
CSE211: Compiler Design 
Nov. 17, 2021

• Topic: Array processing DSL

• Discussion questions:
• What is a DSL?
• What are the benefits and drawbacks 

of a DSL?
• What DSLs have you used?



Announcements

• Homework 2 and midterm are graded
• Let me know if there are issues or if you have questions (Office hours on Thursday)
• Last day to raise concerns is Friday

• Homework 3 is due TODAY
• I will post homework 4 later today

• Starting on new module: DSLs

• Guest lecture for Nov. 22
• Aviral Goel will talk about laziness in R



Announcements

• Paper assignment:
• If you do not ”register” for a paper by Wednesday I will count it as late
• 4 missing! Please sign up!

• Project:
• Add your name and project title to sheet.
• Last day to sign up. Any new projects will be presented on the 29.
• You have until the 29th to switch to the final
• Option for blog post, please mark your interest



Today we are moving on to DSLs

• But first let’s review



Review parallelism

• First thing we discussed:
• Instruction level parallelism



Priority Topological Ordering 
of DDGs for Superscalar

r0 = neg(b);
r1 = b * b;
r2 = 4 * a;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
r6 = r0 – r5;
r7 = 2 * a;
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Priority Topological Ordering 
of DDGs for Pipelining

r2 = 4 * a;
r0 = neg(b);
r1 = b * b;
r3 = r2 * c;
r4 = r1 – r3;
r5 = sqrt(r4);
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x  = r8; x
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Schedule each node according
to the level



How to deal with both super scalar and 
pipelining?
• Its complicated...

• Performance models and simulations (discussed in the dragon book)

• Intuitive model: place dependent instructions as far away from each 
other as possible



Across basic blocks

• Loop unrolling, creates a bigger basic block loop body

• Anticipatable expressions: move expressions to a location in the CFG 
where there are no control dependencies



Anticipable Expressions

AntOut(n)= ⋂s in succ UEExpr(s) ∪ (AntOut(s) ⋂ ExprKill(s))

An expression e is “anticipable” at a basic block bx if for all 
paths that leave bx , e is evaluated



Anticipable Expressions

x = z + w;
if (x > 100) {

...
a = b + c;
...

}
else {

...
a = b + c;
...

}

x = z + w;
if (x > 100)

...
a = b + c;
...

...

if else

...
a = b + c;
...



Anticipable Expressions

x = z + w;
if (x > 100) {

...
a = b + c;
...

}
else {

...
a = b + c;
...

}

x = z + w;
a = b + c;
if (x > 100)

...
a = b + c;
...

...

if else

...
a = b + c;
...

antExpr = {a=b+c}



FOR loops are good candidates to do in 
parallel
• Safety:
• What conditions?

• Efficiently:
• What were some issues here?
• Why is it important for parallelism?



Review

• Creating constraints

for (i = 5; i < 128; i+=2) {
a[i]= a[i]*2;

}

two integers: ix != iy
ix >= 5
ix < 128
iy >= 5
ix % 2 == 1
iy % 2 == 1
iy < 128
ix == iy
ix == iywrite-write conflict

read-write conflict

Ask if these constraints are satisfiable (if so, it is not safe to parallelize)

What if the loop index did not start at 0?

What if the the loop index does not increment
by 1?



Adding loop nestings

• In some cases, there might not be a good nesting order for all 
accesses:

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶
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• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!
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Adding loop nestings

• Blocking operates on smaller chunks to exploit locality in column 
increment accesses. Example 2x2

𝐴 = 𝐵 + 𝐶!

𝐴 𝐵 𝐶

Hit on all!



Adding loop nestings

• Add two outer loops for both x and y

for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];

}
}



Adding loop nestings

• Add two outer loops for both x and y

for (int xx = 0; xx < SIZE; xx += B) {
for (int yy = 0; yy < SIZE; yy += B) {
for (int x = xx; x < xx+B; x++) {
for (int y = yy; y < yy+B; y++) {
a[x*SIZE + y] = b[x*SIZE + y] + c[y*SIZE + x];

}
}

}
}



How to parallelize

• different approaches



Regular Parallel Loops

• Example, 2 threads/cores, array of size 8

void parallel_loop(..., int tid) {

int chunk_size = SIZE / NUM_THREADS;
int start = chunk_size * tid;
int end = start + chunk_size
for (x = start; x < end; x++) {
// work based on x

}
}

0 1 2 3 4 5 6 7

thread 1thread 0

chunk_size = 4

0: start = 0

0: end = 4

1: start = 4

1: end = 8



What about streaming multiprocessors 
(GPUs)?

one streaming
multiprocessor
contains many 
small Compute
Elements (CE)

0 1 2 3 4 5 6 7

CEs Can load adjacent
memory locations
simultaneously 

What about a striped pattern?

ITER 0:

CE1CE0

thread 0 thread 1

streaming multiprocessor

L1 cache

DRAM

load/
store 
unit



For irregular workloads



Work stealing - global implicit worklist

• Global worklist: threads take tasks (iterations) dynamically 

0 1 2 3 4 5 6 7 SIZE -1

thread 1thread 0



• local worklists: divide tasks into different worklists for each thread

0 1 3 4

thread 1thread 0

worklist 0 worklist 1

Work stealing - local worklists



Finally, looking forward

ExecuteAccess

L1 
cache

L2 cache

DRAM

C1C0

L1 
cache

L1 
cache

L2 cache

DRAM

Traditional SMP System Decoupled Access/Execute
System



Moving on to DSLs
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What is a DSL

• Objects in an object oriented language?
• operator overloading (C++ vs. Java)

• Libraries?
• Numpy

• Does it need syntax?
• Pytorch/Tensorflow

No clear answer!



What is a DSL

• Not designed for general computation, instead
designed for a domain

• How wide or narrow can this be?
• Numpy vs TensorFlow
• Pros and cons of this design?

• Domain specific optimizations
• Optimizations do not have to work well in all cases



DSL designs

• Ease of expressiveness
sed ‘s/Utah/California’ address.txt

set title ”Parallel timing experiments" 
set xlabel ”Threads”
set ylabel ”Speedup" 
plot ”data.dat" with lines

gnuplot

Other examples?

These require their own front end. What about Matplotlib?



DSL designs

• Ease of expressiveness

From: Geometry Types for Graphics Programming, OOPSLA 2020

Add reference tags to types: World or View

make it harder to write bugs!



DSL designs

• Ease of optimizations

Examples?



From homework 3:

• reduction loops:
• Entire computation is dependent
• Typically short bodies (addition, multiplication, max, min)

1 2 3 4 5 6
addition: 21

max: 6

min: 1

What does this assume?
Optional in C++
Non-optional in Tensorflow

Typically faster than 
implementations in general 
languages.



DSL designs

• Easier to reason about

set title ”Parallel timing experiments" 
set xlabel ”Threads”
set ylabel ”Speedup" 
plot ”data.dat" with lines

gnuplot example again

tf.matmul(a, b)

tensorflow

What does an optimized matrix multiplication look like?

https://github.com/flame/blis/tree/master/kernels

Typically much fewer lines of code
than implementations in general
languages.



DSL designs

• Easier to maintain

• Optimizations and transforms are less general (more targeted).
• Less syntax (sometimes no syntax).
• Fewer corner cases.



DSL design

• Recipe for a DSL talk:
• Introduce your domain
• Show scary looking optimized code
• Show clean DLS code
• Show performance improvement
• Have a correctness argument



Homework 4



Homework 4

Choice of 3 DSLs

• Halide: classic DSL for image processing. Hugely influential in 
academic DSL design

• GraphIt: DSL for graph computations (BFS, PageRank, SSSP)

• TVM: DSL for machine learning



Homework 4

For the one that you pick:
• Read the original paper (I will specify the URL)

• Get the code running, in all cases there are tutorials

• Comment on design choices

• Comment on performance (run your own experiments!)



Homework 4

Submission: 5 page report (double spaced). 

You can include graphs and code snippets, if you generate the data and 
code yourself! 

Any figure or data that you use in the report that is not yours needs to 
be cited.



The rest of the lecture

• A discussion and overview of Halide:
• Huge influence on modern DSL design
• Great tooling
• Great paper

• Originally: A DSL for image pipelining:

from: https://halide-lang.org/tutorials/tutorial_lesson_02_input_image.html

Brighten example



Motivation: pretty straight
forward computation
for brightening

(1 pass over all pixels)

from: https://people.csail.mit.edu/sparis/publi/2011/siggraph/

This computation is known as the “Local Laplacian Filter”. Requires visiting all pixels 99 times

We want to be able to do this
fast and efficiently!

Main results in from Halide show
a 1.7x speedup with 1/5 the LoC
over hand optimized versions at Adobe



Decoupling computation from optimization

• We love Halide not only because it can make pretty pictures very fast

• We love it because it changed the level of abstraction for thinking 
about computation and optimization

• (Halide has been applied in many other domains now, turns out 
everything is just linear algebra)



Example

• in C++

for (int x = 0; x < x_size; x++) {
for (int y = 0; y < y_size; y++) {

a[x,y] = b[x,y] + c[x,y];
}

}

for (int y = 0; y < y_size; y++) {
for (int x = 0; x < x_size; x++) {

a[x,y] = b[x,y] + c[x,y];
}

}

Which one would you write?



Optimizations are a black box

• What are the options?
• -O0, -O1, -O2, -O3
• Is that all of them?
• What do they actually do?

https://stackoverflow.com/questions/15548023/clang-optimization-levels



Optimizations are a black box

• What are the options?
• -O0, -O1, -O2, -O3
• Is that all of them?
• What do they actually do?

• Answer: they do their best for a wide range of programs. The 
common case is that you should not have to think too hard about 
them.

• In practice, to write high-performing code, you are juggling 
computation and optimization in your mind!



Next Class

• Continuing on Halide


