CSE211: Compiler Design

Nov. 3, 2021

* Topic: SMP parallelism continued
» Safety checking
e Restructuring loops

* Discussion questions:

* Have you used tools to check for data-
races?

Cco C1 C2 C3
L1 L1 L1 L1
cache cache cache cache
v i v i
L2 cache

A4

DRAM

Announcements

* Midterm is due today!
* likely won’t be answering questions tonight

* Homework 1 grades are out
* Let me know ASAP if there are any issues

* Homework 3 should be released today (I might need 1 more day...)
* You have 2 weeks to finish

Paper/Project proposals

* Please start thinking about these.
* Message me for recommendations
* Tell me what you’re interested in so we can find a good fit!

* Proposals due on Nov. 14 (less than 2 weeks)

* Please be pro-active about this. If you don’t have one in mind, please send me
an email with some of your interests ASAP

* Midterm is a good indicator for how the final will be.

CSE211: Compiler Design

Nov. 3, 2021

* Topic: SMP parallelism continued
» Safety checking
e Restructuring loops

* Discussion questions:

* Have you used tools to check for data-
races?

Cco C1 C2 C3
L1 L1 L1 L1
cache cache cache cache
v i v i
L2 cache

A4

DRAM

Aside from homework 1

* Parsing with derivatives

Adding ? to parsing with derivatives

re =

U

)

¢ (single character)
r€hs | Mrhs
M€hs - MCrhs

*
resta rred

re_optional =”” | re_optional

reoptional ?

What is a method for computing NULL?

Consider the recursive cases:

* NULL(re) = match re with:

*r elhs / r erhs

return NULL(re,) | NULL(re,,,)

*
*r estarred
oy

return

*r elhs T erhs

return NULL(re;,) . NULL(re,;)

*re=

U

€

a (single character)
rhs | s

(€hs - MCrhs

e
r.esta rred
r.eoptional g

Derivative Recursive Cases

Consider the recursive cases:

. °re=
* §,(re) = match re with: 0
® Iéps / rérhs e
return 8 (reps) | 8¢ (regs) a (single character)
. (€hs | MErhs
¢ reS arre *
t i return 6C(re$tal’f'€d) * reStGI’I’Ed* rEStarred
r.eoptional g

® I€ps . ICrps
return o (rey,) . re,. |

NULL(relhs) . 6c(rerhs)

reoptional ? return 5c(reoptiona/)

Back to parallelism

Review

* What sorts of components do modern architectures have that allow
us to exploit parallelism?

Review

* What sorts of components do modern architectures have that allow
us to exploit parallelism?

* ILP (instruction level parallelism)
* SMP (symmetric multiprocessing)

* Pros and cons to each?

Review

* How can compilers help with parallelism?
« ILP
* SMP

Review

* We are thinking about a special kind of “for” loop, DOALL Loops

e What are some of the conditions

Review

* We are thinking about a special kind of “for” loop, DOALL Loops

e What are some of the conditions

* disjoint arrays
* bounds fromOto N
* only side effects are array writes

Review

* We are thinking about a special kind of “for” loop, DOALL Loops

e What are some of the conditions
* disjoint arrays

* bounds fromOto N
* only side effects are array writes

* It is safe to do these loops in parallel if:

Review

* We are thinking about a special kind of “for” loop, DOALL Loops

e What are some of the conditions

* disjoint arrays
* bounds fromOto N
* only side effects are array writes

* It is safe to do these loops in parallel if:
* Loop iterations are independent
* threads can be assigned different loop iterations

Review

* We are thinking about a special kind of “for” loop, DOALL Loops

e What are some of the conditions

* disjoint arrays
* bounds fromOto N
* only side effects are array writes

* It is safe to do these loops in parallel if:
* Loop iterations are independent
* threads can be assigned different loop iterations

What about performance?

For loops are great candidates for SMP
parallelism

_ _ _ _ corel
for (1int 1 = 0; 1 < 6; 1++) {

a[i] = b[i] + c[1]

}

For loops are great candidates for SMP
parallelism

: : : : corel core 2
for (1int 1 = 0; 1 < 6; 1++) {

a[i] = b[i] + c[1i]

}

For loops are great candidates for SMP
parallelism

for (int i = 0; i < 6; i++) { core 1 core 2 core 3

a[i] = b[i] + c[i]

}

Write-write conflicts

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

for (1 = 0; 1 < size; 1i++) {
a[index(i)] = loop(i);
} Why?
. : . Because if

for two distinct iterations: index(i.) == index(i.)
i ! = l X y
- then:
;heck , , , a[index(i,)] will equal
index(1,) != 1ndex(1i,)

either Lloop (i,) orloop(i,)
depending on the order

Write-write conflicts

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

for (1 = 0; i1 < size; i++) {
a[index(i)] = loop(i);

}

Examples:

for (i1 = 0; 1 < 128; i++) {
a[i]= 1i*2;

}

Write-write conflicts

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

for (1 = 0; 1 < size; i++) {
a[index(i)] = loop(i);
}
Examples:
for (i = 0; i < 128; i++) { for (i = 0; i < 128; i++) {
a[i]= 1i*2; a[i%64]= 1*2;

} }

Read-write conflicts

* Criteria: every iteration of the outer-most loop must be independent

for (1 = 0; 1 < size; i++) {
a[write index(1i)] = a[read index(i)] + loop(1i);

}

Read-write conflicts:

for two distinct iteration variables:

i, != i,

Check:

write_ index(i,) != read_index(iy)

Read-write conflicts

* Criteria: every iteration of the outer-most loop must be independent

for (1 = 0; 1 < size; i++) {
a[write index(1i)] = a[read index(i)] + loop(1i);

Why?
Read-write conflicts:

if i, iteration happens first, then

for two distinct iteration variables: iteration i, reads an updated value.
i, != i,
Check: if 1, happens first, then it reads the

write_index(i,) != read_index(i,) original value

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent

for (1 = 0; 1 < size; i++) {
a[write index(1i)] = a[read index(i)] + loop(1i);

}

_] Example
Read-write conflicts:

for (1 = 0; 1 < 2; i++) {
a[0]*2;

for two distinct iteration variables:
i, 1= 1, a[i]
Check: }

write_ index(i,) != read_index(iy)

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[1]*2;

}

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) {
a[i]= a[0]*2;

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[1]*2;

}

for (i = 0; i < 128; i++) { for (i = 1; i < 128; i++) {
a[i]= a[0]*2; a[i]= a[0]*2;

Examples:

for (i = 0; i < 128; i++) {
a[i]= a[1]*2;

}

for (i = 0; i < 128; i++) { for (i = 1; i < 128; i++) {
a[i]= a[0]*2; a[i]= a[0]*2;

} }

for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2;

}

Examples:

for (1 = 0; 1 < 128; i++) {
a[i]= a[i]*2;

}

for (i = 0; i < 128; i++) { for (i = 1; i < 128; i++) {
a[i]= a[0]*2; afi]= a[0]1*2;

} }

for (i = 0; i < 128; i++) { for (i = 0; i < 128; i++) {
a[i%64]= a[i]*2; a[i%64]= a[i+64]1*2;

} }

Automation?

* We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;

two integers: i, != 1,
i, >= 0
i, < 128
i, >= 0

iy < 128

write-write conflict write index(iy)
read-write conflict write_ index(iy)

write_index(iy)
read_index(1iy)

Ask if these constraints are satisfiable (if so, it is not safe to parallelize)

Automation?

* We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
afi]= a[1]*2;
; . s
two integers: 1, 1= 1,
iy, >= 0

Automation?

* We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;
} | o
two integers: 1, != 1
i, >= 0
i, < 128

y

We can feed these constraints to an SMT Solver!

SMT Solver

» Satisfiability Modulo Theories (SMT)

 Generalized SAT solver

* Solves many types of constraints over many domains
* Integers
* Reals
* Bitvectors
* Sets

* Complexity bounds are high (and often undecidable). In practice, they
work pretty well

Microsoft Z3

* State-of-the-art
* Python bindings

e Tutorials:

* Python: https://ericpony.github.io/z3py-tutorial/guide-examples.htm
e SMT LibV2: https://rise4fun.com/z3/tutorial

https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://rise4fun.com/z3/tutorial

Automation?

* We have decent intuition about this, but if its going to be in a
compiler, then it needs to be automatable

for (i = 0; i < 128; i++) {
a[i]= a[i]*2;
} | o
two integers: 1, != 1
i, >= 0
i, < 128

y

We can feed these constraints to an SMT Solver!

Another example:

for (i = 0; i < 128; i++) {
a[1%64]= a[i1+64]*2;
}

Another example:

. : : two integers: i, != 1,
for (1 = 0; 1 < 128; 1++) { i, >= 0

a[i%64]= a[1+64]*2; i, < 128
} i, >= 0
i, < 128

i, % 64 == i, % 64

Another example:

. : , two integers: i, != 1
for (1 = 0; 1 < 128; 1++) { i, >= 0

a[1%64]= a[i1+64]*2; i, < 128
} i, >= 0
i, < 128

i, % 64 == i, % 64

y

what about write-read?

Another example:

. : , two integers: i, != 1
for (1 = 0; 1 < 128; 1++) { i, >= 0

a[1%64]= a[i1+64]*2; i, < 128
} i, >= 0
i, < 128

i, % 64 == i, ., 64

y

what about write-read?

General formula:

for (int 10 = init0O; 10 < boundO(); i0++) {
for (int il = initl(i0); i1l < boundl(i0); il++) {

for (int iN = initN(iO, i1, ...); iN < boundN(i0, il
write(a, write index(i0, il .. 1iN))
read(a, read index(i0, il .. 1iN));

e o)

iN++) {

General formula:

for (int 10 = init0O; 10 < boundO(); i0++) {

for (int il = initl(i0); i1l < boundl(i0); il++) {

for (int iN = initN(iO, i1, ...); iN < boundN(i0, il ...); iN++) {

write(a, write index(i0, il .. 1iN))
read(a, read index(i0, il .. 1iN));

1. Create two variables for each loop variable: 10,, i0,, il,, il, ...
Set outer loop: 104 != 10,

2. Constrain them to be inside their bounds:
for w in from (0,N):iwy,, >= initw(...), 1wy, < boundN(...)

3. Enumerate all pairs of potential write-write conflicts:
check: write index(i04 ,1ilyx ...) == write_index (10, ,1ily ...)

4. Do the same for write-read conflicts

General formula:

for (int 10 = init0O; 10 < boundO(); i0++) {

for (int il = initl(i0); i1l < boundl(i0); il++) {

for (int iN = initN(iO, i1, ...); iN < boundN(i0, il ...); iN++) {
write(a, write index(i0, il .. 1iN))
read(a, read index(i0, il .. 1iN));
}
} 1. Create two variables for each loop variable: 10,, i0,, 1ilyx, il
} Set outer loop: 104 != 10,
2. Constrain them to be inside their bounds:
What if we want for w in from (0,N):iw, , >= initw(...), iw,,, < boundN(...)
to parallelize
an inner loop? 3. Enumerate all pairs of potential write-write conflicts:
check: write index(i04 ,1ilyx ...) == write_index (10, ,1ily ...)
4. Do the same for write-read conflicts

Are data races ever okay?

* Thoughts?

Are data races ever okay?

* Consider this program:

int x = 0;

for (int i = 0; i < 1024; i++) {

int tmp * (&X);
tmp += 1;
*(&x) = tmp;

What can go wrong if we run the loop in parallel?

December 28, 2011
Volume 9, issue 12

PDF

You Don’t Know Jack about Shared
Variables or Memory Models

Data races are evil.

Hans-). Boehm, HP Laboratories, Sarita V. Adve, University of lllinois at Urbana-

Champaign

The final count
can also be too high. Consider a case in which the count is bigger than a machine
word. To avoid dealing with binary numbers, assume we have a decimal machine
in which each word holds three digits, and the counter x can hold six digits. The
compiler translates x++ to something like

tmp _hi = x_hi;
tmp lo = x_lo;
(tmp_hi, tmp lo)++;
x_hi = tmp hi;

X lo = tmp_lo;

Now assume that x
is 999 (i.e., x_ hi = 0,and x_1o = 999), and two threads, a blue and a red one,
each increment x as follows (remember that each thread has its own copy of the
machine registers tmp hi and tmp 1lo0):

tmp hi = x _hi;
tmp lo = x lo;
(tmp_hi, tmp lo)++; //tmp hi =1, tmp lo = 0
x hi = tmp hi; //x hi =1, x 1o = 999, x = 1999
X++; //red runs all steps
//x hi = 2, x 1o =0, x = 2000

»

'—l

o

I

tmp lo; //x_ hi = 2, x 1o =0

Horrible data races in the real world

Therac 25: a radiation therapy machine

* Between 1987 and 1989 a software bug caused 6 cases where
radiation was massively overdosed

* Patients were seriously injured and even died.
* Bug was root caused to be a data race.

* https://en.wikipedia.org/wiki/Therac-25

Horrible data races in the real world

2003 NE power blackout

e second largest power outage in history: 55 million people were
effected

* NYC was without power for 2 days, estimated 100 deaths
* Root cause was a data race

* https://en.wikipedia.org/wiki/Northeast blackout of 2003

But checking for data conflicts is hard...

* Tools are here to help (Professor Flanagan is famous in this area)

* My previous group:
* “Dynamic Race Detection for C++11” Lidbury and Donaldson

 Scalable (complete) race detection

* Firefox has ~40 data races
e Chromium has ~6 data races

Next class

* Topics:
e Restructuring loops

* Remember:
 Midterm is due today by midnight, please don’t be late!
* Homework 3 assigned today (or tomorrow)

