CSE211: Compiler Design

Nov. 1, 2021

* Topic: SMP parallelism
e Candidate DOALL loops
 Safety checking

* Discussion questions:
* What parallel frameworks have you used?
* Do you achieve linear speedup?
 When is it safe to parallelize for loops?

Cco C1 C2 C3
L1 L1 L1 L1
cache cache cache cache
v i v i
L2 cache
DRAM

Announcements

 Midterm is posted
* Questions can be sent via email or dm or slack
* Due on Wednesday at midnight
* Do not expect replies after the work day

* Homework 2 is due today
* Turn in on canvas

* Homework 3 will be assigned on Wednesday

Paper/Project proposals

* Please start thinking about these.
* Message me for recommendations
* Tell me what you’re interested in so we can find a good fit!

* Proposals due on Nov. 14

* Please be pro-active about this. If you don’t have one in mind, please send me
an email with some of your interests ASAP

* Midterm is a good indicator for how the final will be.

CSE211: Compiler Design

Nov. 1, 2021

* Topic: SMP parallelism
e Candidate DOALL loops
 Safety checking

* Discussion questions:
* What parallel frameworks have you used?
* Do you achieve linear speedup?
 When is it safe to parallelize for loops?

Cco C1 C2 C3
L1 L1 L1 L1
cache cache cache cache
v i v i
L2 cache
DRAM

107 = Number of Logical Cores .
e Transistors (thousands) LS ¢
106 » Typical Power, (Watts) .'.:,’, N
a Frequency (MHz) .‘i °p
105 ¢ Single Thread Perf (Specint x 1k) .’._‘,._'__:
S O '
4 ..p‘. X ‘:0 o ¢ M
A
3 RN 0; KT *5“{“5“‘“‘3 s 4
10 o0 &, 4 ___:___Q_““__‘L____A A
° o 2800 F i, ®
2 e A * gk Rk 5 wx x ¥
10 © :’ " £. 2 x **:;:;f-%f;& — e I|
& Ala M TR y*¥* | mogm ®
1 A gy ¥, % } * I-.. - a
10 = R P o LN
.. * x K * * -5
0 A * B] [
10 g n = SR N S EEE— |
1970 1980 1990 2000 2010

K. Rupp, “40 Years of Mircroprocessor Trend Data,” https://www. karlrupp.net/2015/06/40-years-of-microprocessor-trend-data, 2015.

Trends

* Frequency scaling: Dennard’s scaling
* Mostly agreed that this is over

* Number of transistors: Moore’s law
* Onits last legs.
* Intel delaying 7nm chips. Apple has a 5nm. Some roadmaps project up to 3nm

* Chips are not increasing in raw frequency, and space is becoming
more valuable

How do chips exploit parallelism?

* Pipelines?
* Only so much meaningful work to do per- "
stage.
e Stage timing imbalance
* Staging overhead

Write Back

ai/ 4
14
)
‘—l
X3 /ai
1

am/ Waw

e Superscalar width?
* Hardware checking becomes prohibitive: A A A A

How do chips exploit parallelism?

* Pipelines?
* Only so much meaningful work to do per-
stage.
e Stage timing imbalance

* Staging overhead

e Superscalar width?
* Hardware checking becomes prohibitive:

Collectively the power consumption, complexity and gate
delay costs limit the achievable superscalar speedup to
roughly eight simultaneously dispatched instructions.

https://en.wikipedia.org/wiki/Superscalar_processoritLimitations

Instruction Fetch

Instruction Decode

Register Fetch
ID

Execute
Address Calc.

EX

Memory Access

MEM

ai/4

Next SEQ PC

RS1

RS2

X3/ai

Next SEQ PC

W3w /X3

Next PC —
=
c'—‘
>

am/ Waw

!}

Write Back

WB

https://en.wikipedia.org/wiki/CPU_power_dissipation

Symmetric Multiprocessing (SMP)

e Collection of “identical” cores

» Shared memory (access to all system
resources)

* Managed by a single OS

* Pros:
* Simple(r) HW design
e Great for multitasking machines

Cco C1 C2 C3
L1 L1 L1 L1
cache cache cache cache
v i v i
L2 cache

A4

DRAM

Symmetric Multiprocessing (SMP)

e Collection of “identical” cores

» Shared memory (access to all system
resources)

* Managed by a single OS

* Pros:
* Simple(r) HW design
e Great for multitasking machines

®

Cco C1 C2 C3
L1 L1 L1 L1
cache cache cache cache
v i v i
L2 cache

A4

DRAM

Symmetric Multiprocessing (SMP)

M
* Collection of “identical” cores @ o (’ ‘:,
* Shared memory (access to all system
resources) co C1 C2 C3

* Managed by a single OS

y \ 4 y

L1 L1 L1 L1
cache cache cache cache
* Pros: i i
* Simple(r) HW design
L2 cache

e Great for multitasking machines

A4

DRAM

Symmetric Multiprocessing (SMP)

|H

e Collection of “identical” cores

» Shared memory (access to all system
resources)

* Managed by a single OS

* Pros:
* Simple(r) HW design
e Great for multitasking machines

e Can provide (close to) linear speedups for
parallel applications

O PyTorch

Cco C1 C2 C3
L1 L1 L1 L1
cache cache cache cache
v i v i
L2 cache

A4

DRAM

Symmetric Multiprocessing (SMP)

e Collection of “identical” cores

» Shared memory (access to all system
resources)

* Managed by a single OS

* Pros:
* Simple(r) HW design
e Great for multitasking machines

e Can provide (close to) linear speedups for
parallel applications

* Cons: difficult to program!

Cco C1 C2 C3
L1 L1 L1 L1
cache cache cache cache
v i v i
L2 cache

A4

DRAM

SMP systems are widespread

* Laptops
* My laptop has 8 cores
* Most have at least 2
* New Macbook: 10 core

 Workstations:

e 2-64 cores
e ARM racks: 128

* Phones:
* iPhone: 2 big cores, 4 small cores
e Samsung:1+3+4

*https://www.crn.com/news/components-
peripherals/ampere-s-new-128-core-altra-cpu-targets-
intel-amd-in-the-cloud

SMP systems are widespread

CcO C1 C2 C3

* Laptops
* My laptop has 8 cores
* Most have at least 2
* New Macbook: 10 core

L2 cache

 Workstations:

e 2-64 cores v
e ARM racks: 128

* Phones:
* iPhone: 2 big cores, 4 small cores *https://www.crn.com/news/components-
o Samsung: 1+3+4 !oerlpheraI§/ampere—s—new-128-core—aItra—cpu—targets—
intel-amd-in-the-cloud

Potential for Parallel Speedup

e Amdahl's law

1
_p)+2
(1-p)+_

e Speedup(c) =

* Where c is the number of cores and p is the percentage of the
program execution time that would be improved by parallelism

* Assumes linear speedups

Speedup

20

18

16

14

12

10

Amdahl

's Law

o el W w—
e - e B

Parallel portion

50%
75%

—— 90%
—— 95%

T YT O T T T CT T

<
©

32

128
256
512
1024
2048

4096

Number of processors

8192

16384

32768

65536

from wikipedia

Can compilers help?

* Much like ILP: convert sequential streams of computation in to SMP
parallel code.

e Much harder constraints

* Correctness
* Performance

* For loops are a good target for compiler analysis

For loops are great candidates for SMP
parallelism

_ _ _ _ corel
for (1int 1 = 0; 1 < 6; 1++) {

a[i] = b[i] + c[1]

}

For loops are great candidates for SMP
parallelism

: : : : corel core 2
for (1int 1 = 0; 1 < 6; 1++) {

a[i] = b[i] + c[1i]

}

For loops are great candidates for SMP
parallelism

for (int i = 0; i < 6; i++) { core 1 core 2 core 3

a[i] = b[i] + c[i]

}

Demo

e \Vector addition

Demo

e Safety

SMP Parallelism in For Loops

* Given a nest of For loops, can we make the outer-most loop parallel?
e Safely
 Efficiently

* We will consider a special type of for loop, common in scientific
applications:
* Operates on N dimensional arrays
Only side-effects are array writes
Array bases are disjoint and constant

* Bounds and array indexes are a function of loop variables, input variables and
constants™

* Loops Increment by 1 and startat O

If the bounds and indexes are affine functions, then more analysis is possible, see dragon book

SMP Parallelism in For Loops

* We will consider a special type of for loop, common in scientific
applications:
* Operates on N dimensional arrays
* Only side-effects are array writes
* Array bases are disjoint and constant

* Bounds and array indexes are a function of loop variables, input variables and
constants™

* Loops Increment by 1 and startat O

for (int i = 0; i < diml; i++) {
for (int j = 0; j < dim3; j++) {
for (int k = 0; k < dim2; k++) {
a[i1][J] += b[1]1[k] * c[k][]];
}
}
}

SMP Parallelism in For Loops

* We will consider a special type of for loop, common in scientific
applications:
e Operates on N dimensional arrays (only side-effects are array writes)
* Array bases are disjoint and constant

* Bounds, indexes are a function of loop variables, input variables and constants
* Loops Increment by 1 and startat 0

for (int 1 = 2; i < 100; 1i+=3) {
a[i] = c[1 + 128];
}

SMP Parallelism in For Loops

* We will consider a special type of for loop, common in scientific
applications:
e Operates on N dimensional arrays (only side-effects are array writes)
* Array bases are disjoint and constant

* Bounds, indexes are a function of loop variables, input variables and constants
* Loops Increment by 1 and startat 0

Make new loop bounds:
i=]j
for (int 1 = 2; 1 < 100; 1+=3) {
a[i] = c[1 + 128];

SMP Parallelism in For Loops

* We will consider a special type of for loop, common in scientific
applications:
e Operates on N dimensional arrays (only side-effects are array writes)
* Array bases are disjoint and constant

* Bounds, indexes are a function of loop variables, input variables and constants
* Loops Increment by 1 and startat 0

Make new loop bounds:
i=(j+2)*3
for (int j = 0; J < 98; j+=1) {
a[(J+2)*3] = c[]J+2 + 128];
}

SMP Parallelism in For Loops

* We will consider a special type of for loop, common in scientific
applications:
e Operates on N dimensional arrays (only side-effects are array writes)
* Array bases are disjoint and constant

* Bounds, indexes are a function of loop variables, input variables and constants
* Loops Increment by 1 and startat 0

Make new loop bounds:
i=j*3

for (int 3 2; J < 34; j+=1) {
a[j*3] = c[]J*3 + 128];
} Multiply by a constant to make

increment by 1. update loop body, update
and bounds

SMP Parallelism in For Loops

* We will consider a special type of for loop, common in scientific
applications:
e Operates on N dimensional arrays (only side-effects are array writes)
* Array bases are disjoint and constant

* Bounds, indexes are a function of loop variables, input variables and constants
* Loops Increment by 1 and startat 0

Make new loop bounds:
i=j*3+2
for (int jJ = 0; J < 32; j+=1) {
a[j*3+2] = c[]J*3+2 + 128];
} subtract by constant to start at 0

SMP Parallelism in For Loops

* We will consider a special type of for loop, common in scientific
applications:

e Operates on N dimensional arrays (only side-effects are array writes)
* Array bases are disjoint and constant

* Bounds, indexes are a function of loop variables, input variables and constants
* Loops Increment by 1 and startat 0

for (int i = 2; 1 < 100; i+=3) { for (int j = 0; jJ < 32; j+=1) {

a[i] = c[i + 128]; a[3*j+2] = c[(3*+2) + 128];
t }

SMP Parallelism in For Loops

* Given a nest of candidate For loops, determine if we can we make the
outer-most loop parallel?

» Safely
 efficiently

* Criteria: every iteration of the outer-most loop must be independent
* The loop can execute in any order, and produce the same result

* Such loops are called “DOALL” Loops. The can be flagged and handed
off to another pass that can finely tune the parallelism (number of
threads, chunking, etc)

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent

e How do we check this?

* If the property doesn’t hold then there exists 2 iterations, such that if they are
re-ordered, it causes different outcomes for the loop.

 Write-Write conflicts: two distinct iterations write different values to the
same location

e Read-Write conflicts: two distinct iterations where one iteration reads from
the location written to by another iteration.

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

First example: write-write conflict

for (1 = 0; i < size; i++) {
a[index(i)] = loop(i);

}

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

First example: write-write conflict
for (1 = 0; i < size; i++) {

a[index(1)] = loop(i);

}

Calculate index based on i

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

First example: write-write conflict

for (1 = 0; i < size; i++) {
a[index(i)] = loop(i);

}

Computation to store in the memory location

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

First example: write-write conflict

for (1 = 0; i < size; i++) {
a[index(i)] = loop(i);
}
for two distinct iterations:
i, 1= 1,
Check:

index (i) != index(i,)

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

First example: write-write conflict

for (1 = 0; i < size; i++) {
a[index(1)] = loop(1i);
}
for two distinct iterations:
i. 1= 1 Because we start at 0 and increment by 1, we can use i to refer
X ° y . .
Check: to loop iterations

index (i) != index(i,)

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

First example: write-write conflict

for (i = 0; 1 < size; i++) {
a[index(i)] = loop(i);
} Why?
o - Because if

for two distinct iterations: index(i,) == index(i,)
ix 1= iy then: '
;heck | | | a[index(i,)] will equal
index(1,) != 1ndex(1i,) either loop(i,) or loop(i,)

depending on the order

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

for (1 = 0; i1 < size; i++) {
a[index(i)] = loop(i);

}

Examples:

for (i1 = 0; 1 < 128; i++) {
a[i]= 1i*2;

}

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent
* the loop must produce the same result for any order of the iterations

for (1 = 0; 1 < size; i++) {
a[index(i)] = loop(i);
}
Examples:
for (i = 0; i < 128; i++) { for (i = 0; i < 128; i++) {
a[i]= 1i*2; a[i%64]= 1*2;

} }

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent

for (1 = 0; 1 < size; i++) {
a[write index(1i)] = a[read index(i)] + loop(1i);

}

Read-write conflicts:

for two distinct iteration variables:

i, != i,

Check:

write_ index(i,) != read_index(iy)

Safety Criteria

* Criteria: every iteration of the outer-most loop must be independent

for (1 = 0; 1 < size; i++) {
a[write index(1i)] = a[read index(i)] + loop(1i);

Why?
Read-write conflicts:

if i, iteration happens first, then

for two distinct iteration variables: iteration i, reads an updated value.
i, != i,
Check: if 1, happens first, then it reads the

write_index(i,) != read_index(i,) original value

Next class

* Topics:
* Reasoning about loop conflicts

* Remember:
* Homework 2 due today
 Midterm due on Wednesday (by midnight!)

