
CSE211: Compiler Design 
Nov. 1, 2021

• Topic: SMP parallelism
• Candidate DOALL loops
• Safety checking

• Discussion questions:
• What parallel frameworks have you used?
• Do you achieve linear speedup?
• When is it safe to parallelize for loops?
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Announcements

• Midterm is posted
• Questions can be sent via email or dm or slack
• Due on Wednesday at midnight
• Do not expect replies after the work day

• Homework 2 is due today
• Turn in on canvas

• Homework 3 will be assigned on Wednesday



Paper/Project proposals

• Please start thinking about these.
• Message me for recommendations
• Tell me what you’re interested in so we can find a good fit!

• Proposals due on Nov. 14
• Please be pro-active about this. If you don’t have one in mind, please send me 

an email with some of your interests ASAP

• Midterm is a good indicator for how the final will be. 
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K. Rupp, “40 Years of Mircroprocessor Trend Data,” https://www. karlrupp.net/2015/06/40-years-of-microprocessor-trend-data, 2015.



• Frequency scaling: Dennard’s scaling
• Mostly agreed that this is over

• Number of transistors: Moore’s law
• On its last legs.
• Intel delaying 7nm chips. Apple has a 5nm. Some roadmaps project up to 3nm

• Chips are not increasing in raw frequency, and space is becoming 
more valuable

Trends



How do chips exploit parallelism?

• Pipelines?
• Only so much meaningful work to do per-

stage. 
• Stage timing imbalance
• Staging overhead

• Superscalar width?
• Hardware checking becomes prohibitive:



How do chips exploit parallelism?

• Pipelines?
• Only so much meaningful work to do per-

stage. 
• Stage timing imbalance
• Staging overhead

• Superscalar width?
• Hardware checking becomes prohibitive:

Collectively the power consumption, complexity and gate 
delay costs limit the achievable superscalar speedup to 
roughly eight simultaneously dispatched instructions.

https://en.wikipedia.org/wiki/Superscalar_processor#Limitations

https://en.wikipedia.org/wiki/CPU_power_dissipation


Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system 

resources)
• Managed by a single OS

• Pros: 
• Simple(r) HW design
• Great for multitasking machines
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Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system 

resources)
• Managed by a single OS

• Pros: 
• Simple(r) HW design
• Great for multitasking machines
• Can provide (close to) linear speedups for 

parallel applications
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Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system 

resources)
• Managed by a single OS

• Pros: 
• Simple(r) HW design
• Great for multitasking machines
• Can provide (close to) linear speedups for 

parallel applications

• Cons: difficult to program!
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SMP systems are widespread

• Laptops
• My laptop has 8 cores
• Most have at least 2
• New Macbook: 10 core

• Workstations:
• 2 - 64 cores
• ARM racks: 128

• Phones: 
• iPhone: 2 big cores, 4 small cores
• Samsung: 1 + 3 + 4

*https://www.crn.com/news/components-
peripherals/ampere-s-new-128-core-altra-cpu-targets-
intel-amd-in-the-cloud



SMP systems are widespread

*https://www.crn.com/news/components-
peripherals/ampere-s-new-128-core-altra-cpu-targets-
intel-amd-in-the-cloud
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• Laptops
• My laptop has 8 cores
• Most have at least 2
• New Macbook: 10 core

• Workstations:
• 2 - 64 cores
• ARM racks: 128

• Phones: 
• iPhone: 2 big cores, 4 small cores
• Samsung: 1 + 3 + 4



Potential for Parallel Speedup

• Amdahl's law

• Speedup(c) = !
!"# $!"

• Where c is the number of cores and p is the percentage of the 
program execution time that would be improved by parallelism

• Assumes linear speedups



from wikipedia



Can compilers help?

• Much like ILP: convert sequential streams of computation in to SMP 
parallel code.

• Much harder constraints
• Correctness
• Performance

• For loops are a good target for compiler analysis
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For loops are great candidates for SMP 
parallelism

for (int i = 0; i < 6; i++) {
a[i] = b[i] + c[i]

}

+ + + + + +
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For loops are great candidates for SMP 
parallelism

for (int i = 0; i < 6; i++) {
a[i] = b[i] + c[i]

}

+ + + + + +

b

c

a

core 1 core 2 core 3



Demo

• Vector addition



Demo

• Safety



SMP Parallelism in For Loops

• Given a nest of For loops, can we make the outer-most loop parallel?
• Safely
• Efficiently

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays 
• Only side-effects are array writes
• Array bases are disjoint and constant
• Bounds and array indexes are a function of loop variables, input variables and 

constants*
• Loops Increment by 1 and start at 0

If the bounds and indexes are affine functions, then more analysis is possible, see dragon book



SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays 
• Only side-effects are array writes
• Array bases are disjoint and constant
• Bounds and array indexes are a function of loop variables, input variables and 

constants*
• Loops Increment by 1 and start at 0

for (int i = 0; i < dim1; i++) { 
for (int j = 0; j < dim3; j++) { 
for (int k = 0; k < dim2; k++) { 
a[i][j] += b[i][k] * c[k][j]; 

} 
} 

}
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• Loops Increment by 1 and start at 0

for (int i = 2; i < 100; i+=3) {
a[i] = c[i + 128];
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SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int j = 0; j < 98; j+=1) {
a[(j+2)*3] = c[j+2 + 128];

}

Make new loop bounds:
i = (j + 2)*3



SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int j = 2; j < 34; j+=1) {
a[j*3] = c[j*3 + 128];

}

Make new loop bounds:
i = j*3

Multiply by a constant to make 
increment by 1. update loop body, update
and bounds



SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int j = 0; j < 32; j+=1) {
a[j*3+2] = c[j*3+2 + 128];

}

Make new loop bounds:
i = j*3 + 2

subtract by constant to start at 0



SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int j = 0; j < 32; j+=1) {
a[3*j + 2] = c[(3*j + 2) + 128];

}

for (int i = 2; i < 100; i+=3) {
a[i] = c[i + 128];

}



SMP Parallelism in For Loops

• Given a nest of candidate For loops, determine if we can we make the 
outer-most loop parallel?
• Safely
• efficiently

• Criteria: every iteration of the outer-most loop must be independent
• The loop can execute in any order, and produce the same result

• Such loops are called “DOALL” Loops. The can be flagged and handed 
off to another pass that can finely tune the parallelism (number of 
threads, chunking, etc)



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

• How do we check this? 
• If the property doesn’t hold then there exists 2 iterations, such that if they are 

re-ordered, it causes different outcomes for the loop.

• Write-Write conflicts: two distinct iterations write different values to the 
same location

• Read-Write conflicts: two distinct iterations where one iteration reads from 
the location written to by another iteration.



Safety Criteria

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

First example: write-write conflict



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

First example: write-write conflict

Calculate index based on i



Safety Criteria

Computation to store in the memory location

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

First example: write-write conflict
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Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for two distinct iterations:
ix != iy
Check:
index(ix) != index(iy) 

Because we start at 0 and increment by 1, we can use i to refer
to loop iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

First example: write-write conflict



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

Why? 
Because if 
index(ix) == index(iy) 
then:
a[index(ix)] will equal 
either loop(ix) or loop(iy) 
depending on the order

for two distinct iterations:
ix != iy
Check:
index(ix) != index(iy) 

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

First example: write-write conflict



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

for (i = 0; i < 128; i++) {
a[i]= i*2;

}

Examples:



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

for (i = 0; i < 128; i++) {
a[i]= i*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= i*2;

}

Examples:



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
a[write_index(i)] = a[read_index(i)] + loop(i);

}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy) 



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
a[write_index(i)] = a[read_index(i)] + loop(i);

}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy) 

Why?

if ix iteration happens first, then 
iteration iy reads an updated value.

if iy happens first, then it reads the 
original value



Next class

• Topics:
• Reasoning about loop conflicts

• Remember:
• Homework 2 due today
• Midterm due on Wednesday (by midnight!)


