
CSE211: Compiler Design
Homework 2: Optimization and Flow Analysis

Assigned Oct. 18, 2021
Due Nov. 1, 2021

• This assignment has two parts: part 1 implements several variants of the local value numbering
optimization. Part 2 implements a live variable analysis for a subset of Python code; the
analysis will be used to find potential uses of uninitialized variables. Both parts are weighted
equally for your grade: 50% each.

• All required software has been pushed to the class docker. Please do a docker pull command
as described on the class webpage to get required software.

• Skeletons for this assignment can be found in two places: either in a zip from class webpage at:
https://sorensenucsc.github.io/CSE211-fa2021/assignment_data/homework2_code.zip,
or in the docker image with base path assignment_data/homework2_code. I suggest you copy
the skeleton directory to a working directory.

• Please read the instructions in their entirety before asking questions.

• There are likely typos in the homework (writeup and code)! Please let me know if you see
any. This is still a new course and I am evolving the homework constantly. Along these lines,
if you have ideas for the homework, please let me know!

• I have created a google doc for questions located here: https://docs.google.com/document/
d/1KPV7mWqXAFw5AqG-QwZz5LlcFT4o34lEQBc6ntY0Yq4/edit?usp=sharing. Please feel free
to ask and answer questions there; I will try to keep it updated with questions from slack.

1 Local value numbering
This part of the assignment requires 4 different implementation of local value numbering. We will
be iterating over a basic block that consists of a series of arithmetic operations, and replacing
redundant arithmetic instructions with assignment instructions. Your goal is to replace as many
arithmetic instructions as possible, under the constraints given for each implementation variant. I
will compare your results to a reference implementation; each variant should be specified enough
so that optimal results are deterministic.

1.1 Assignment skeleton
Find the assignment skeleton at homework2_code/part1.

1

https://sorensenucsc.github.io/CSE211-fa2021/assignment_data/homework2_code.zip
https://docs.google.com/document/d/1KPV7mWqXAFw5AqG-QwZz5LlcFT4o34lEQBc6ntY0Yq4/edit?usp=sharing
https://docs.google.com/document/d/1KPV7mWqXAFw5AqG-QwZz5LlcFT4o34lEQBc6ntY0Yq4/edit?usp=sharing


Your implementation is constrained to skeleton.py. Read through the code to understand the
variable, instruction and basic block objects and how to use them. I have implemented the function
that numbers variables in a basic block as a reference.

1.2 Implementation variants
You will implement 4 variants of local value numbering, each with different constraints.

I have implemented the function that numbers variables in a basic block. You can look at this
function to see how to use the objects and the member functions. There are four functions for you
to implement: replace_redundant with numbers: 1,2,3,4. I have outlined the structure of the
code, but you will need to fill in the rest.

Each function should return the new block, along with an integer indicating how many arithmetic
instructions were replaced with assignment instructions. I have provided a rough draft for each
implementation. It is your job to finish the implementations.

1. Part 1: implement replace_redundant_part1. This is around line 154. I have implemented
the basic structure for you, but you will need to do the rest. You can assume the input block
has been numbered.
In this variation, you can not assume any commutative operations. You can assume numbered
variables are distinct. That is, a0 is different from a1.

2. Part 2: implement replace_redundant_part2. This is around line 194. Part 2 is the same
as part 1 except you can use the commutative property of + and *.

3. Part 3: implement replace_redundant_part3. This is around line 243. This is the same
as part 2, with the new constraint that you CANNOT assume that numbers create fresh
variables. That is, a0 is NOT different from a1. If you drop the numbers from the variables,
the program must still execute the same as the original.
This means that your replacement check needs to determine if the variable has been assigned
a new value more recently. For example, consider the program:
a = b + c
a = x + y
z = b + c
You cannot replace z = b + c because a no longer contains b + c, it was overwritten. In
order to grade this, I am assuming that the oldest value remains in the hashtable. That is,
if you replace an arithmetic operation a = b + c with an assignment operation a = e, the
hash table will keep b + c mapped to a, rather than updating it to e.

4. Part 4: implement replace_redundant_part4. This is around line 290. This part is the
same as Part 3, except you should track a set of possible replacements rather than just one.
For example, consider this program:
a = b + c
e = b + c
a = x + y

2



z = b + c
Like in part 3, you cannot replace the fourth instruction with a because a has been replaced
with x + y. However, you could replace it with e, as this one has not been overwritten.

1.3 Evaluation
1. Test your implementation. You can run your script standalone, i.e. running: python

skeleton.py and it will run the test basic blocks at the end of the file. These should be
simple and straightforward to debug.

2. You can test your implementation using my testing script tester.py. It will run 128 randomly
generated basic blocks (in test_cases.py) and compare the number of replaced expressions
with my values obtained from my reference implementation. It may be of interest to see how
many total instructions were replaced with each approach. It should not be surprising that
part 2 replaces much more than part 1. Please think about the values for part 3 and 4 as
well.

1.4 Submission
Please zip up the directory containing skeleton.py (including all testing files) and submit to
canvas.

You will be tested on several components:

• Correctness: I will run a suite of tests on your implementation and check that they are equiv-
alent to a reference implementation I have. Both the number and of optimized instructions,
as well as the returned basic block must match.

• Comments and clarity: Please document your code. You don’t need tons of comments,
but your code should be readable.

Please note that I the tests I have provided you are not guaranteed to be the exact tests that I
will use for grading. For example, they only test the number of replaced instructions and not the
returned basic block. The tests are provided to get you started.

2 Uninitialized variables
In this part of the assignment, you will use flow analysis to find the LiveOut set of a CFG. You
will then use this information to detect potentially uninitialized variable accesses in Python code.
For background, I suggest you review slides from class and look at section 9.2 in the EAC book
(available for free online from the libary, there is a link on the course page).

We will use PyCFG (see: https://pypi.org/project/pycfg/), which generates a simple CFG
for Python code. The library is quite fragile, but the subset of the language we will use seems to
be robust. A key difference in PyCFG from the CFGs we’ve seen in class is that the PyCFG is
limited to single-instruction nodes. This makes large graphs, but the analysis per node easy. The
Python subset we will constrain ourselves to is:

• Variables are any sequence of lower-case letters

3

https://pypi.org/project/pycfg/


• Variable-to-variable assignment: e.g. x = y

• Input-to-variable assignment: e.g. x = input()

• Simple if statements, where the condition is a single variable. The if can be followed by an
else. e.g.

if x:
y = z

else:
x = input()

• Simple while statements, where the condition is a single variable. e.g.

while x:
x = input()

The project is to identify variables that are potentially accessed before initialization. For ex-
ample, the following program may access x before it is set, i.e. if the else branch is taken:

z = input()
if z:

x = input()
else:

w = input()
y = x

A LiveOut analysis will find x is live at the start (and thus, has the potential to be accessed
uninitialized).

2.1 Assignment skeleton
Find the assignment skeleton at homework2_code/part2.

Please look at the various files in test_cases to see examples of the python language subset
we will be analyzing. The solutions.py file will show for each test case, the set of potentially
uninitialized variables you should be finding.

Your assignment is constrained to skeleton.py. Read through this code and to understand the
structure and what you will be implementing. I have written code to parse the CFG produced by
PyCFG and several functions that you will need for the assignment.

If you want to develop locally, I installed the following packages to the docker image:

pip install astunparse
apt-get install python-dev graphviz libgraphviz-dev pkg-config
pip install pygraphviz

4



2.2 Technical work
1. Implement the functions to create the sets UEVar and VarKill. These are at lines 111 and

line 121, respectively. See the implementation of get_VarDomain as an example of how to
iterate through nodes and get variables.

2. Implement compute_LiveOut. This is the iterative flow analysis algorithm. It should look
similar to figure 8.14 in the EAC book (in the most recent edition; for the edition available
online, this is the right-hand side of figure 9.2). Keep in mind that you will need VarDomain
to compute the complement of VarKill. Additionally, I have provided a function that iterates
through the successors of a graph node.

3. In section 9.2.2 of EAC, it discusses that many flow algorithms can be optimized depending
on the order that nodes are traversed. We will now investigate this.

• record how many iterations each test case takes to converge using the default order.
• replace the default node order with a reverse postorder (rpo) traversal through the nodes.

Record how many iterations each test case takes to converge.
• replace the default node order with the rpo computed on the reverse CFG (see section

9.2.2 of EAC). Record how many iterations each test case takes to converge.

Write your observations as comments at the end of the file.

If you want to visualize CFGs, you can use the print_dot.py file, which takes in a python file
as an input, e.g. python print_dot test_cases/1.py. It will produce a png file of the CFG:
test_cases/1.py.png.

2.3 Evaluation
1. Test your implementation. You can run your script standalone with one of the test case files

as an argument, i.e. running: python skeleton.py test_cases/1.py and it will report the
uninitialized values found.

2. You can test your implementation using my testing script: tester.sh. I had to use a bash
script this time to reinitialize the PyCFG module for each file. It will run the 7 test cases and
compare the results to solutions I have computed using a reference. You can see the solutions
in test_cases/solutions.py.

3. There is no tester for the traversal order part of the assignment. Please write your observations
as comments at the end of the file. It does not matter which traversal order your submitted
code uses.

4. As noted before, PyCFG can be quite fragile. It is not required, but I would be interested
in any additional test cases you develop. If you want to include them, simply put them in
test_cases give them some kind of distinguishing name (e.g. new_tests_0.py).

5



2.4 Submission
Please zip up the directory containing skeleton.py (including all testing files) and submit to
canvas.

You will be tested on several components:

• Correctness: I will run a suite of tests on your implementation and check that they are
equivalent to a reference implementation.

• Comments and clarity: Please document your code. You don’t need tons of comments, but
your code should be readable. This includes comments describing your observations about
how the traversal order changes the number of iterations for the algorithm.

Please note that I the tests I have provided you are not guaranteed to be the exact tests that I
will use for grading.

6


	Local value numbering
	Assignment skeleton
	Implementation variants
	Evaluation
	Submission

	Uninitialized variables
	Assignment skeleton
	Technical work
	Evaluation
	Submission


