
CSE211: Compiler Design
Nov. 29, 2021

• Topic: Optimization Policies

• Discussion questions:
• How can you determine good

optimizations for a program?

Announcements

• Friday is a big day:
• Homework 4 is due
• Paper reviews are due
• Final project presentations
• 2 hour class (1 hour extended after)

• Class on Wednesday canceled
• use the time to study for the final, work on homeworks, or work on final

project

Announcements

• Sign-up for time slots
• Priority given to those who cannot attend off-hours
• For those who cannot attend off-hours, please read the blog posts for the

projects you miss

• 120 minutes for 11 presentations:
• 9 minutes per presentation (HARD, I will be using the unforgiving iphone

timer)
• try for 7 minute presentation and 2 minutes for questions.
• Use your own computer, or if you send me your presentation, you can use

mine.

Announcements

• For blog post:
• please submit as a PR to the class git repo:
• https://github.com/SorensenUCSC/CSE211-fa2021/
• follow the example project
• create a directory with your name, include an .md file and all images
• link to it in projects.md

• Write the blog post like how you’d like to read one! Lots of
background, lots of images and code snippets.
• Use only original images please!
• Should roughly be the same amount of content as the final report would be.

Announcements

• For reports (project and paper):
• if you are having trouble filling in the space:
• give more background. Imagine you are giving a CSE211 lecture!
• give more examples and walk through them
• show code snippets
• discuss related works

• At some point in your career you will transition to wanting more space
rather than trying to fill up space!

Announcements

• Office hours:
• Since thanksgiving office hours got canceled, I will hold a make-up hour

tomorrow from 2 - 3 pm
• There will also be normal Thursday office hours

• After Friday:
• I will start grading HW3, HW4 and paper reviews
• Please discuss grades with me ASAP if there are issues

Announcements

• SETs:
• Please fill them out!
• They are important for non-core classes like this one

• Individual feedback is also appreciated: feel free to send an email with any
thoughts you have:
• what you enjoyed J
• what you wish we would have discussed
• what you wish we would have spent more time on

• I will also release an anonymous survey on canvas asking some of these
questions. It should not replace the SETs though!

CSE211: Compiler Design
Nov. 29, 2021

• Topic: Optimization Policies

• Discussion questions:
• How can you determine good

optimizations for a program?

CSE211: Compiler Design
Nov. 29, 2021

• Topic: Optimization Policies

• Discussion questions:
• How can you determine good

optimizations for a program?

CSE211: Compiler Design
Nov. 29, 2021

• Topic: Optimization Policies

• Discussion questions:
• How can you determine good

optimizations for a program?

• auto-tuning: Halide approach

CSE211: Compiler Design
Nov. 29, 2021

• Topic: Optimization Policies

• Discussion questions:
• How can you determine good

optimizations for a program?

• auto-tuning: Halide approach
• exhaustive enumeration: irgl approach

Rank-based

Applications

BFS

SSSP

PR

CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB – Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space Domain

are points more likely to be above or
below the line?

re
la

tiv
e

ru
nt

im
e

ch
an

ge

Opt. On

Pros and cons for this approach?

CSE211: Compiler Design
Nov. 29, 2021

• Topic: Optimization Policies

• Discussion questions:
• How can you determine good

optimizations for a program?

• auto-tuning: Halide approach
• exhaustive enumeration: irgl approach
• What else?

Big question

• When should optimizations be enabled or disabled?
• if optimization adds a large compile time

• if optimization makes debugging harder

• if optimization makes smaller binaries

• if optimization is not well tested

• if optimization is likely to provide a performance increase

What do modern compilers do?

• gcc?
• -O0, -O1, -O2

• See differences at:
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

• different optimizations for different use cases
• -Os, -Og, -Ofast

Making programs go faster

• All of the optimizations we’ve examined have had performance trade-
offs

• Local value numbering?

x = a + b;
...
y = a + b;

x = a + b;
...
y = x;

what can go wrong?

x might have gone to memory if there isn’t enough
registers. A memory access is more expensive than
some arithmetic operations

Same issue for Pipelining and Super Scalar re-orderings!

Making programs go faster

• All of the optimizations we’ve examined have had performance trade-
offs

• Loop unrolling?
• Pros/cons?

• Making DOALL loops parallel?
• Pros/cons?

Compilers are evaluated on benchmark suites

• Scientific computing
• Rodinia, Parboil, Linpack

• Managed Languages:
• Decapo (Java)

• Heterogeneous systems
• SHOC

• GPU
• Magma

• Graphs
• GAPs

combination?
https://www.phoronix.com/scan.php?page=article&item=gcc-clang-2019&num=1

For general compilers, performance differences are tiny: e.g. 2%

Benchmarks can have a variety of
characteristics

From: DeSC: Decoupled Supply-Compute Communication Management for Heterogeneous Architectures. Ham et al., MICRO 2015

parboil and rodinia

Running benchmarks

• Just run it?

• Need to be careful...

Measurement bias

Environment factors can influence performance
measurements. Sometimes significantly!

Measurement bias

From “Producing Wrong Data Without Doing Anything Obviously Wrong!” Mytkowicz ASPLOS 2009

Size of environment variables on Linux?

Measurement bias

From “Producing Wrong Data Without Doing Anything Obviously Wrong!” Mytkowicz ASPLOS 2009

Size of environment variables on Linux?

Measurement bias

From “Producing Wrong Data Without Doing Anything Obviously Wrong!” Mytkowicz ASPLOS 2009

Size of environment variables on Linux?Size of environment variables on Linux?

frequently performance difference is 33%

Max is 300%

Measurement bias

From “Producing Wrong Data Without Doing Anything Obviously Wrong!” Mytkowicz ASPLOS 2009

Size of environment variables on Linux?Size of environment variables on Linux?

frequently performance difference is 33%

Max is 300%

Measurement bias

From “Producing Wrong Data Without Doing Anything Obviously Wrong!” Mytkowicz ASPLOS 2009

The order in which libraries are linked?

Measurement bias

From “Producing Wrong Data Without Doing Anything Obviously Wrong!” Mytkowicz ASPLOS 2009

The order in which libraries are linked?

In some cases O3 is slower than O2!

Measurement bias

From “Slow and Steady: Measuring and Tuning Multicore Interference” Iorga et al. RTAS 2019

Processes running on other cores can influence timing:

Intel chips: max of 1.15x difference
Mobile chips: max of 10x difference

How to combat measurement bias?

• Run lots of times
• The homeworks in this class have not emphasized this enough!

• Run a large enough benchmark suite

• Run in many different configurations (environment sizes, etc.)

• Results in the paper show that the difference between O2 and O3 is
an average of 1.007x

From “Producing Wrong Data Without Doing Anything Obviously Wrong!” Mytkowicz ASPLOS 2009

Stabilizer: a tool to help

A compiler tool to...
evaluate compiler optimizations!

Stabilizer: a tool to help

A compiler tool to...
evaluate compiler optimizations!

Given a program 𝑝, Stabilizer creates S(𝑝)

• Memory allocation is randomized in the heap.

• Function calls are trapped and their location in
program memory is randomized.

• Function stack locations are randomly offset.

Stabilizer: a tool to help

A compiler tool to...
evaluate compiler optimizations!

Running S 𝑝 for many iterations provides a
uniform distribution of runtimes.

They show that there is no statistical difference
between O2 and O3 in LLVM (2013)

Order in which optimizations are applied?

• Example:
• Loop unrolling followed by ILP scheduling
• What about the other way around?

Order in which optimizations are applied?

• Example:
• Loop unrolling followed by ILP scheduling
• What about the other way around?

they can achieve 7%
performance
improvement over O2 by
specializing optimization
order

Compiler optimization domains

• General case:
• Compile many diverse pieces of code, run on many different inputs and

architectures
• examples: gcc at -O3

Compiler optimization domains

• General case:
• Compile many diverse pieces of code, run on many different inputs and

architectures
• examples: gcc at -O3

• Fully Specialized:
• Compile one piece of code for one architecture and one input
• examples?
• optimizations?

Compiler optimization domains

• General case:
• Compile many diverse pieces of code, run on many different inputs and

architectures
• examples: gcc at -O3

• Fully Specialized:
• Compile one piece of code for one architecture and one input
• examples?
• optimizations?

• Semi-specialized?

Semi-specialization Examples

One binary, many architectures
• x86 binary runs on machines with different number of cores, pipeline

depths, super scalar widths etc.

Many programs, one architecture
• Modern compilers are often tuned (or query device info) when they

are installed

Are fully specialized applications portable?

from: “Analyzing and improving performance portability of OpenCL applications via auto-tuning” Price et al. IWOCL 2017

tuned for:

ran on:

Tuning for same vendor?

AMD

from: “Analyzing and improving performance portability of OpenCL applications via auto-tuning” Price et al. IWOCL 2017

Tuning for same vendor?

AMD

from: “Analyzing and improving performance portability of OpenCL applications via auto-tuning” Price et al. IWOCL 2017

Nvidia

Tuning for same vendor?

AMD

from: “Analyzing and improving performance portability of OpenCL applications via auto-tuning” Price et al. IWOCL 2017

Nvidia Intel

Multi-objective tuning
• Example, being portable across architectures:

• 𝐸 𝑝, 𝑖, 𝑎, 𝑜 is the execution time of running program 𝑝 on input 𝑖 on
architecture 𝑎 with optimization settings 𝑜

• How to evaluate a binary optimization 𝑐?
• i.e. should 𝑐 be enabled?

Multi-objective tuning
• Example, being portable across architectures:

• 𝐸 𝑝, 𝑖, 𝑎, 𝑜 is the execution time of running program 𝑝 on input 𝑖 on
architecture 𝑎 with optimization settings 𝑜

• How to evaluate a binary optimization 𝑐?
• i.e. should 𝑐 be enabled?

Multi-objective tuning
• Example, being portable across architectures:

• 𝐸 𝑝, 𝑖, 𝑎, 𝑜 is the execution time of running program 𝑝 on input 𝑖 on
architecture 𝑎 with optimization settings 𝑜

• How to evaluate a binary optimization 𝑐?
• i.e. should 𝑐 be enabled?

𝐸 𝑝, 𝑖, 𝑎0, 𝑜 𝐸 𝑝, 𝑖, 𝑎1, 𝑜 𝐸 𝑝, 𝑖, 𝑎2, 𝑜
𝐸 𝑝, 𝑖, 𝑎0, 𝑜 + 𝑐 𝐸 𝑝, 𝑖, 𝑎1, 𝑜 + 𝑐 𝐸 𝑝, 𝑖, 𝑎1, 𝑜 + 𝑐

Multi-objective tuning
• Example, being portable across architectures:

• 𝐸 𝑝, 𝑖, 𝑎, 𝑜 is the execution time of running program 𝑝 on input 𝑖 on
architecture 𝑎 with optimization settings 𝑜

• How to evaluate a binary optimization 𝑐?
• i.e. should 𝑐 be enabled?

𝑠𝑝𝑒𝑒𝑑𝑢𝑝! 𝑠𝑝𝑒𝑒𝑑𝑢𝑝" 𝑠𝑝𝑒𝑒𝑑𝑢𝑝#

Multi-objective tuning
• How to evaluate a binary optimization 𝑐?
• i.e. should 𝑐 be enabled?

• Define a fitness function F to collapse multiple speedups into a single
value:
• 𝐹(𝑠𝑝𝑒𝑒𝑑𝑢𝑝0, 𝑠𝑝𝑒𝑒𝑑𝑢𝑝1, 𝑠𝑝𝑒𝑒𝑑𝑢𝑝2)

𝑠𝑝𝑒𝑒𝑑𝑢𝑝! 𝑠𝑝𝑒𝑒𝑑𝑢𝑝" 𝑠𝑝𝑒𝑒𝑑𝑢𝑝#

Multi-objective tuning
• How to evaluate a binary optimization 𝑐?
• i.e. should 𝑐 be enabled?

• Define a fitness function F to collapse multiple speedups into a single
value:
• 𝐹(𝑠𝑝𝑒𝑒𝑑𝑢𝑝0, 𝑠𝑝𝑒𝑒𝑑𝑢𝑝1, 𝑠𝑝𝑒𝑒𝑑𝑢𝑝2)

• Options?

Multi-objective tuning
• How to evaluate a binary optimization 𝑐?
• i.e. should 𝑐 be enabled?

• Define a fitness function F to collapse multiple speedups into a single
value:
• 𝐹(𝑠𝑝𝑒𝑒𝑑𝑢𝑝0, 𝑠𝑝𝑒𝑒𝑑𝑢𝑝1, 𝑠𝑝𝑒𝑒𝑑𝑢𝑝2)

• Options?
• average (geomean)
• max, min?

Multi-objective tuning
• How to evaluate a binary compiler optimization 𝑐

• Baseline: runtimes at 𝐸 𝑝, 𝑖, 𝑎!, 𝑜
• 𝑝 is a program
• 𝑖 is an input
• 𝑎! is an architecture (we can have many of these)
• 𝑜 is an optimization setting. The baseline has 𝑐 disabled

• Call a baseline runtime for architecture 𝑛 : 𝐵!

• Speedups: evaluate runtimes at 𝐸 𝑝, 𝑖, 𝑎!, 𝑜 + 𝑐
• Same programs and baselines, except with 𝑐 enabled
• Call these runtimes : 𝐶!

Multi-objective tuning
• How to evaluate a binary compiler optimization 𝑐

• Baseline: runtimes at 𝐸 𝑝, 𝑖, 𝑎!, 𝑜
• 𝑝 is a program
• 𝑖 is an input
• 𝑎! is an architecture (we can have many of these)
• 𝑜 is an optimization setting. The baseline has 𝑐 disabled

• Call a baseline runtime for architecture 𝑛 : 𝐵!

• optimization times: evaluate runtimes at 𝐸 𝑝, 𝑖, 𝑎!, 𝑜 + 𝑐
• Same programs and baselines, except with 𝑐 enabled
• Call these runtimes : 𝐶!

Multi-objective tuning
A speedup for architecture 𝑛 is %!

&!
, call it 𝑆'

Check:

𝐹(𝑆(, 𝑆), 𝑆*, … 𝑆') > 1.0

For example: if 𝐹 is the average, then this will measure if the average
effect of the optimization caused a speedup or slowdown.

If F is min, then this will determine if the worst-off architecture still saw
a speedup.

Multi-objective tuning
• Options?
• average (geomean)
• max, min?

• For 3 applications,
architecture portability
got within:
• 85%, 70% and 70%

of maximum performance

from: “Analyzing and improving performance portability of OpenCL applications via auto-tuning” Price et al. IWOCL 2017

Performance Penalties for Portability

From: “One Size Doesn’t Fit All: Quantifying Performance Portability of Graph Applications on GPUs” IISWC 2019.

Wrapping up

• No class on Wednesday

• Friday is an extended class, keep an eye out for sign-up sheets for
presenters

• Office hours on Tuesday (2-3 pm) and Thursday (2-3 pm)

