
High-performance
Graph Processing on GPUs

Original slides by: Sreepathi Pai
University of Rochester, October 12, 2018

Adapted by Tyler Sorensen for CSE211 at UCSC
Nov. 24, 2021

Sreepathi Pai acks: Keshav Pingali, Alastair Donaldson, Muhammad Amber Hassaan, Tal
Ben-Nun, Michael Sutton, Chad Voegele, Yi-Shan Lu, Ahmet Celik, Milos Gligoric, Sarfraz

Khurshid

2

Graph Processing

Graphs (1736 Edition)

Euler’s Königsberg Bridges

Modern day Abstract View As a Graph

Graphs in 2019

Size/Growth of modern graphs

0

200

400

600

800

1000

1200

2008 2010 2012 2014 2016 2018 2020

Ac
tiv

e
U

se
rs

 (i
n

m
ill

io
ns

)

Year

Instagram Active Users

https://techcrunch.com/2018/06/20/instagram-1-billion-users/
https://www.statista.com/statistics/250934/quarterly-number-of-netflix-streaming-subscribers-worldwide/

0

20

40

60

80

100

120

140

160

2010 2012 2014 2016 2018 2020
Su

bs
cr

ib
er

s (
in

 M
ill

io
ns

)

Year

Netflix Subscribers

https://techcrunch.com/2018/06/20/instagram-1-billion-users/
https://www.statista.com/statistics/250934/quarterly-number-of-netflix-streaming-subscribers-worldwide/

Graphs in 2019

Size/Growth of modern graphs

0

200

400

600

800

1000

1200

2008 2010 2012 2014 2016 2018 2020

Ac
tiv

e
U

se
rs

 (i
n

m
ill

io
ns

)

Year

Instagram Active Users

https://techcrunch.com/2018/06/20/instagram-1-billion-users/
https://www.statista.com/statistics/250934/quarterly-number-of-netflix-streaming-subscribers-worldwide/

0

20

40

60

80

100

120

140

160

2010 2012 2014 2016 2018 2020
Su

bs
cr

ib
er

s (
in

 M
ill

io
ns

)

Year

Netflix Subscribers

• Applications:
• recommendation systems

https://techcrunch.com/2018/06/20/instagram-1-billion-users/
https://www.statista.com/statistics/250934/quarterly-number-of-netflix-streaming-subscribers-worldwide/

Graphs in 2019

Size/Growth of modern graphs

0

200

400

600

800

1000

1200

2008 2010 2012 2014 2016 2018 2020

Ac
tiv

e
U

se
rs

 (i
n

m
ill

io
ns

)

Year

Instagram Active Users

https://techcrunch.com/2018/06/20/instagram-1-billion-users/
https://www.statista.com/statistics/250934/quarterly-number-of-netflix-streaming-subscribers-worldwide/

0

20

40

60

80

100

120

140

160

2010 2012 2014 2016 2018 2020
Su

bs
cr

ib
er

s (
in

 M
ill

io
ns

)

Year

Netflix Subscribers

• Applications:
• recommendation systems
• (mis)information spread

https://techcrunch.com/2018/06/20/instagram-1-billion-users/
https://www.statista.com/statistics/250934/quarterly-number-of-netflix-streaming-subscribers-worldwide/

7

What is graph processing?

Graphs are ubiquitous
– Social Networks
– Road Networks

Graphs of interest are large:
– Millions of nodes, Billions of edges

Parallel Graph processing is necessary!

8

Graph Processing Platforms

Cluster Processing Systems
– Apache Giraph (Facebook)
– GraphLab (CMU)
– GraphX (UC Berkeley)

Vertex-centric Programming Model
– Highly parallelizable
– Limited expressivity
– Optimized for scale-free graphs
– Scalable, but not performant

9

Scalability, but at what COST?
[McSherry et al. 2015]

System/Algorithm Cores Twitter UK-2007-05

GraphLab 128 242s 714s
GraphX 128 251s 800s

Label Propagation 1 153s 417s

Twitter: 41M vertices, 1.4B edges
UK-2007-05: 105M vertices, 3.7B edges

McSherry F., Isard M., and Murray D. G., Scalability, but at what COST?, HotOS 2015

Connected Components

10

Scalability, but at what COST?
[McSherry et al. 2015]

McSherry F., Isard M., and Murray D. G., Scalability, but at what COST?, HotOS 2015

11

Parallel Graph Processing Pitfalls

USA Road Network
24M nodes, 58M edges

High diameter, Low Uniform Degrees

LiveJournal Social Network
5M nodes, 69M edges

Low diameter, Highly-skewed Degrees

299ms BFS(1) 84ms

692ms BFS(2) 41ms

Perfect storm for a DSL

State-of-the-art DSLs massively underperform

Handwritten optimized code exists (guide for DSL)

Optimizations are not portable:
- i.e. it makes sense to decouple optimizations from algorithm,
similar to Halide

13

IrGL (intermediate graph representation)

IrGL is a language for graph algorithm kernels
– Slightly higher-level than CUDA

IrGL kernels are compiled to CUDA code
– Incorporated into larger applications

IrGL compiler applies 3 throughput optimizations
– User can select exact combination
– Yields multiple implementations of algorithm

Compiler generates all the interesting variants!

14

Bottlenecks in GPU Graph Processing

15

Example: Level-by-Level BFS
0

111

222 222

Kernel bfs(graph, LEVEL)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

edge.dst.level = LEVEL
Worklist.push(edge.dst)

src.level = 0
Iterate bfs(graph, LEVEL) [src] {

LEVEL++
}

16

Bottleneck #1: Short Kernels
Kernel bfs(graph, LEVEL)

ForAll(node in Worklist)
ForAll(edge in graph.edges(node))

if(edge.dst.level == INF)
edge.dst.level = LEVEL
Worklist.push(edge.dst)

src.level = 0
Iterate bfs(graph, LEVEL) [src] {

LEVEL++
}

●USA road network: 6261 bfs calls
●Average bfs call duration: 16 µs
●Total time should be 16*6261 = 100 ms
●Actual time is 320 ms: 3.2x slower!

17

Iterative Algorithm Timeline

bfs

bfs

bfs

bfs

Time

CPU GPU

launch

Idling

Idling

Idling

18

GPU Utilization for Short Kernels

19

Improving Utilization
GPU

bfs

bfs

bfs

bfs

Time

Control Kernel

CPU
launchGenerate Control Kernel to

execute on GPU

Control kernel uses function calls
on GPU for each iteration

Separates iterations with device-
wide barriers

– Tricky to get right!

Device-wide barriers now
supported in CUDA 9

20

Bottleneck #2: Load Imbalance
from Inner-loop Serialization

Kernel bfs(graph, LEVEL)
ForAll(node in Worklist)
ForAll(edge in graph.edges(node))

if(edge.dst.level == INF)
edge.dst.level = LEVEL
Worklist.push(edge.dst)

src.level = 0
Iterate bfs(graph, LEVEL) [src] {
LEVEL++

}

Worklist

Threads

21

Exploiting Nested Parallelism
Generate code to execute
inner loop in parallel

– Inner loop trip counts not known
until runtime

Use Inspector/Executor
approach at runtime
Primary challenges:

– Minimize Executor overhead
– Best-performing Executor varies

by algorithm and input

Threads

Threads

22

Scheduling Inner Loop Iterations

Example schedulers from Merrill et al., Scalable GPU Graph Traversal, PPoPP 2012

Thread-block (TB) Scheduling Fine-grained (FG) Scheduling

Synchronization
Barriers

23

Multi-Scheduler Execution

Example schedulers from Merrill et al., Scalable GPU Graph Traversal, PPoPP 2012

Thread-block (TB) + Finegrained (FG) Scheduling

Use thread-block (TB)
for high-degree nodes

Use fine-grained (FG)
for low-degree nodes

24

Bottleneck #3: Atomics

Kernel bfs(graph, LEVEL)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

edge.dst.level = LEVEL
Worklist.push(edge.dst)

src.level = 0
Iterate bfs(graph, LEVEL) [src] {

LEVEL++
}

●Atomic Throughput on GPU: 1 per clock cycle
–Roughly translated: 2.4 GB/s
–Memory bandwidth: 288GB/s

pos = atomicAdd(Worklist.length, 1)
Worklist.items[pos] = edge.dst

25

Aggregating Atomics: Basic Idea

atomicAdd(..., 1)

Thread Thread

Write

atomicAdd(..., 5)

26

Challenge: Conditional Pushes
if(edge.dst.level == INF)

Worklist.push(edge.dst)

...

Time

27

Challenge: Conditional Pushes
if(edge.dst.level == INF)

Worklist.push(edge.dst)

...

Time

Must aggregate atomics across threads

28 /

reserve_tb is incorrectly placed!

Kernel bfs(graph, ...)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

start = Worklist.reserve_tb(1)
Worklist.write(start, edge.dst)

29 /

Inside reserve_tb

reserve_tb

...

0 31
...

32 63

...

64 95

...

Barrier required to synchronize
warps, so can't be placed

in conditionals

Warp 0
Warp 1

Warp 2

30

Three Optimizations for
Bottlenecks

1.Iteration Outlining
– Improve GPU utilization

for short kernels

2.Nested Parallelism
– Improve load balance

3.Cooperative Conversion
– Reduce atomics

Unoptimized BFS
– ~15 lines of CUDA
– 505ms on USA road

network
Optimized BFS

– ~200 lines of CUDA
– 120ms on the same

graph

4.2x Performance Difference!

32

Evaluation
●Eight irregular algorithms

– Breadth-First Search (BFS) [Merrill et al., 2012]
– Connected Components (CC) [Soman et al., 2010]
– Maximal Independent Set (MIS) [Che et al., 2013]
– Minimum Spanning Tree (MST) [da Silva Sousa et al.

2015]
– PageRank (PR) [Elsen and Vaidyanathan, 2014]
– Single-Source Shortest Path (SSSP) [Davidson et al.

2014]
– Triangle Counting (TRI) [Polak et al. 2015]
– Delaunay Mesh Refinement (DMR) [Nasre et al., 2013]

33

Overall Performance

Note: Each benchmark had a single set of optimizations applied to it

Best
Handwritten
Code

Pai and Pingali, OOPSLA 2016

34

Comparison to NVIDIA nvgraph
SSSP

227s 131s

Pai, GTC 2017

Making IrGL portable

Believe it or not...

GPU != Nvidia

There are probably more
Apple/Intel GPUs in this room than

Nvidia GPUs

Headlines

Compiler optimizations can
provide speedups of up to 16x
and a geomean across the
domain of 1.5x

These optimizations can also
provide slowdowns of up to
22x

We perform a massive empirical study (240
hours across 6 different GPUs)

Using a GPU graph application DSL and
optimizing compiler, we find:

Headlines

Traditional performance portability fall short
for graph applications on GPUs

• Previous approaches produce trivial or biased results

All optimization combinations
cause slowdowns AND
speedups across the domain.

Magnitude-based approaches
are biased towards more
sensitive GPUs

Headlines

Rank-based statistical procedures offer a new
way of thinking about performance portability

Headlines

Rank-based statistical procedures offer a new
way of thinking about performance portability

Produces non-trivial
performance portable
optimization combination
yielding a max speedups of 6x

Analysis can create semi-
specialized optimization
strategies, which yield greater
speedups and performance
critical insights.

What is a GPU? (1999 Edition)

https://web.archive.org/web/20160408122443/http://www.nvidia.com/object/gpu.html

https://web.archive.org/web/20160408122443/http:/www.nvidia.com/object/gpu.html

What is a GPU? (2019 Edition)

20 years later, Nvidia’s
homepage advertises
GPUs without the ability
to output graphics!

https://www.nvidia.com/en-us/data-center/dgx-2/

https://www.nvidia.com/en-us/data-center/dgx-2/

Trying to Define the Modern GPU

Still used for high-
end graphics

Trying to Define the Modern GPU

Still used for high-
end graphics

Use in data centers for AI and
scientific computing

Trying to Define the Modern GPU

Still used for high-
end graphics

Use in data centers for AI and
scientific computing

Increasingly used in mobile devices

Trying to Define the Modern GPU

Programmable vector lanes?
• Nvidia GPUs have 32 threads per lane
• Intel GPUs have 8 threads per lane
• ARM GPUs have 1 thread per lane

High Bandwidth?

Highly parallel?
• Nvidia GPUs execute over 10K threads concurrently
• ARM GPUs execute 500 threads concurrently

Intel width

½ Nvidia width

ARM width

Role of a compiler

As GPUs have diversified, it’s the compilers job to
• judiciously apply optimizations

(apply transformations that cause speedups, not slowdowns)
• specialize when possible

This Work

Characterizing performance portability of Graph applications on GPUs

We Developed:
• A portable backend for a GPU graph application DSL and optimizing compiler

We Conducted:
• A large empirical study, collecting 240 hours of runtime data across 6 GPU

We Characterized:
• Performance portability in this domain using a rank-based statistical method

A GPU Graph DSL and Compiler

IrGL : Pai and Pingali, OOPSLA 2016
• Original work targets only Nvidia GPUs

First class support for nodes, edges,
worklists

Optimizing compiler
• Load balancing
• On-chip synchronization
• Atomic RMW coalescing

1

2 3

4 5

6 7

Worklist

2 4 5

IrGL Optimizations

Load Balancing

Graphs have irregular
parallelism leading to
load imbalance

IrGL has 3 transformations to perform load balancing at
3 levels of the GPU hierarchy: Local, Subgroup, Workgroup

Worklist

1 2 3

Threads

IrGL Optimizations

Atomic RMW
Coalescing

Graph
applications
require atomic
RMWs to update
the worklist for
the next iteration

1 2 3

Threads

RMW

RMW

RMW

1 2 3

Threads

RMW

Local
communication

RMWs serialize across
threads

Coalesced RMWs combine RMW
operations from several threads,
using local communication

IrGL Optimizations

On-chip Synchronization

Many graph apps are
iterative, requiring a global
sync between iterations
(epochs)

epoch

epoch

epoch

epoch

GPUCPU

epoch
epoch
epoch
epoch

GPUCPU

Traditionally GPU sync.
involves CPU re-launch

Optimization to do on-chip
sync. using experimental
global barrier between
epochs

Our Empirical Study

All combinations of above were run

Total runtime of 240 hours

Over 10K individual runs

widest empirical study
across GPUs that we are
aware of!

Applications

BFS

SSSP

PR

CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Which optimizations should be applied to
provide best performance across the entire
domain?

Performance Portability

Applications

BFS

SSSP

PR

CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space
(32 options)

Domain

Do No Harm

Only apply an optimization if it:
• Does not provide any slowdowns across the entire domain
• Provides at least one speedup

Easily to query from our data set, and we found…

Do No Harm

Only apply an optimization if it:
• Does not provide any slowdowns across the entire domain
• Provides at least one speedup

Easily to query from our data set, and we found…

All optimizations provided at least one instance of
a slowdown

NOTHING!!!

Do the Least Harm

Relaxation of Do no Harm: Select the optimization
combination that caused the fewest slowdowns.

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

36 Slowdowns
60 Speedups,
1.01x Geomean
2x max speedup

Fewest slowdowns

Do the Least Harm

Relaxation of Do no Harm: Select the optimization
combination that caused the fewest slowdowns.

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

36 Slowdowns
60 Speedups,
1.01x Geomean
2x max speedup

Fewest slowdowns

From our exploration:

Compiler optimizations can
provide speedups of up to 16x
and a geomean across the
domain of 1.5x

Max Geomean

Select the optimization combination that provides
the highest geomean across the domain

49 Slowdowns
66 Speedups,
1.18x Geomean

Highest Geomean
Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Max Geomean

Select the optimization combination that provides
the highest geomean across the domain

49 Slowdowns
66 Speedups,
1.18x Geomean

Highest Geomean
Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

GPUs # Speedups # Slowdowns

Nvidia-Quadro 10 21

Nvidia-1080 00 16

AMD-R9 12 3

Intel-Iris 10 2

Intel-HD5500 14 2

ARM-Mali T628 20 5

Max Geomean

Select the optimization combination that provides
the highest geomean across the domain

49 Slowdowns
66 Speedups,
1.18x Geomean

Highest Geomean
Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

GPUs # Speedups # Slowdowns

Nvidia-Quadro 10 21

Nvidia-1080 00 16

AMD-R9 12 3

Intel-Iris 10 2

Intel-HD5500 14 2

ARM-Mali T628 20 5

Our Approach: Rank-based

Applications

BFS

SSSP

PR

CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB – Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space Domain

For a single chip,app,input combination,
just compare confidence intervals

Our Approach: Rank-based

Applications

BFS

SSSP

PR

CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB – Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space Domain

ru
nt

im
e

Opt. Off Opt. On

For a single chip,app,input combination,
just compare confidence intervals

Our Approach: Rank-based

Applications

BFS

SSSP

PR

CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB – Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space Domain

ru
nt

im
e

Opt. Off Opt. On

Things become trickier when more chips
are added

Our Approach: Rank-based

Applications

BFS

SSSP

PR

CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB – Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space Domain

ru
nt

im
e

Opt. Off Opt. On

First, only consider points whose
confidence
intervals don’t overlap

Our Approach: Rank-based

Applications

BFS

SSSP

PR

CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB – Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space Domain

re
la

tiv
e

ru
nt

im
e

ch
an

ge

Opt. Off Opt. On

Normalize with respect to Opt. Off

Our Approach: Rank-based

Applications

BFS

SSSP

PR

CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB – Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space Domain

Only consider relative Opt. On points,
we can show more now visually

re
la

tiv
e

ru
nt

im
e

ch
an

ge

Opt. On

Our Approach: Rank-based

We now use the Mann-Whitney U test
to determine if points are
stochastically more likely to be above
the horizontal line.

The test is non-parametric: it assumes
nothing about the distribution.

re
la

tiv
e

ru
nt

im
e

ch
an

ge

Opt. On

Rank-based Results

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

36 Slowdowns
60 Speedups,
1.01x Geomean
2x max speedup

Fewest slowdowns

60 Slowdowns
66 Speedups,
1.15x Geomean
6x max speedup

Rank-based

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Compared to fewest slowdowns, more
slowdowns, also more speedups. Higher
Geomean and higher max

Rank-based Results

GPUs # Speedups # Slowdowns

Nvidia-Quadro 10 21

Nvidia-1080 00 16

AMD-R9 12 3

Intel-Iris 10 2

Intel-HD5500 14 2

ARM-Mali T628 20 5

Compared to highest geomean: No more bias
against Nvidia GPUs

GPUs # Speedups # Slowdowns

Nvidia-Quadro 22 13

Nvidia-1080 13 07

AMD-R9 17 4

Intel-Iris 10 10

Intel-HD5500 21 12

ARM-Mali T628 20 04

Highest Geomean Rank-based

Impact on GPU Programming
Languages

Working with Khronos group to better specify a progress model
that allows on-chip synchronization (OC-Sync)

epoch

epoch

epoch

epoch

GPUCPU

epoch
epoch
epoch
epoch

GPUCPU

Unoptimized

Optimized

60 Slowdowns
66 Speedups,
1.15x Geomean
6x max speedup

Rank-based Global Optimizations

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

GPU Compiler Summary

GPUs and graph applications are important
emerging domain.

• We perform a massive empirical study (240 hours across 6 different
GPUs)

Traditional performance portability fall short in
this domain.

Rank-based statistical procedures offer a new
way of thinking about performance portability

Semi-specialization per GPU

Applications

BFS

SSSP

PR

CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space
(32 options)

Domain

Semi-specialization per GPU

Applications

BFS

SSSP

PR

CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space
(32 options)

Domain

Semi-specialization per GPU

Applications

BFS

SSSP

PR

CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space
(32 options)

Domain

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Semi-specialization per GPU

Applications

BFS

SSSP

PR

CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space
(32 options)

Domain

Semi-specialization

Provides 6 different optimization strategies, one
per chip:

GPUs LB-Local LB-Subgroup LB-Workgroup OC - Sync RMW-Cls

Nvidia-Quadro .86 .68 .22 .47 .07

Nvidia-1080 .86 .78 .32 .22 .19

AMD-R9 .90 .74 .18 .65 .70

Intel-Iris .58 .63 .09 .73 .67

Intel-HD5500 .54 .56 .12 .63 .41

ARM-Mali T628 .47 .76 .11 .71 .12

Semi-specialization

Provides 6 different optimization strategies, one
per chip:

GPUs LB-Local LB-Subgroup LB-Workgroup OC - Sync RMW-Cls

Nvidia-Quadro .86 .68 .22 .47 .07

Nvidia-1080 .86 .78 .32 .22 .19

AMD-R9 .90 .74 .18 .65 .70

Intel-Iris .58 .63 .09 .73 .67

Intel-HD5500 .54 .56 .12 .63 .41

ARM-Mali T628 .47 .76 .11 .71 .12

What about streaming
multiprocessors (GPUs)?

one streaming
multiprocessor
contains many
small Compute
Elements (CE)

0 1 2 3 4 5 6 7

CEs Can load adjacent
memory locations
simultaneously

What about a striped pattern?

ITER 0:

CE1CE0

thread 0 thread 1

streaming multiprocessor

L1 cache

DRAM

load/
store
unit

Semi-specialization

Provides 6 different optimization strategies, one
per chip:

GPUs LB-Local LB-Subgroup LB-Workgroup OC - Sync RMW-Cls

Nvidia-Quadro .86 .68 .22 .47 .07

Nvidia-1080 .86 .78 .32 .22 .19

AMD-R9 .90 .74 .18 .65 .70

Intel-Iris .58 .63 .09 .73 .67

Intel-HD5500 .54 .56 .12 .63 .41

ARM-Mali T628 .47 .76 .11 .71 .12

IrGL Optimizations

On-chip Synchronization

Many graph apps are
iterative, requiring a global
sync between iterations
(epochs)

epoch

epoch

epoch

epoch

GPUCPU

epoch
epoch
epoch
epoch

GPUCPU

Traditionally GPU sync.
involves CPU re-launch

Optimization to do on-chip
sync. using experimental
global barrier between
epochs

Next lecture

Optimization impact in general purpose
languages!

