
CSE211: Compiler Design 
Nov. 1, 2021

• Topic: SMP parallelism
• Candidate DOALL loops
• Safety checking

• Discussion questions:
• What parallel frameworks have you used?
• Do you achieve linear speedup?
• When is it safe to parallelize for loops?

C1 C2 C3C0

L1 
cache

L1 
cache

L1 
cache

L1 
cache

L2 cache

DRAM



Announcements

• Midterm is posted
• Questions can be sent via email or dm or slack
• Due on Wednesday at midnight
• Do not expect replies after the work day

• Homework 2 is due today
• Turn in on canvas

• Homework 3 will be assigned on Wednesday



Paper/Project proposals

• Please start thinking about these.
• Message me for recommendations
• Tell me what you’re interested in so we can find a good fit!

• Proposals due on Nov. 14
• Please be pro-active about this. If you don’t have one in mind, please send me 

an email with some of your interests ASAP

• Midterm is a good indicator for how the final will be. 



CSE211: Compiler Design 
Nov. 1, 2021

• Topic: SMP parallelism
• Candidate DOALL loops
• Safety checking

• Discussion questions:
• What parallel frameworks have you used?
• Do you achieve linear speedup?
• When is it safe to parallelize for loops?

C1 C2 C3C0

L1 
cache

L1 
cache

L1 
cache

L1 
cache

L2 cache

DRAM



K. Rupp, “40 Years of Mircroprocessor Trend Data,” https://www. karlrupp.net/2015/06/40-years-of-microprocessor-trend-data, 2015.



• Frequency scaling: Dennard’s scaling
• Mostly agreed that this is over

• Number of transistors: Moore’s law
• On its last legs.
• Intel delaying 7nm chips. Apple has a 5nm. Some roadmaps project up to 3nm

• Chips are not increasing in raw frequency, and space is becoming 
more valuable

Trends



How do chips exploit parallelism?

• Pipelines?
• Only so much meaningful work to do per-

stage. 
• Stage timing imbalance
• Staging overhead

• Superscalar width?
• Hardware checking becomes prohibitive:



How do chips exploit parallelism?

• Pipelines?
• Only so much meaningful work to do per-

stage. 
• Stage timing imbalance
• Staging overhead

• Superscalar width?
• Hardware checking becomes prohibitive:

Collectively the power consumption, complexity and gate 
delay costs limit the achievable superscalar speedup to 
roughly eight simultaneously dispatched instructions.

https://en.wikipedia.org/wiki/Superscalar_processor#Limitations

https://en.wikipedia.org/wiki/CPU_power_dissipation


Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system 

resources)
• Managed by a single OS

• Pros: 
• Simple(r) HW design
• Great for multitasking machines

C1 C2 C3C0

L1 
cache

L1 
cache

L1 
cache

L1 
cache

L2 cache

DRAM



Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system 

resources)
• Managed by a single OS

• Pros: 
• Simple(r) HW design
• Great for multitasking machines

C1 C2 C3C0

L1 
cache

L1 
cache

L1 
cache

L1 
cache

L2 cache

DRAM



Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system 

resources)
• Managed by a single OS

• Pros: 
• Simple(r) HW design
• Great for multitasking machines

C1 C2 C3C0

L1 
cache

L1 
cache

L1 
cache

L1 
cache

L2 cache

DRAM



Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system 

resources)
• Managed by a single OS

• Pros: 
• Simple(r) HW design
• Great for multitasking machines
• Can provide (close to) linear speedups for 

parallel applications

C1 C2 C3C0

L1 
cache

L1 
cache

L1 
cache

L1 
cache

L2 cache

DRAM



Symmetric Multiprocessing (SMP)

• Collection of “identical” cores
• Shared memory (access to all system 

resources)
• Managed by a single OS

• Pros: 
• Simple(r) HW design
• Great for multitasking machines
• Can provide (close to) linear speedups for 

parallel applications

• Cons: difficult to program!

C1 C2 C3C0

L1 
cache

L1 
cache

L1 
cache

L1 
cache

L2 cache

DRAM



SMP systems are widespread

• Laptops
• My laptop has 8 cores
• Most have at least 2
• New Macbook: 10 core

• Workstations:
• 2 - 64 cores
• ARM racks: 128

• Phones: 
• iPhone: 2 big cores, 4 small cores
• Samsung: 1 + 3 + 4

*https://www.crn.com/news/components-
peripherals/ampere-s-new-128-core-altra-cpu-targets-
intel-amd-in-the-cloud



SMP systems are widespread

*https://www.crn.com/news/components-
peripherals/ampere-s-new-128-core-altra-cpu-targets-
intel-amd-in-the-cloud

C1 C2 C3C0

L1 
cache

L1 
cache

L1 
cache

L1 
cache

L2 cache

DRAM

• Laptops
• My laptop has 8 cores
• Most have at least 2
• New Macbook: 10 core

• Workstations:
• 2 - 64 cores
• ARM racks: 128

• Phones: 
• iPhone: 2 big cores, 4 small cores
• Samsung: 1 + 3 + 4



Potential for Parallel Speedup

• Amdahl's law

• Speedup(c) = !
!"# $!"

• Where c is the number of cores and p is the percentage of the 
program execution time that would be improved by parallelism

• Assumes linear speedups



from wikipedia



Can compilers help?

• Much like ILP: convert sequential streams of computation in to SMP 
parallel code.

• Much harder constraints
• Correctness
• Performance

• For loops are a good target for compiler analysis



= = = = = =

For loops are great candidates for SMP 
parallelism

for (int i = 0; i < 6; i++) {
a[i] = b[i] + c[i]

}

+ + + + + +

b

c

a

core 1



= = = = = =

For loops are great candidates for SMP 
parallelism

for (int i = 0; i < 6; i++) {
a[i] = b[i] + c[i]

}

+ + + + + +

b

c

a

core 1 core 2



= = = = = =

For loops are great candidates for SMP 
parallelism

for (int i = 0; i < 6; i++) {
a[i] = b[i] + c[i]

}

+ + + + + +

b

c

a

core 1 core 2 core 3



Demo

• Vector addition



Demo

• Safety



SMP Parallelism in For Loops

• Given a nest of For loops, can we make the outer-most loop parallel?
• Safely
• Efficiently

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays 
• Only side-effects are array writes
• Array bases are disjoint and constant
• Bounds and array indexes are a function of loop variables, input variables and 

constants*
• Loops Increment by 1 and start at 0

If the bounds and indexes are affine functions, then more analysis is possible, see dragon book



SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays 
• Only side-effects are array writes
• Array bases are disjoint and constant
• Bounds and array indexes are a function of loop variables, input variables and 

constants*
• Loops Increment by 1 and start at 0

for (int i = 0; i < dim1; i++) { 
for (int j = 0; j < dim3; j++) { 
for (int k = 0; k < dim2; k++) { 
a[i][j] += b[i][k] * c[k][j]; 

} 
} 

}



SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int i = 2; i < 100; i+=3) {
a[i] = c[i + 128];

}



SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int i = 2; i < 100; i+=3) {
a[i] = c[i + 128];

}

Make new loop bounds:
i = j



SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int j = 0; j < 98; j+=1) {
a[(j+2)*3] = c[j+2 + 128];

}

Make new loop bounds:
i = (j + 2)*3



SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int j = 2; j < 34; j+=1) {
a[j*3] = c[j*3 + 128];

}

Make new loop bounds:
i = j*3

Multiply by a constant to make 
increment by 1. update loop body, update
and bounds



SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int j = 0; j < 32; j+=1) {
a[j*3+2] = c[j*3+2 + 128];

}

Make new loop bounds:
i = j*3 + 2

subtract by constant to start at 0



SMP Parallelism in For Loops

• We will consider a special type of for loop, common in scientific 
applications:
• Operates on N dimensional arrays (only side-effects are array writes)
• Array bases are disjoint and constant
• Bounds, indexes are a function of loop variables, input variables and constants
• Loops Increment by 1 and start at 0

for (int j = 0; j < 32; j+=1) {
a[3*j + 2] = c[(3*j + 2) + 128];

}

for (int i = 2; i < 100; i+=3) {
a[i] = c[i + 128];

}



SMP Parallelism in For Loops

• Given a nest of candidate For loops, determine if we can we make the 
outer-most loop parallel?
• Safely
• efficiently

• Criteria: every iteration of the outer-most loop must be independent
• The loop can execute in any order, and produce the same result

• Such loops are called “DOALL” Loops. The can be flagged and handed 
off to another pass that can finely tune the parallelism (number of 
threads, chunking, etc)



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

• How do we check this? 
• If the property doesn’t hold then there exists 2 iterations, such that if they are 

re-ordered, it causes different outcomes for the loop.

• Write-Write conflicts: two distinct iterations write different values to the 
same location

• Read-Write conflicts: two distinct iterations where one iteration reads from 
the location written to by another iteration.



Safety Criteria

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

First example: write-write conflict



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

First example: write-write conflict

Calculate index based on i



Safety Criteria

Computation to store in the memory location

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

First example: write-write conflict



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for two distinct iterations:
ix != iy
Check:
index(ix) != index(iy) 

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

First example: write-write conflict



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for two distinct iterations:
ix != iy
Check:
index(ix) != index(iy) 

Because we start at 0 and increment by 1, we can use i to refer
to loop iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

First example: write-write conflict



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

Why? 
Because if 
index(ix) == index(iy) 
then:
a[index(ix)] will equal 
either loop(ix) or loop(iy) 
depending on the order

for two distinct iterations:
ix != iy
Check:
index(ix) != index(iy) 

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

First example: write-write conflict



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

for (i = 0; i < 128; i++) {
a[i]= i*2;

}

Examples:



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent
• the loop must produce the same result for any order of the iterations

for (i = 0; i < size; i++) {
a[index(i)] = loop(i);

}

for (i = 0; i < 128; i++) {
a[i]= i*2;

}

for (i = 0; i < 128; i++) {
a[i%64]= i*2;

}

Examples:



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
a[write_index(i)] = a[read_index(i)] + loop(i);

}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy) 



Safety Criteria

• Criteria: every iteration of the outer-most loop must be independent

for (i = 0; i < size; i++) {
a[write_index(i)] = a[read_index(i)] + loop(i);

}

Read-write conflicts:

for two distinct iteration variables:
ix != iy
Check:
write_index(ix) != read_index(iy) 

Why?

if ix iteration happens first, then 
iteration iy reads an updated value.

if iy happens first, then it reads the 
original value



Next class

• Topics:
• Reasoning about loop conflicts

• Remember:
• Homework 2 due today
• Midterm due on Wednesday (by midnight!)


