx+B; x++) {
for (int y = yy; y < yy+B; y++) {
a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];

}
}

}
}



Adding loop nestings

• Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
for (int yy = 0; yy < SIZE; yy += B) {
for (int x = xx; x < xx+B; x++) {
for (int y = yy; y < yy+B; y++) {
a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];

}
}

}
}



Adding loop nestings

• Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
for (int yy = 0; yy < SIZE; yy += B) {
for (int x = xx; x < xx+B; x++) {
for (int y = yy; y < yy+B; y++) {
a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];

}
}

}
}



Adding loop nestings

• Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
for (int yy = 0; yy < SIZE; yy += B) {
for (int x = xx; x < xx+B; x++) {
for (int y = yy; y < yy+B; y++) {
a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];

}
}

}
}

Demo



Next class

• Topics:
• Implementing parallelism for DOALL loops

• Enjoy your weekend


