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Graph Processing



Graphs (1736 Edition)

Euler’s Königsberg Bridges

Modern day Abstract View As a Graph



Graphs in 2019

Size/Growth of modern graphs
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Size/Growth of modern graphs
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• Applications:
• recommendation systems
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What is graph processing?

Graphs are ubiquitous
– Social Networks
– Road Networks

Graphs of interest are large:
– Millions of nodes, Billions of edges

Parallel Graph processing is necessary!
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Graph Processing Platforms

Cluster Processing Systems
– Apache Giraph (Facebook)
– GraphLab (CMU)
– GraphX (UC Berkeley)

Vertex-centric Programming Model
– Highly parallelizable
– Limited expressivity
– Optimized for scale-free graphs
– Scalable, but not performant



9

Scalability, but at what COST? 
[McSherry et al. 2015]

System/Algorithm Cores Twitter UK-2007-05

GraphLab 128 242s 714s
GraphX 128 251s 800s

Label Propagation 1 153s 417s

Twitter: 41M vertices, 1.4B edges
UK-2007-05: 105M vertices, 3.7B edges

McSherry F., Isard M., and Murray D. G.,  Scalability, but at what COST?, HotOS 2015

Connected Components



10

Scalability, but at what COST? 
[McSherry et al. 2015]

McSherry F., Isard M., and Murray D. G.,  Scalability, but at what COST?, HotOS 2015



11

Parallel Graph Processing Pitfalls

USA Road Network
24M nodes, 58M edges

High diameter, Low Uniform Degrees

LiveJournal Social Network
5M nodes, 69M edges

Low diameter, Highly-skewed Degrees

299ms BFS(1) 84ms

692ms BFS(2) 41ms



Perfect storm for a DSL

State-of-the-art DSLs massively underperform

Handwritten optimized code exists (guide for DSL)

Optimizations are not portable:
- i.e. it makes sense to decouple optimizations from algorithm, 
similar to Halide
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IrGL (intermediate graph representation)

IrGL is a language for graph algorithm kernels
– Slightly higher-level than CUDA

IrGL kernels are compiled to CUDA code
– Incorporated into larger applications

IrGL compiler applies 3 throughput optimizations
– User can select exact combination
– Yields multiple implementations of algorithm

Compiler generates all the interesting variants!
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Bottlenecks in GPU Graph Processing
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Example: Level-by-Level BFS
0

111

222 222

Kernel bfs(graph, LEVEL)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

edge.dst.level = LEVEL
Worklist.push(edge.dst)

src.level = 0
Iterate bfs(graph, LEVEL) [src] {

LEVEL++
}
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Bottleneck #1: Short Kernels
Kernel bfs(graph, LEVEL)

ForAll(node in Worklist)
ForAll(edge in graph.edges(node))

if(edge.dst.level == INF)
edge.dst.level = LEVEL
Worklist.push(edge.dst)

src.level = 0
Iterate bfs(graph, LEVEL) [src] {

LEVEL++
}

●USA road network: 6261 bfs calls
●Average bfs call duration: 16 µs
●Total time should be 16*6261 = 100 ms
●Actual time is 320 ms: 3.2x slower!
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Iterative Algorithm Timeline

bfs

bfs

bfs

bfs

Time

CPU GPU

launch

Idling

Idling

Idling
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GPU Utilization for Short Kernels
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Improving Utilization
GPU

bfs

bfs

bfs

bfs

Time

Control Kernel

CPU
launchGenerate Control Kernel to 

execute on GPU

Control kernel uses function calls 
on GPU for each iteration

Separates iterations with device-
wide barriers

– Tricky to get right!

Device-wide barriers now 
supported in CUDA 9
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Bottleneck #2: Load Imbalance 
from Inner-loop Serialization

Kernel bfs(graph, LEVEL)
ForAll(node in Worklist)
ForAll(edge in graph.edges(node))

if(edge.dst.level == INF)
edge.dst.level = LEVEL
Worklist.push(edge.dst)

src.level = 0
Iterate bfs(graph, LEVEL) [src] {
LEVEL++

}

Worklist

Threads
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Exploiting Nested Parallelism
Generate code to execute 
inner loop in parallel

– Inner loop trip counts not known 
until runtime

Use Inspector/Executor 
approach at runtime
Primary challenges:

– Minimize Executor overhead
– Best-performing Executor varies 

by algorithm and input

Threads

Threads
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Scheduling Inner Loop Iterations

Example schedulers from Merrill et al., Scalable GPU Graph Traversal, PPoPP 2012

Thread-block (TB) Scheduling Fine-grained (FG) Scheduling

Synchronization
Barriers
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Multi-Scheduler Execution

Example schedulers from Merrill et al., Scalable GPU Graph Traversal, PPoPP 2012

Thread-block (TB) + Finegrained (FG) Scheduling

Use thread-block (TB)
for high-degree nodes

Use fine-grained (FG)
for low-degree nodes
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Bottleneck #3: Atomics

Kernel bfs(graph, LEVEL)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

edge.dst.level = LEVEL
Worklist.push(edge.dst)

src.level = 0
Iterate bfs(graph, LEVEL) [src] {

LEVEL++
}

●Atomic Throughput on GPU: 1 per clock cycle
–Roughly translated: 2.4 GB/s
–Memory bandwidth: 288GB/s

pos = atomicAdd(Worklist.length, 1)
Worklist.items[pos] = edge.dst
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Aggregating Atomics: Basic Idea

atomicAdd(..., 1)

Thread Thread

Write

atomicAdd(..., 5)
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Challenge: Conditional Pushes
if(edge.dst.level == INF)

Worklist.push(edge.dst)

...

Time
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Challenge: Conditional Pushes
if(edge.dst.level == INF)

Worklist.push(edge.dst)

...

Time

Must aggregate atomics across threads
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reserve_tb is incorrectly placed!

Kernel bfs(graph, ...)
ForAll(node in Worklist)

ForAll(edge in graph.edges(node))
if(edge.dst.level == INF)

start = Worklist.reserve_tb(1)
Worklist.write(start, edge.dst)
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Inside reserve_tb

reserve_tb

...

0 31
...

32 63

...

64 95

...

Barrier required to synchronize
warps, so can't be placed

in conditionals

Warp 0
Warp 1

Warp 2
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Three Optimizations for 
Bottlenecks

1.Iteration Outlining
– Improve GPU utilization 

for short kernels

2.Nested Parallelism
– Improve load balance

3.Cooperative Conversion
– Reduce atomics

Unoptimized BFS
– ~15 lines of CUDA
– 505ms on USA road 

network
Optimized BFS

– ~200 lines of CUDA
– 120ms on the same 

graph

4.2x Performance Difference!



32

Evaluation
●Eight irregular algorithms

– Breadth-First Search (BFS) [Merrill et al., 2012]
– Connected Components (CC) [Soman et al., 2010]
– Maximal Independent Set (MIS) [Che et al., 2013]
– Minimum Spanning Tree (MST) [da Silva Sousa et al. 

2015]
– PageRank (PR) [Elsen and Vaidyanathan, 2014]
– Single-Source Shortest Path (SSSP) [Davidson et al. 

2014]
– Triangle Counting (TRI) [Polak et al. 2015]
– Delaunay Mesh Refinement (DMR) [Nasre et al., 2013]
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Overall Performance

Note: Each benchmark had a single set of optimizations applied to it

Best
Handwritten
Code

Pai and Pingali, OOPSLA 2016
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Comparison to NVIDIA nvgraph
SSSP

227s 131s

Pai, GTC 2017



Making IrGL portable



Believe it or not...

GPU != Nvidia

There are probably more 
Apple/Intel GPUs in this room than 

Nvidia GPUs



Headlines

Compiler optimizations can 
provide speedups of up to 16x
and a geomean across the 
domain of 1.5x

These optimizations can also 
provide slowdowns of up to 
22x

We perform a massive empirical study (240 
hours across 6 different GPUs)

Using a GPU graph application DSL and 
optimizing compiler, we find:



Headlines

Traditional performance portability fall short 
for graph applications on GPUs

• Previous approaches produce trivial or biased results

All optimization combinations 
cause slowdowns AND
speedups across the domain. 

Magnitude-based approaches 
are biased towards more 
sensitive GPUs



Headlines

Rank-based statistical procedures offer a new 
way of thinking about performance portability



Headlines

Rank-based statistical procedures offer a new 
way of thinking about performance portability

Produces non-trivial 
performance portable 
optimization combination 
yielding a max speedups of 6x

Analysis can create semi-
specialized optimization 
strategies, which yield greater 
speedups and performance 
critical insights.



What is a GPU? (1999 Edition)

https://web.archive.org/web/20160408122443/http://www.nvidia.com/object/gpu.html

https://web.archive.org/web/20160408122443/http:/www.nvidia.com/object/gpu.html


What is a GPU? (2019 Edition)

20 years later, Nvidia’s 
homepage advertises 
GPUs without the ability 
to output graphics!

https://www.nvidia.com/en-us/data-center/dgx-2/

https://www.nvidia.com/en-us/data-center/dgx-2/


Trying to Define the Modern GPU

Still used for high-
end graphics



Trying to Define the Modern GPU

Still used for high-
end graphics

Use in data centers for AI and
scientific computing



Trying to Define the Modern GPU

Still used for high-
end graphics

Use in data centers for AI and
scientific computing

Increasingly used in mobile devices



Trying to Define the Modern GPU

Programmable vector lanes?
• Nvidia GPUs have 32 threads per lane
• Intel GPUs have 8 threads per lane
• ARM GPUs have 1 thread per lane

High Bandwidth?

Highly parallel?
• Nvidia GPUs execute over 10K threads concurrently
• ARM GPUs execute 500 threads concurrently

Intel width

½ Nvidia width 

ARM width



Role of a compiler

As GPUs have diversified, it’s the compilers job to
• judiciously apply optimizations 

(apply transformations that cause speedups, not slowdowns)
• specialize when possible



This Work

Characterizing performance portability of Graph applications on GPUs

We Developed:
• A portable backend for a GPU graph application DSL and optimizing compiler

We Conducted:
• A large empirical study, collecting 240 hours of runtime data across 6 GPU

We Characterized:
• Performance portability in this domain using a rank-based statistical method



A GPU Graph DSL and Compiler

IrGL : Pai and Pingali, OOPSLA 2016
• Original work targets only Nvidia GPUs

First class support for nodes, edges, 
worklists

Optimizing compiler
• Load balancing
• On-chip synchronization
• Atomic RMW coalescing 

1

2 3

4 5

6 7

Worklist

2 4 5



IrGL Optimizations

Load Balancing

Graphs have irregular
parallelism leading to
load imbalance

IrGL has 3 transformations to perform load balancing at
3 levels of the GPU hierarchy: Local, Subgroup, Workgroup

Worklist

1 2 3

Threads



IrGL Optimizations

Atomic RMW 
Coalescing 

Graph 
applications 
require atomic 
RMWs to update 
the worklist for 
the next iteration

1 2 3

Threads

RMW

RMW

RMW

1 2 3

Threads

RMW

Local 
communication

RMWs serialize across 
threads

Coalesced RMWs combine RMW 
operations from several threads, 
using local communication



IrGL Optimizations

On-chip Synchronization

Many graph apps are 
iterative, requiring a global
sync between iterations 
(epochs)

epoch

epoch

epoch

epoch

GPUCPU

epoch
epoch
epoch
epoch

GPUCPU

Traditionally GPU sync. 
involves CPU re-launch

Optimization to do on-chip
sync. using experimental 
global barrier between 
epochs



Our Empirical Study

All combinations of above were run

Total runtime of 240 hours

Over 10K individual runs 

widest empirical study 
across GPUs that we are 
aware of!

Applications

BFS

SSSP

PR

CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls



Which optimizations should be applied to 
provide best performance across the entire 
domain?

Performance Portability

Applications

BFS

SSSP

PR

CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space
(32 options)

Domain



Do No Harm

Only apply an optimization if it:
• Does not provide any slowdowns across the entire domain
• Provides at least one speedup

Easily to query from our data set, and we found…



Do No Harm

Only apply an optimization if it:
• Does not provide any slowdowns across the entire domain
• Provides at least one speedup

Easily to query from our data set, and we found…

All optimizations provided at least one instance of 
a slowdown

NOTHING!!!



Do the Least Harm

Relaxation of Do no Harm: Select the optimization 
combination that caused the fewest slowdowns.

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

36 Slowdowns 
60 Speedups, 
1.01x Geomean
2x max speedup

Fewest slowdowns



Do the Least Harm

Relaxation of Do no Harm: Select the optimization 
combination that caused the fewest slowdowns.

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

36 Slowdowns 
60 Speedups, 
1.01x Geomean
2x max speedup

Fewest slowdowns

From our exploration:

Compiler optimizations can 
provide speedups of up to 16x
and a geomean across the 
domain of 1.5x



Max Geomean

Select the optimization combination that provides 
the highest geomean across the domain

49 Slowdowns 
66 Speedups, 
1.18x Geomean

Highest Geomean
Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls



Max Geomean

Select the optimization combination that provides 
the highest geomean across the domain

49 Slowdowns 
66 Speedups, 
1.18x Geomean

Highest Geomean
Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

GPUs # Speedups # Slowdowns

Nvidia-Quadro 10 21

Nvidia-1080 00 16

AMD-R9 12 3

Intel-Iris 10 2

Intel-HD5500 14 2

ARM-Mali T628 20 5



Max Geomean

Select the optimization combination that provides 
the highest geomean across the domain

49 Slowdowns 
66 Speedups, 
1.18x Geomean

Highest Geomean
Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

GPUs # Speedups # Slowdowns

Nvidia-Quadro 10 21

Nvidia-1080 00 16

AMD-R9 12 3

Intel-Iris 10 2

Intel-HD5500 14 2

ARM-Mali T628 20 5



Our Approach: Rank-based

Applications
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PR

CC

MIS

MST

TRI

Inputs
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RMAT

NY-Road

GPUs
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Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB – Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space Domain

For a single chip,app,input combination,
just compare confidence intervals
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Our Approach: Rank-based

Applications

BFS

SSSP

PR

CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB – Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space Domain

ru
nt

im
e

Opt. Off Opt. On

Things become trickier when more chips
are added



Our Approach: Rank-based

Applications

BFS

SSSP
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CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB – Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space Domain

ru
nt

im
e

Opt. Off Opt. On

First, only consider points whose 
confidence
intervals don’t overlap
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Our Approach: Rank-based

Applications

BFS

SSSP

PR

CC

MIS

MST

TRI

Inputs

Uniform

RMAT

NY-Road

GPUs

Nvidia-Quadro

Nvidia-1080

AMD-R9

Intel-Iris

Intel-HD5500

ARM-Mali T628

Optimizations

LB – Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Optimization Space Domain

Only consider relative Opt. On points, 
we can show more now visually 
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Our Approach: Rank-based

We now use the Mann-Whitney U test 
to determine if points are 
stochastically more likely to be above
the horizontal line.

The test is non-parametric: it assumes 
nothing about the distribution.

re
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e 

ru
nt

im
e 

ch
an

ge

Opt. On



Rank-based Results

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

36 Slowdowns 
60 Speedups, 
1.01x Geomean
2x max speedup

Fewest slowdowns

60 Slowdowns 
66 Speedups, 
1.15x Geomean
6x max speedup

Rank-based

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls

Compared to fewest slowdowns, more 
slowdowns, also more speedups. Higher 
Geomean and higher max



Rank-based Results

GPUs # Speedups # Slowdowns

Nvidia-Quadro 10 21

Nvidia-1080 00 16

AMD-R9 12 3

Intel-Iris 10 2

Intel-HD5500 14 2

ARM-Mali T628 20 5

Compared to highest geomean: No more bias 
against Nvidia GPUs

GPUs # Speedups # Slowdowns

Nvidia-Quadro 22 13

Nvidia-1080 13 07

AMD-R9 17 4

Intel-Iris 10 10

Intel-HD5500 21 12

ARM-Mali T628 20 04

Highest Geomean Rank-based



Impact on GPU Programming 
Languages

Working with Khronos group to better specify a progress model 
that allows on-chip synchronization (OC-Sync)

epoch

epoch

epoch

epoch

GPUCPU

epoch
epoch
epoch
epoch

GPUCPU

Unoptimized

Optimized

60 Slowdowns 
66 Speedups, 
1.15x Geomean
6x max speedup

Rank-based Global Optimizations

Optimizations

LB - Local

LB - Subgroup

LB - Workgroup

OC - Sync

RMW-Cls



GPU Compiler Summary

GPUs and graph applications are important 
emerging domain. 

• We perform a massive empirical study (240 hours across 6 different 
GPUs)

Traditional performance portability fall short in 
this domain.

Rank-based statistical procedures offer a new 
way of thinking about performance portability



Semi-specialization per GPU
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Semi-specialization

Provides 6 different optimization strategies, one 
per chip:

GPUs LB-Local LB-Subgroup LB-Workgroup OC - Sync RMW-Cls

Nvidia-Quadro .86 .68 .22 .47 .07

Nvidia-1080 .86 .78 .32 .22 .19

AMD-R9 .90 .74 .18 .65 .70

Intel-Iris .58 .63 .09 .73 .67

Intel-HD5500 .54 .56 .12 .63 .41

ARM-Mali T628 .47 .76 .11 .71 .12



Semi-specialization

Provides 6 different optimization strategies, one 
per chip:

GPUs LB-Local LB-Subgroup LB-Workgroup OC - Sync RMW-Cls

Nvidia-Quadro .86 .68 .22 .47 .07

Nvidia-1080 .86 .78 .32 .22 .19

AMD-R9 .90 .74 .18 .65 .70

Intel-Iris .58 .63 .09 .73 .67

Intel-HD5500 .54 .56 .12 .63 .41

ARM-Mali T628 .47 .76 .11 .71 .12



What about streaming 
multiprocessors (GPUs)?

one streaming
multiprocessor
contains many 
small Compute
Elements (CE)

0 1 2 3 4 5 6 7

CEs Can load adjacent
memory locations
simultaneously 

What about a striped pattern?

ITER 0:

CE1CE0

thread 0 thread 1

streaming multiprocessor

L1 cache

DRAM

load/
store 
unit



Semi-specialization

Provides 6 different optimization strategies, one 
per chip:

GPUs LB-Local LB-Subgroup LB-Workgroup OC - Sync RMW-Cls

Nvidia-Quadro .86 .68 .22 .47 .07

Nvidia-1080 .86 .78 .32 .22 .19

AMD-R9 .90 .74 .18 .65 .70

Intel-Iris .58 .63 .09 .73 .67

Intel-HD5500 .54 .56 .12 .63 .41

ARM-Mali T628 .47 .76 .11 .71 .12



IrGL Optimizations

On-chip Synchronization

Many graph apps are 
iterative, requiring a global
sync between iterations 
(epochs)

epoch

epoch

epoch

epoch

GPUCPU

epoch
epoch
epoch
epoch

GPUCPU

Traditionally GPU sync. 
involves CPU re-launch

Optimization to do on-chip
sync. using experimental 
global barrier between 
epochs





Next lecture

Optimization impact in general purpose 
languages!


