
CSE211: Compiler Design
Nov. 3, 2021

• Topic: SMP parallelism continued
• Safety checking
• Restructuring loops

• Discussion questions:
• Have you used tools to check for data-

races?

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Announcements

• Midterm is due today!
• likely won’t be answering questions tonight

• Homework 1 grades are out
• Let me know ASAP if there are any issues

• Homework 3 should be released today (I might need 1 more day...)
• You have 2 weeks to finish

Paper/Project proposals

• Please start thinking about these.
• Message me for recommendations
• Tell me what you’re interested in so we can find a good fit!

• Proposals due on Nov. 14 (less than 2 weeks)
• Please be pro-active about this. If you don’t have one in mind, please send me

an email with some of your interests ASAP

• Midterm is a good indicator for how the final will be.

CSE211: Compiler Design
Nov. 3, 2021

• Topic: SMP parallelism continued
• Safety checking
• Restructuring loops

• Discussion questions:
• Have you used tools to check for data-

races?

C1 C2 C3C0

L1
cache

L1
cache

L1
cache

L1
cache

L2 cache

DRAM

Aside from homework 1

• Parsing with derivatives

Adding ? to parsing with derivatives

re =
|{}
| “”
| c (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *
| reoptional ?

re_optional = ”” | re_optional

What is a method for computing NULL?

Consider the recursive cases:

• NULL(re) = match re with:

• relhs | rerhs

return NULL(relhs) | NULL(rerhs)

• restarred*
return “”

• relhs . rerhs
return NULL(relhs) . NULL(rerhs)

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| relhs . rerhs
| restarred *
| reoptional ?

Derivative Recursive Cases

Consider the recursive cases:

• 𝛿c (re) = match re with:

• relhs | rerhs

return 𝛿c(relhs) | 𝛿c (rerhs)

• restarred* return 𝛿c(restarred) . restarred*

• relhs . rerhs
return 𝛿c(relhs) . rerhs |

NULL(relhs) . 𝛿c(rerhs)

• reoptional ? return 𝛿c(reoptional)

• re =
|{}
| ε
| a (single character)
| relhs | rerhs
| restarred *
| reoptional ?

Back to parallelism

Review

• What sorts of components do modern architectures have that allow
us to exploit parallelism?

Review

• What sorts of components do modern architectures have that allow
us to exploit parallelism?
• ILP (instruction level parallelism)
• SMP (symmetric multiprocessing)

• Pros and cons to each?

Review

• How can compilers help with parallelism?
• ILP
• SMP

Review

• We are thinking about a special kind of “for” loop, DOALL Loops
• What are some of the conditions

Review

• We are thinking about a special kind of “for” loop, DOALL Loops
• What are some of the conditions

• disjoint arrays
• bounds from 0 to N
• only side effects are array writes

Review

• We are thinking about a special kind of “for” loop, DOALL Loops
• What are some of the conditions

• disjoint arrays
• bounds from 0 to N
• only side effects are array writes

• It is safe to do these loops in parallel if:

Review

• We are thinking about a special kind of “for” loop, DOALL Loops
• What are some of the conditions

• disjoint arrays
• bounds from 0 to N
• only side effects are array writes

• It is safe to do these loops in parallel if:
• Loop iterations are independent
• threads can be assigned different loop iterations

Review

• We are thinking about a special kind of “for” loop, DOALL Loops
• What are some of the conditions

• disjoint arrays
• bounds from 0 to N
• only side effects are array writes

• It is safe to do these loops in parallel if:
• Loop iterations are independent
• threads can be assigned different loop iterations

What about performance?

= = = = = =

For loops are great candidates for SMP
parallelism

for (int i = 0; i < 6; i++) {
a[i] = b[i] + c[i]

}

+ + + + + +

b

c

a

core 1

= = = = = =

For loops are great candidates for SMP
parallelism

for (int i = 0; i < 6; i++) {
a[i] = b[i] + c[i]

}

+ + + + + +

b

c

a

core 1 core 2

= = = = = =

For loops are great candidates for SMP
parallelism

for (int i = 0; i < 6; i++) {
a[i] = b[i] + c[i]

}

+ + + + + +

b

c

a

core 1 core 2 core 3

Write-write conflicts

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

Why?
Because if
index(ix) == index(iy)
then:
a[index(ix)] will equal
either loop(ix) or loop(iy)
depending on the order

for two distinct iterations:
ix != iy
Check:
index(ix) != index(iy)

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

Write-write conflicts

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

for (i = 0; i < 128; i++) {
a[i]= i*2;

}

Examples:

Write-write conflicts

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

for (i = 0; i < 128; i++) {
a[i]= i*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= i*2;

}

Examples:

Read-write conflicts

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
a[write_index(i)] = a[read_index(i)] + loop(i);

}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy)

Read-write conflicts

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
a[write_index(i)] = a[read_index(i)] + loop(i);

}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy)

Why?

if ix iteration happens first, then
iteration iy reads an updated value.

if iy happens first, then it reads the
original value

Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
a[write_index(i)] = a[read_index(i)] + loop(i);

}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy)

for (i = 0; i < 2; i++) {
a[i]= a[0]*2;

}

Example

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2;

}

for (i = 1; i < 128; i++) {
a[i]= a[0]*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]*2;

}

Automation?

• We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}
two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
write_index(ix) == write_index(iy)
write_index(ix) == read_index(iy)

write-write conflict
read-write conflict

Ask if these constraints are satisfiable (if so, it is not safe to parallelize)

Automation?

• We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}
two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix == iy
ix == iy

Automation?

• We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}
two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix == iy
ix == iy

We can feed these constraints to an SMT Solver!

SMT Solver

• Satisfiability Modulo Theories (SMT)
• Generalized SAT solver

• Solves many types of constraints over many domains
• Integers
• Reals
• Bitvectors
• Sets

• Complexity bounds are high (and often undecidable). In practice, they
work pretty well

Microsoft Z3

• State-of-the-art

• Python bindings

• Tutorials:
• Python: https://ericpony.github.io/z3py-tutorial/guide-examples.htm
• SMT LibV2: https://rise4fun.com/z3/tutorial

https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://rise4fun.com/z3/tutorial

Automation?

• We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}
two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix == iy
ix == iy

We can feed these constraints to an SMT Solver!

Another example:

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]*2;

}

Another example:

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]*2;

}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix % 64 == iy % 64

Another example:

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]*2;

}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix % 64 == iy % 64

what about write-read?

Another example:

for (i = 0; i < 128; i++) {
a[i%64]= a[i+64]*2;

}

two integers: ix != iy
ix >= 0
ix < 128
iy >= 0
iy < 128
ix % 64 == iy + 64

what about write-read?

General formula:
for (int i0 = init0; i0 < bound0(); i0++) {

for (int i1 = init1(i0); i1 < bound1(i0); i1++) {

...

for (int iN = initN(i0, i1, ...); iN < boundN(i0, i1 ...); iN++) {
write(a, write_index(i0, i1 .. iN))
read(a, read_index(i0, i1 .. iN));

}

}

}

General formula:
for (int i0 = init0; i0 < bound0(); i0++) {

for (int i1 = init1(i0); i1 < bound1(i0); i1++) {

...

for (int iN = initN(i0, i1, ...); iN < boundN(i0, i1 ...); iN++) {
write(a, write_index(i0, i1 .. iN))
read(a, read_index(i0, i1 .. iN));

}

}

}
1. Create two variables for each loop variable: i0x, i0y, i1x, i1y ...
Set outer loop: i0x != i0y

2. Constrain them to be inside their bounds:
for w in from (0,N): iwx,y >= initw(...), iwx,y < boundN(...)

3. Enumerate all pairs of potential write-write conflicts:
check: write_index(i0x ,i1x ...) == write_index (i0y ,i1y ...)

4. Do the same for write-read conflicts

General formula:
for (int i0 = init0; i0 < bound0(); i0++) {

for (int i1 = init1(i0); i1 < bound1(i0); i1++) {

...

for (int iN = initN(i0, i1, ...); iN < boundN(i0, i1 ...); iN++) {
write(a, write_index(i0, i1 .. iN))
read(a, read_index(i0, i1 .. iN));

}

}

}

What if we want
to parallelize
an inner loop?

1. Create two variables for each loop variable: i0x, i0y, i1x, i1y ...
Set outer loop: i0x != i0y

2. Constrain them to be inside their bounds:
for w in from (0,N): iwx,y >= initw(...), iwx,y < boundN(...)

3. Enumerate all pairs of potential write-write conflicts:
check: write_index(i0x ,i1x ...) == write_index (i0y ,i1y ...)

4. Do the same for write-read conflicts

Are data races ever okay?

• Thoughts?

Are data races ever okay?

• Consider this program:

int x = 0;
for (int i = 0; i < 1024; i++) {

int tmp = *(&x);
tmp += 1;
*(&x) = tmp;

}

What can go wrong if we run the loop in parallel?

Horrible data races in the real world

Therac 25: a radiation therapy machine
• Between 1987 and 1989 a software bug caused 6 cases where

radiation was massively overdosed

• Patients were seriously injured and even died.

• Bug was root caused to be a data race.

• https://en.wikipedia.org/wiki/Therac-25

Horrible data races in the real world

2003 NE power blackout
• second largest power outage in history: 55 million people were

effected

• NYC was without power for 2 days, estimated 100 deaths

• Root cause was a data race

• https://en.wikipedia.org/wiki/Northeast_blackout_of_2003

But checking for data conflicts is hard...

• Tools are here to help (Professor Flanagan is famous in this area)

• My previous group:
• “Dynamic Race Detection for C++11” Lidbury and Donaldson
• Scalable (complete) race detection

• Firefox has ~40 data races
• Chromium has ~6 data races

Next class

• Topics:
• Restructuring loops

• Remember:
• Midterm is due today by midnight, please don’t be late!
• Homework 3 assigned today (or tomorrow)

