CSE211: Compiler Design

Nov. 29, 2021

* Topic: Optimization Policies

* Discussion questions:

* How can you determine good
optimizations for a program?

Announcements

* Friday is a big day:
* Homework 4 is due
* Paper reviews are due
* Final project presentations
* 2 hour class (1 hour extended after)

* Class on Wednesday canceled

* use the time to study for the final, work on homeworks, or work on final
project

Announcements

* Sign-up for time slots
* Priority given to those who cannot attend off-hours

* For those who cannot attend off-hours, please read the blog posts for the
projects you miss

* 120 minutes for 11 presentations:

* 9 minutes per presentation (HARD, | will be using the unforgiving iphone
timer)

 try for 7 minute presentation and 2 minutes for questions.

* Use your own computer, or if you send me your presentation, you can use
mine.

Announcements

* For blog post:
* please submit as a PR to the class git repo:
* https://github.com/SorensenUCSC/CSE211-fa2021/
* follow the example project
* create a directory with your name, include an .md file and all images
* link to it in projects.md

* Write the blog post like how you’d like to read one! Lots of
background, lots of images and code snippets.
e Use only original images please!
* Should roughly be the same amount of content as the final report would be.

Announcements

* For reports (project and paper):
* if you are having trouble filling in the space:
* give more background. Imagine you are giving a CSE211 lecture!
e give more examples and walk through them
* show code snippets
* discuss related works

* At some point in your career you will transition to wanting more space
rather than trying to fill up space!

Announcements

e Office hours:

 Since thanksgiving office hours got canceled, | will hold a make-up hour
tomorrow from 2 - 3 pm

* There will also be normal Thursday office hours

* After Friday:

* | will start grading HW3, HW4 and paper reviews
* Please discuss grades with me ASAP if there are issues

Announcements

e SETs:

* Please fill them out!
* They are important for non-core classes like this one

* Individual feedback is also appreciated: feel free to send an email with any
thoughts you have:
* what you enjoyed ©
* what you wish we would have discussed
e what you wish we would have spent more time on

* | will also release an anonymous survey on canvas asking some of these
qguestions. It should not replace the SETs though!

CSE211: Compiler Design

Nov. 29, 2021

* Topic: Optimization Policies

* Discussion questions:

* How can you determine good
optimizations for a program?

CSE211: Compiler Design

Nov. 29, 2021

* Topic: Optimization Policies

* Discussion questions:

* How can you determine good
optimizations for a program?

CSE211: Compiler Design

Nov. 29, 2021

e auto-tuning: Halide approach

* Topic: Optimization Policies

* Discussion questions:

* How can you determine good
optimizations for a program?

CSE211: Compiler Design

Nov. 29, 2021

e auto-tuning: Halide approach
e exhaustive enumeration: irgl approach

* Topic: Optimization Policies

* Discussion questions:

* How can you determine good
optimizations for a program?

relative runtime change

Rank-based

Pros and cons for this approach?

are points more likely to be above or
below the line?

Applications

Nvidia-Quadro
Nvidia-1080
AMD-R9

Uniform Intel-Iris

Intel-HD5500

@ Optimizations
LB — Local

ARM-Mali 7628

Opt. On Optimization Space

Domain

CSE211: Compiler Design

Nov. 29, 2021

e auto-tuning: Halide approach
e exhaustive enumeration: irgl approach

* Topic: Optimization Policies . What else?

* Discussion questions:

* How can you determine good
optimizations for a program?

Big question

* When should optimizations be enabled or disabled?
* if optimization adds a large compile time

if optimization makes debugging harder

if optimization makes smaller binaries

if optimization is not well tested

if optimization is likely to provide a performance increase

What do modern compilers do?

* gcc?
* -00, -01, -02

 See differences at:
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

e different optimizations for different use cases
e -Os, -Og, -Ofast

Making programs go faster

* All of the optimizations we’ve examined have had performance trade-
offs

* Local value numbering?

X = a + b; X = a + b; what can go wrong?

A 4

y = a + b; y = X; x might have gone to memory if there isn’t enough
registers. A memory access is more expensive than
some arithmetic operations

Same issue for Pipelining and Super Scalar re-orderings!

Making programs go faster

* All of the optimizations we’ve examined have had performance trade-
offs

* Loop unrolling?
* Pros/cons?

* Making DOALL loops parallel?

* Pros/cons?

Compilers are evaluated on benchmark suites

Scientific computing
* Rodinia, Parboil, Linpack

Managed Languages:
e Decapo (Java)

Heterogeneous systems

* SHOC
* GPU
* Magma combination?
https://www.phoronix.com/scan.php?page=article&item=gcc-clang-2019&num=1
* Graphs
* GAPs

For general compilers, performance differences are tiny: e.g. 2%

Benchmarks can have a variety of
characteristics

parboil and rodinia

| | | | I | | | | | | | | m 5.31 9.46
4.5 - . —
I Bascline
4 - [_]Perfect L1 Cache .
35 - _ —
o 3 B —
-]
B 25 -~
o
B cr B B _
1.5 | B =
1 —
" | | |
LAVAMD MRIQ CUTCP | SRAD CF[R/I dHOTSIP8T LUD KMEANS| LBIY\I/I ’ NIN Y SGEMM | PATH SPMV STENCIL NW BACKPROP
Compute Bound Workloads %O%rr?ctje Orﬂlrggg;e goﬁrnaée ork?cr)na%lg Memory Bound Workloads

From: DeSC: Decoupled Supply-Compute Communication Management for Heterogeneous Architectures. Ham et al., MICRO 2015

Running benchmarks

e Just run it?

* Need to be careful...

M
easurement bias

Envir
onment
a .
measwemen{S C;OKS can InfernCe Perf
. Sometimes Significant/ormance
y!

Producing Wwrong Data Wwithout Doing Anything Obviously Wrong!

Todd Mytkowicz Amer Diwan Matthias Hauswirth peter F. Sweeney
Department of Computer Science Faculty of Informatics 1BM Research
University of Colorado University of Lugano Hawthorme, Ny, US
Boulder, co,USA Lugano, CH pfs@us.'\bm.com

Abstract

This paper presents 2 surprising result: changing 2 seemingly

innocuous aspect of an expenmema\ setup can cause a SyS”

jmental setuP may 10 fact introduce 2 sxgniﬁcam bias in an
evaluation- This phenomenon is called measurement pias in

Our results demonstrate that measuremem bias 1S signif-
icant and commonplace in computer system evaluation- y
si gniﬁcant we mean that measuxemem bias can lead to a per-

that measu:emem bias occurs in all architectures that we
tried (Pemium 4, Core 2, and mS 03CPU), both compilers
that we tried (g€€ and Intel’s C compiler)s and most of the
SPEC CPU2006 C programs- Thus, W cannot ignore mea-
surement bias. Neverthe\ess, ina 1jterature survey of 133 re-
cent papers from ASPLOS, PACT, pLDI, and CGO, we de-
termined that none of the papers with experimema\ results
adequate\y consider measuremem bias.

¢ problems and their solutions in other

Matth\as.Hauswirth@un'\s'\.ch

Systems researchers often Us® experimems to drive their
work: they use experiments to identify pottlenecks and then

again t0 determiné if their optimizaﬁons for addressing the
et L ve

researcher may draw ab incorrect conclusion: she may end
up wasting time on somethin: that is not really 2 problem
and may conclude that her opt'\mizaﬂon is beneficial ever

To understand the impact of measuremem bias, we inves”
tigate, as a0 example, whether 0f not 03 optimizat‘\ons are
peneficial 0 program pe ormance when the expeﬂmema\

<« . ~fhvutes required to store the envu'onmem
< 5

Measurement bias

Size of environment variables on Linux?

From “Producing Wrong Data Without Doing Anything Obviously Wrong!” Mytkowicz ASPLOS 2009

Measurement bias :

1600000 —

1400000 —

00)

@ 1200000 —

cycles

Size of environment variables on Linux? 1000000 —

800000 —

600000 —

000 —
2000 —
3000 —
4000 —

bytes added to empty environment

From “Producing Wrong Data Without Doing Anything Obviously Wrong!” Mytkowicz ASPLOS 2009

Measurement bias :
1600000
1400000
=)
o
% 1200000
@
=4
Size of environment variables on Linux? © 1000000 —]
@ . % “"n D EITEK _—
800000 | o 0% et e P & 0 et P
frequently performance difference is 33%
600000 L € | | | |
Max is 300% o S S 3 3
o o o o
~ (qV] o <t

bytes added to empty environment

From “Producing Wrong Data Without Doing Anything Obviously Wrong!” Mytkowicz ASPLOS 2009

Measurement bias e
1600000
1400000
)
% 1200000
@
=4
Size of environment variables on Linux? © 1000000 —
800000 —
frequently performance difference is 33%
600000 L €
Max is 300% =

1000 —
2000 —
3000 —
4000 —

bytes added to empty environment

This phenomenon occurs because the UNIX
environment is loaded into memory before the call stack.
Thus, changing the UNIX environment size changes the
location of the call stack which in turn affects the alignment
of local variables in various hardware structures.

From “Producing Wrong Data Without Doing Anything Obviously Wrong!” Mytkowicz ASPLOS 2009

Measurement bias

The order in which libraries are linked?

From “Producing Wrong Data Without Doing Anything Obviously Wrong!” Mytkowicz ASPLOS 2009

Measurement bias

1.10] =)
()
o o ° .
E 1.05 — 5 e e e
9 ee © ® e
The order in which libraries are linked? & & 6® o © e 6 o
— 5] e ©e
& 1.00 e o
In some cases O3 is slower than O2! 1 e o
)
o
>
© 0.95 -
e
[T Tl
ETOITOOONODO~ANMITINONODO T~ ANINONODNOT—AM
gg FFFFFFFFFF ANANANANANANANANANMMMOOM
< linking order
©

(a) Perlbench

From “Producing Wrong Data Without Doing Anything Obviously Wrong!” Mytkowicz ASPLOS 2009

Measurement bias

Processes running on other cores can influence timing:

Intel chips: max of 1.15x difference
Mobile chips: max of 10x difference

From “Slow and Steady: Measuring and Tuning Multicore Interference” lorga et al. RTAS 2019

How to combat measurement bias?

* Run lots of times
 The homeworks in this class have not emphasized this enough!

* Run a large enough benchmark suite
* Run in many different configurations (environment sizes, etc.)

* Results in the paper show that the difference between 02 and O3 is
an average of 1.007x

From “Producing Wrong Data Without Doing Anything Obviously Wrong!” Mytkowicz ASPLOS 2009

Stabili
ilizer: a tool to hel
P

A cC :
ompiler tool to

evalu
Orn []
piler optimi
izatio
nsl!

{char\\e.emery umass.edu
Abstrac i ttoduch
eseasc\\ers 4 sof d P e effec e pe ance e task of perfom\a“ce eva\uauon forms 2 key P of SEs
eva\uat'\on searc ¢ eval optimiZ jons easure tems tesearch and the softwar® deve\opmem psocess. Researc\\ccs
over\\cad Ware tomatic ormance® 1egres” workin 1 systems rangind from compiler optt 17210 d run-
sjon tests 1o disco¥e h - degrade pe anc @me sYS ems 10 © de transfo ation fram® orks and pug & {ectors
The stand ethod y tion G0€ pefor® and must measur® ¢ effect: Jaluating how much they 1P ve per-
after app\ymg ch formanc® or hoW uch © ead the 1mpos® (1,8} Software devel
Unfo natelys od s make approa® opers peed © ensure that neW of ified code either 18 ct yie\ds
unsow {atistic 1y ound eV Juation ¢ ires multipi® samples the gesired perf ance prove at, or at \cast 40¢S ot caus®
to test ether © 1 or cant t (n confide ce) reject th peri ance 168 on (that is, ng the gyste™® Tun Jowen): ¥
pull I hesis esults ¢ pefor® and after wever 1arge systems in both the oper” rce €O anity (€8 jrefox
aches nd pranch p:ed'sctor ormance d pendem on Chrommm) 4 in indus mat erf ance 1€ Ssion tes
mac! me-spec'x arameters ot layout of code tack are nOW 2 standa!d part puild Of releas® proces 25, 28).
frames, and heaP objects: As 1e b stitutes just one ple n oth setings perfomance ev uall typic ceds bY
from the space of p\:ogmm\ youtss ss of the W ns. testing the perfom\ance of the actual applica® nina of cenarios
Since comp\\er opt'xmiza(\o de v ges also ayouts it arang® of pench S, poth pefore a after avp\y‘mg changes of
is cm:rem\ ! ssible © di T th of (mizaton the 2osence d pr ence of aneW opﬁmizaﬁon, Tuntime system:
from that of its 1ay effe etc
This pap® P TLIZER, a syste at e ables e of n addivon t measunng effect size (e magnimde o
the powarfu\ (atisicd aes 1eAW for soun perf ance chang® nP mance): & s&anst'\ca\ y sound &Y 1on must test
evalua\ion o Jnitectures: STA [LIZER forces © cutions whether s jble with ahigh degre® of cO! dence © reject th
o s@ ple ¢ e sp& Ty conﬁguraﬁons b epea&ed\y 1e- null hypotheSL at the perfotmance of the sion 18 indistin
¥ JomiZing 1ay of codes stacks d at Tunime uishabl® from ! old. To sho that a perfo e opt'xmszat'\o
STAB“XL R es 1! poss' e 10 ayout effects tat'\suca\\y sig) ificants we ne d 1o reject ol hypothes'\s
Re—tando 72! al ensures yO! ects follow 2 Gavussiad high conﬁdence show {hat the directio o ptovemem is
L utions © \ing the § sts ANO\IA. W jtive Com'efse\ ,We jm W (hatit is jble ¢ reject
S {ZER £ficiency n over ead) and aull hyP esis en W€ testing forap egress'\o
pac |9 *s opt mizato Unf rmnate\y, even o usit t bes ctices (\
L aqd that while ~ aumbers rans da qmescem syste) © tional appr
_ctof js unsO The roble e ot eract etween soft
d m jrecty! atures, W1y cache and br
e featur® e sensith esses of the ©
e Sigl feant P! ormance®
Jictions (e-8
g

Stabili
ilizer: a tool to hel
P

Ac

0] .

eval mpiler tool to
Uate

com .
piler optimizatio
ns!

{chaﬁe.emery}@cg u

Given
d p r
ogra
mp
) St H
.M abilizer create
emo s S
ry all (p
ocati
ion i
ndomi
mized i Abstract
d N t h e h 4 software geveloper® requir® offective
e a p evaluate © t’xm'lzat'\ons or M
. ead. ic formanc® regres”
sjon tests o d1sCO’ rform qme sYS ems 1© code 1@
The smndatd metho s asure thelr effect, evall in W
i anges- or how much ovemead (ney imPOS X
arch'lw;mra\ features make this pew Of mod'&ﬁed code eith® n
: _p requires oulapie S ¢, or at does not cause
\ o) reject the pe ormance n s).
1arge systems n e op
jum) and 10 industry> auto! ic perf
3 part of the puild Of releas® cess
e eva\uaﬁon typ'xcal\y proce
\ inaset of scenarios:
11t

« F
uncti
lon
calls
progr are t
am rap
orv i nd .
y is randomi their location i
mize d IoNn in
* o test Whe e
null hypomes'\s {hat 1¢ e
and pranch p:edsctots make P
machine” ific pasame\ers and the exact yayout © :
frames, and hed! jects: S| inary const'mnes just one sam!
ce of p\:ogmm 1ayouts: regar ¢ numoer of Tuns-
1 nizations and code chatt es als er 1 it or a1ange of ben umar
1<(inguis the jmpact of an opt in the 2osence and presenc a
Tn 2dditon (o me? ing effect size (e the W& pitade of
n perfotmance), atisth soun eva\ua\lon mus!
3 sib " a Mg degre® of cow eject the
of the new ver is
mance O t'\m'\za(\on is
15 With

« F
uncti
ion st
ack |
ocati
ar
e randomly off
set
t
This papet presents
h rful sm'xst'sca\ technia
odern axch'ltecmtes. STAB
memo conﬁguraﬁons y edly 1€
eap objects at cuntime- al
or ¢ effects: stat'\sdca\\y sig)
1 \ conf\dence (an
y, W aim 10 show that it
i awe e testing fora pedormance (<
ing current pest pract'\ces (lar
jonal appro’
softw

Stabili
ilizer: a tool to hel
P

Ac
omopi
il
eVaIUaE[)e ecr tool to...
ile .
r optimizations|
Charli® Curtsing®t Bm
Ugivpers‘xw N Comp“tzzsc;-xzrst
Amhets" Y;A(;S t\ mzss edu

R u n n H
ing S(
unifo p) for
rm di many i
m distribution ny iterations
. rovi
of runtimes provides a
Reseasc\\ers and sO W
jon. Reseatche\:s must eV& u
oftw geveloper® se autom? perfor™
changes {mprove or degrade perfom\ e.
<ecution fimes pefore and as
Eom\ance or how m
eed 10 ensure that n€ or MO
y formanc® ’\mprovemem, or & t
i 3 ing the gyste™® run
n

the &
poth Yefor!
opt'\m'lzanon,

They sh

ow th

een O ere is

2and O no statisti
3 sti
[cal di
n LLVM (2013 | difference
) after app\y'mg 1hanges:
Unfommate\y, moder® archit al
nd. Staﬁs\ica\\y sound eva\uaﬁon req
1o test whether one can o annot (W jth high con! dence)
null hypomes'\s {hat 1¢ are the same pefor® and after However:
ch p:ed'sctors make perfo ance ependem on Chromiv™®
am and the exact yayout © code, S K are nOW 2 standa:d p 2
inary consﬁmtes uston® sample n bot! 3 ! ormance eval n
1er of TU0%: testing the p¢ o ctual app\'xcat’sox\ inaset
i ora 1ang® of benc‘nmax\cs, ote a after app\y‘mg chang
in the sence and presence of aneW < o, runtime system:
: i e, the magnimde of
y us!

Order in which optimizations are applied?

* Example:
* Loop unrolling followed by ILP scheduling
 What about the other way around?

Order |

ich opti
optimizations

are a

pp“edp

Example:
[] LOO
« W ollin
hat about ti followed b
e other waz// ILP scheduli
a|"ound_P INg

the
y ca
Perforn?aachiev o 79%
im p nce 0
m
orde g opti y
r ptimi : g : .
mization C\us\ermg—B sed Se\ec\\on tot \ne Eﬁp\ma\\o) Gomp\\er
Op’t\m\za\\o“ Sequences
LU\Z G. M N\P\P\T\NS,?edef@Un'Wetsiw oﬁﬂbeﬂﬁm it
R\GP\P\DO NOBP\E and JOP\O . © OP\P\DOS , U gersity 0
P\\,E%P\NDP\E c.5- DELBE\\,\ and EDU P\P\DO N\P\P\QU Upiver® y of S0 Paulo
A\are® aroet of ¢ W\ opW 328 g are no 202y o 0 These opV m’xzat'x yact ity
per 3 wrp e 0P y, c03e n gever al & a comp\exw o.The se! 1ence of aP 132810 of optxmimaﬁon
ve & St iﬁcaﬁt 3P y, OB ne P° o ance achxeved. offect of the ptv 1zat'10ﬁs 18 ot
\ Jepe® ent e exhausﬁw oxPIO* ation ofal e 4equ® ces of ¢0 piet optm\'xza—
‘ieas'xb\e As nis exp\otaﬁon 18 @ omPe* nd gine-° sum'mg yask
ace Exp\oraﬁon B) stfateg'xes oth 0 gelect opt'xmmaﬁon
ne \xcaﬁo and 10 yeduc he oxPIO* atio? B{me-
: 0aC gor &¥° P {\mct'xoos e e\
of pt'xm'mat’xo S pfeviousl‘
§ oction® ases 2 dal
pine® ot

Compiler optimization domains

* General case:

* Compile many diverse pieces of code, run on many different inputs and
architectures

e examples: gcc at -03

Compiler optimization domains

* General case:

* Compile many diverse pieces of code, run on many different inputs and
architectures

e examples: gcc at -03

* Fully Specialized:
* Compile one piece of code for one architecture and one input
e examples?
e optimizations?

Compiler optimization domains

* General case:

* Compile many diverse pieces of code, run on many different inputs and
architectures

e examples: gcc at -03

* Fully Specialized:
* Compile one piece of code for one architecture and one input
e examples?
e optimizations?

* Semi-specialized?

Semi-specialization Examples

One binary, many architectures

* x86 binary runs on machines with different number of cores, pipeline
depths, super scalar widths etc.

Many programs, one architecture

 Modern compilers are often tuned (or query device info) when they
are installed

Are fully specialized applications portable?

Skylake CPU

Haswell CPU

Ivy Bridge CPU 1 21%

RX 480

tuned for: RO Fury X -
R9 290X

HD 7970 -

GTX 1080 Ti

GTX 980 Ti

GTX 780 Ti

GTX 680

GTX 580

=) S
S & &3
9 o £ &
Q%@

ran on:

from: “Analyzing and improving performance portability of OpenCL applications via auto-tuning” Price et al. IWOCL 2017

tuned for

Tuning for same vendor?
AMD

RX 480
R9 Fury X
R9 290X

HD 7970

running on

from: “Analyzing and improving performance portability of OpenCL applications via auto-tuning” Price et al. IWOCL 2017

tuned for

Tuning for same vendor?

AMD Nvidia

GTX 1080 Ti
RX 480

GTX 980 Ti
R9 Fury X —
S
S GIX780Ti
|
I=
RY 290X
GTX 680
HD 7970 GTX 580
S S & & &
= = $ S $
& & & Fe S
o o & & A
o o &
running on running on

from: “Analyzing and improving performance portability of OpenCL applications via auto-tuning” Price et al. IWOCL 2017

tuned for

Tuning for same vendor?

AMD Nvidia

GTX 1080 Ti
RX 480

GTX 980 Ti

R9 Fury X

GTX 780 Ti

tuned for

R9 290X
GTX 680

HD 7970 GTX 580

running on running on

tuned 1or

Intel

Skylake CPU ~

2%

Haswell CPU A

Ivy Bridge CPU

2%

o) o
& & 8
L L
z g 3
Q 3 £
N z 3
<
running on

from: “Analyzing and improving performance portability of OpenCL applications via auto-tuning” Price et al. IWOCL 2017

Multi-objective tuning

 Example, being portable across architectures:

* E(p,i,a,0) is the execution time of running program p on input i on
architecture a with optimization settings o

 How to evaluate a binary optimization c?
* i.e. should ¢ be enabled?

Multi-objective tuning

 Example, being portable across architectures:

* E(p,i,a,0) is the execution time of running program p on input i on
architecture a with optimization settings o

 How to evaluate a binary optimization c?
* i.e. should ¢ be enabled?

Multi-objective tuning

 Example, being portable across architectures:

* E(p,i,a,0) is the execution time of running program p on input i on
architecture a with optimization settings o

 How to evaluate a binary optimization c?
* i.e. should ¢ be enabled?

Multi-objective tuning

 Example, being portable across architectures:

* E(p,i,a,0) is the execution time of running program p on input i on
architecture a with optimization settings o

 How to evaluate a binary optimization c?
* i.e. should ¢ be enabled?

speedup,

Multi-objective tuning

* How to evaluate a binary optimization c?
* i.e. should ¢ be enabled?

* Define a fitness function F to collapse multiple speedups into a single
value:

* F(speedupg, speedup,, speedup,)

speedup,

Multi-objective tuning

* How to evaluate a binary optimization c?
* i.e. should ¢ be enabled?

* Define a fitness function F to collapse multiple speedups into a single
value:

* F(speedupg, speedup,, speedup,)

* Options?

Multi-objective tuning

* How to evaluate a binary optimization c?
* i.e. should ¢ be enabled?

* Define a fitness function F to collapse multiple speedups into a single
value:

* F(speedupg, speedup,, speedup,)

* Options?
e average (geomean)
* max, min?

Multi-objective tuning

 How to evaluate a binary compiler optimization ¢

* Baseline: runtimes at E(p,i,a,,0)
* pisaprogram
* Lisaninput
* a, is an architecture (we can have many of these)
* 0 is an optimization setting. The baseline has ¢ disabled

* Call a baseline runtime for architecturen : B,

Multi-objective tuning

 How to evaluate a binary compiler optimization ¢

* Baseline: runtimes at E(p,i,a,,0)
* pisaprogram
* Lisaninput
* a, is an architecture (we can have many of these)
* 0 is an optimization setting. The baseline has ¢ disabled

* Call a baseline runtime for architecturen : B,

e optimization times: evaluate runtimes at E(p,i,a,, 0 + ¢)

 Same programs and baselines, except with ¢ enabled
* Call these runtimes : C,,

Multi-objective tuning

. . B .
A speedup for architecture n is C—" ,callit S,

n

Check:

F(Sy,S1,S, - Sy) > 1.0

For example: if F is the average, then this will measure if the average
effect of the optimization caused a speedup or slowdown.

If F is min, then this will determine if the worst-off architecture still saw
a speedup.

Multi-objective tuning

° Options? Skylake CPU 45%
Haswell CPU 4 12% | 16% | 16% | 39% | 43% | 37%
* average (geomean)

Ivy Bridge CPU 1 21% | 14% | 18% | 41% | 40% | 19%

* max, min? BRI

R9 Fury X -

. . R9 290X

* For 3 applications, D 7670 -
architecture portability GTX 1080 Ti

got within: GTX 980 Ti

GTX 780 Ti
* 85%, 70% and 70% GTX 680 1% | 5% | 4%
of maximum performance GIESE X Sl % |
S S & & & & X N & » b b
S sssrF s 888
s & 5 & £ g @) 5 %§ ;?7
°c & & g g 7

~

from: “Analyzing and improving performance portability of OpenCL applications via auto-tuning” Price et al. IWOCL 2017

Performance Penalties for Portability

portable specialised 1 dim specialised 2 dim

=)

o

C

=

S

2 126 124 124

c 116 115

©

(O]

=

(@]
S K R & N \&
Q X 2 X C

< ¢ \Q\ \QQ \’)Q,\ 0{0
X \

optimisations strategies

From: “One Size Doesn’t Fit All: Quantifying Performance Portability of Graph Applications on GPUs” IISWC 20189.

Wrapping up
* No class on Wednesday

* Friday is an extended class, keep an eye out for sign-up sheets for
presenters

» Office hours on Tuesday (2-3 pm) and Thursday (2-3 pm)

