
CSE113: Parallel Programming
March 8, 2023

• Topics: 
• Memory consistency models:

• Examples

target machine
TSO (x86)

NO different
address

NO No

L S

L

S



Announcements 

• Striving for HW 2 grades to be out by end of today. 

• Work on Homework 4 (Due March 10, you have until March 14)

• We are working on HW 5 to be released by end of the week or 
Monday

• Last day on Module 4, we will move to Module 5 on Friday (Javascript
and GPU)



Memory Consistency

• We have been very strict about using atomic types in this class
• and the methods (.load and .store)
• why?

• Architectures do very strange things with memory loads and stores
• Compilers do too (but we won’t talk too much about them today)

• C++ gives us sequential consistency if we use atomic types and operations
• What do we remember sequential consistency from?



Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)



Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)
L:%t1 = load(x)

L:%t0 = load(y)

start off thinking
about sequen>al
consistency



Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Ques>on: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

start off thinking
about sequen>al
consistency

respect program order 

satisfy constraints



Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
L:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order 

satisfy constraints

What about TSO?

NO Different 
address

NO NO

memory access 0

memory access 1

L S

L

S



Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
L:%t1 = load(x)

Ques>on: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order 

satisfy constraints

What about TSO? NO

NO Different 
address

NO NO

memory access 0

memory access 1

L S

L

S



Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
L:%t1 = load(x)

Ques>on: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order 

satisfy constraints

What about PSO? 

NO Different 
address

NO Different 
address

memory access 0

memory access 1

L S

L

S



Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order 

sa3sfy constraints

What about PSO? 

NO Different 
address

NO Different 
address

memory access 0

memory access 1

L S

L

S



Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order 

sa3sfy constraints

What about PSO? YES 

NO Different 
address

NO Different 
address

memory access 0

memory access 1

L S

L

S



Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
L:%t1 = load(x)

Ques>on: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order 

satisfy constraints

Now it is disallowed in PSO

NO Different 
address

NO Different 
address

memory access 0

memory access 1

L S

L

S

fence



Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order 

sa3sfy constraints

What about RMO?

YES Different 
address

Different 
address

Different 
address

memory access 0

memory access 1

L S

L

S

fence



Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Ques>on: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

What about RMO?

YES Different 
address

Different 
address

Different 
address

memory access 0

memory access 1

L S

L

S

fence



Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Ques>on: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

What about RMO? The loads can be reordered also!

YES Different 
address

Different 
address

Different 
address

memory access 0

memory access 1

L S

L

S

fence



Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
fence
S:%t1 = load(x)

Ques>on: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x) L:%t0 = load(y)

What about RMO? add a fence

YES Different 
address

Different 
address

Different 
address

memory access 0

memory access 1

L S

L

S

fence

fence



Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
fence
S:%t1 = load(x)

Ques>on: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

Now the relaxed behavior is disallowed

YES Different 
address

Different 
address

Different 
address

memory access 0

memory access 1

L S

L

S

fence

fence



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine

? ?

? ?

L S

L

S



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequen>al consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

find mismatch



C++11 atomic opera5on compila5on

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

find mismatch

Two op>ons:

make sure stores
are not reordered
with later loads

make sure loads
are not reordered
with earlier stores



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequen>al consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);



C++11 atomic opera5on compila5on

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);

This should help you see why you 
want to reduce the number of atomic
load/stores in your program



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S

How about this one?



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequen>al consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S



C++11 atomic operation compilation

start with both both of the grids for the two different memory models 

NO NO

NO NO

L S

L

S

language
C++11 (sequen>al consistency)

target machine
PSO

NO different
address

NO different
address

L S

L

S

x.store(1); store(x,1);
fence;

C++ ISA

or

z = x.load() fence;
%z = load(x);

x.store(1); fence;
store(x,1);



Memory orders

• Atomic operaNons take an addiNonal “memory order” argument
• memory_order_seq_cst - default
• memory_order_relaxed - weakest

Where have we seen memory_order_relaxed?



Relaxed memory order

NO NO

NO NO

L S

L

S

language
C++11 (sequential consistency)

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

basically no orderings except for accesses to 
the same address



Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S



Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

lots of mismatches!



Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

lots of mismatches!

But language is more
relaxed than machine

so no fences are needed



Compiling memory order relaxed

different
address

different
address

different
address

different
address

L S

L

S

language
C++11 (memory_order_relaxed)

Do any of the ISA memory models need any fences
for relaxed memory order?

NO Different 
address

NO NO

L S

L

S

TSO

NO Different 
address

NO Different 
address

L S

L

S

PSO

YES Different 
address

Different 
address

Different 
address

L S

L

S

RMO



Memory order relaxed

• Very few use-cases! Be very careful when using it
• Peeking at values (later accessed using a heavier memory order)
• CounFng (e.g. number of finished threads in work stealing)
• DO NOT USE FOR QUEUE INDEXES



More memory orders: we will not discuss in class 

• Atomic operations take an additional “memory order” argument
• memory_order_seq_cst - default
• memory_order_relaxed - weakest

• More memory orders (useful for mutex implementations):
• memory_order_acquire
• memory_order_release

• EVEN MORE memory orders (complicated: in most research it is 
omitted)
• memory_order_consume



A cautionary tale



Thread 0:
m.lock();
display.enq(triangle0);
m.unlock();

Thread 1:
m.lock();
display.enq(triangle1);
m.unlock();

Consider the following example: a graphics program where each thread wants to display a triangle; 
the display is a queue (not thread safe)



Thread 0:
m.lock();
display.enq(triangle0);
m.unlock();

Thread 1:
m.lock();
display.enq(triangle1);
m.unlock();

Consider the following example: a graphics program where each thread wants to display a triangle; 
the display is a queue (not thread safe)

We know how lock and unlock are implemented



Thread 0:
SPIN:CAS(mutex,0,1);
display.enq(triangle0);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
display.enq(triangle1);
store(mutex,0);

Consider the following example: a graphics program where each thread wants to display a triangle; 
the display is a queue (not thread safe)

We know how lock and unlock are implemented
We also know how a queue is implemented



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

Consider the following example: a graphics program where each thread wants to display a triangle; 
the display is a queue (not thread safe)

We know how lock and unlock are implemented
We also know how a queue is implemented

What is an execution?



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

if blue goes first
it gets to complete
its critical section
while thread 1 is spinning



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

now yellow gets a change to go



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

now yellow gets a change to go
CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different 
address

Different 
address

L S

L

S

what can happen in a PSO
memory model?

NO

NO



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

NO Different 
address

NO Different 
address

L S

L

S

what can happen in a PSO
memory model?



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle1);

store(head, %i+1);

store(mutex,0);

Different 
address

Different 
address

L S

L

S

what can happen in a PSO
memory model?

What just happened if this store moves?
NO

NO



Nvidia in 2015

• Nvidia architects implemented a weak memory model

• Nvidia programmers expected a strong memory model

• Mutexes implemented without fences!



Nvidia in 2015

bug found in two
Nvidia textbooks

We implemented 
a side-channel attack
that made the bugs
appear more frequently

These days Nvidia has
a very well-specified 
memory model!



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different 
address

Different 
address

L S

L

S

what can happen in a PSO
memory model? How to fix the issue?

NO

NO



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
fence;
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
fence;
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different 
address

Different 
address

L S

L

S

what can happen in a PSO
memory model? How to fix the issue?

your unlock func>on
should contain a fence!

unlock contains fence
before store!

unlock contains fence
before store!

NO

NO



Thread 0:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle0);
store(head, %i+1);
fence;
store(mutex,0);

Thread 1:
SPIN:CAS(mutex,0,1);
%i = load(head);
store(buffer+i, triangle1);
store(head, %i+1);
fence;
store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

CAS(mutex,0,1);

%i = load(head);

store(buffer+i, triangle0);

store(head, %i+1);

store(mutex,0);

Different 
address

Different 
address

L S

L

S

what can happen in a PSO
memory model? How to fix the issue?

your unlock func>on
should contain a fence!

unlock contains fence
before store!

unlock contains fence
before store!

fence;

No instruc>ons
can move aaer
the mutex store!

NO

NO



Memory Model Strength

• If one memory model M0 allows more relaxed behaviors than another 
memory model M1, then M0 is more relaxed (or weaker) than M1.

• It is safe to run a program wri?en for M0 on M1. But not vice versa

NO Different 
address

NO NO

L S

L

S

TSO

NO Different 
address

NO Different 
address

L S

L

S

PSO

YES Different 
address

Different 
address

Different 
address

L S

L

S

RMO



Memory Model Strength

• Many Nmes specificaNons are weaker than implementaNons:
• A chip might document PSO, but implement TSO: 

• Why?

NO Different 
address

NO NO

L S

L

S

TSO

NO Different 
address

NO Different 
address

L S

L

S

PSO

YES Different 
address

Different 
address

Different 
address

L S

L

S

RMO



Schedules and Liveness



Safety property

• Something bad will never happen
• i.e. the program will not exit with the mutex taken
• Two threads will never be in the critical section at the same time
• can be specified with assert statements in the program



However...

• Safety is only half of the picture

• Self driving car example: 
• Design a car that never crashes (safety property)



However...

• Safety is only half of the picture

• Self driving car example: 
• Design a car that never crashes (safety property)
• Easy! Just design a car that can’t move!

• We need include something else in the specification:



Liveness property

• Something good will eventually happen

• Examples:
• The mutex program will eventually terminate
• The self driving car will eventually reach its destination

• More difficult to reason about that safety properties



Schedulers

• A fair scheduler typically requires preemption

Thread 0

Core 0

Thread 1

Thread 2

Thread 3

Thread list

resources
Operating

System



Schedulers

• A fair scheduler typically requires preempNon

Thread 0

Core 0

Thread 1

Thread 2

Thread 3

Thread list

resources

Thread 0 has 
had enough 

3me

Operating
System



Schedulers

• A fair scheduler typically requires preempNon

Core 0

Thread 1

Thread 2

Thread 3

Thread list

resources

Who to put 
on now?

Thread 0
Operating

System



Schedulers

• A fair scheduler typically requires preemption

Core 0

Thread 1Thread 2

Thread 3

Thread list

resources Thread 0
Operating

System

OS does a good job giving all threads a chance



The fair scheduler

• every thread that has not terminated will “eventually” get a chance to 
execute.

• “concurrent forward progress”: defined by C++
not guaranteed, but encouraged (and likely what you will observe)

• “weakly fair scheduler”: defined by classic concurrency textbooks



Schedulers

• A fair scheduler typically requires preempNon

Core 0

Thread 1Thread 2

Thread 3

Thread list

resources

This is 
exhausting!

Thread 0
Operating

System



Schedulers

• A fair scheduler typically requires preemption

Core 0

Thread 1Thread 2

Thread 3

Thread list

resources

This is 
exhausting!

Thread 0
Opera>ng

System

I need to 
keep track of 
who needs a 

turn!



Schedulers

• A fair scheduler typically requires preemption

Core 0

Thread 1Thread 2

Thread 3

Thread list

resources

This is 
exhausting!

Thread 0
Opera>ng

System

peak into a thread object:

I need to 
keep track of 
who needs a 

turn!



Schedulers

• A fair scheduler typically requires preempNon

Core 0

Thread 1:
program data
local variables

Thread 2

Thread 3

Thread list

resources

This is 
exhausting!

Thread 0
Opera>ng

System

peak into a thread object:

Estimated to be ~30K cycles
to context switch between 

threads

I need to 
keep track of 
who needs a 

turn!



Schedulers

• Systems might not support preemption: e.g. GPUs

• Frameworks might not implement preemption (e.g. OpenCL on CPUs)



simplified execution model

Core 0 Core 1 Core 2

t0t1t2

Device with 3 Cores

t3t4

finished threads

Program with 5 
threads

thread pool



Solu5ons?

• I have N cores, only run N threads?



Solutions?

• I have N cores, only run N threads?

t0t1 t2t3

Core 0 Core 1

Device with 2 cores

I can handle a few 
threads! Especially 
if they have small 

programs

some>mes concurrency can help hide
latency! Don’t want to completely disallow it!



Solu5ons?

• I have N cores, only run N threads?

• GPU examples:
• Depending on program size Nvidia GPUs support 

• 32 threads per core for small programs
• 2 threads per core for big programs

• We need a better specification



Parallel Forward Progress

• “Any thread that has executed at least 1 instrucNon, is guaranteed to 
conNnue to be fairly executed”

• Also called:
• “Parallel Forward Progress”: by C++
• “Persistent Thread Model”: by GPU programmers
• ”Occupancy Bound ExecuFon Model”: in some of my papers



• Producer - consumer
• Thread 0 waits for Thread 1 to write a flag

example



Thread 0:
0.0: while(flag.load() == 0); 

Thread 1:
1.0: flag.store(1);

Is this program guaranteed to terminate under the fair scheduler?

Is this program guaranteed to terminate under the parallel scheduler?



Schedulers

• In some cases the Parallel scheduler might be too strong

• For example dynamic power management on mobile devices



A power-saving scheduler

Core 0 Core 1 Core 2

t0t1t2

Device with 3 Cores

t3t4

finished threads

Program with 5 
threads

thread pool



A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1 t2

Device with 3 Cores

t3t4

finished threads

Program with 5 
threads

thread pool



A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1 t2

Device with 3 Cores

t3t4

finished threads

Program with 5 
threads

thread pool



A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1 t2

Device with 3 Cores

t3t4

finished threads

Program with 5 
threads

thread pool

😥



A power-saving scheduler

Core 0 Core 1 Core 2

t0 t1

t2

Device with 3 Cores

t3t4

finished threads

Program with 5 
threads

thread pool

😥

😴

preempted



A power-saving scheduler

Core 0 Core 1 Core 2

t0

t1

t2

Device with 3 Cores

t3t4

finished threads

Program with 5 
threads

thread pool

😥

😴

preempted



A power-saving scheduler

Core 0 Core 1 Core 2

t0

t1

t2

Device with 3 Cores

t3t4

finished threads

Program with 5 
threads

thread pool

😥

😴



Schedulers

• This power-saving opNmizaNon messes up the Parallel Scheduler 
guarantees

• Can we do anything interesNng with a scheduler like this?



Schedulers

• This power-saving optimization messes up the Parallel Scheduler 
guarantees

• Can we do anything interesting with a scheduler like this?

• The OS can give guarantees about the threads that it preempts for 
energy savings.



Schedulers

• This power-saving optimization messes up the Parallel Scheduler 
guarantees

• Can we do anything interesting with a scheduler like this?

• The OS can give guarantees about the threads that it preempts for 
energy savings.

• The OS could target threads with higher ids and give priority with 
threads with the lower id.



The HSA scheduler

• The thread with the lowest ID that hasn’t terminated is guaranteed to 
eventually be executed.

• Called:
• “HSA” - Heterogeneous System Architecture, programming language 

proposed by AMD for new systems.

• The HSA language appears to be defunct now, but the scheduler is a good fit 
for mobile devices (esp. mobile GPUs). 



Thread 0:
0.0: while(flag.load() == 0); 

Thread 1:
1.0: flag.store(1);

Is this program guaranteed to terminate under the power saving scheduler?

What if we switched the threads?



Thread 0:
0.0: m.lock();
0.1: m.unlock();

Thread 1:
1.0: m.lock();
1.1: m.unlock();

What about a mutex? Which scheduler is it guaranteed to work with?



Liveness

• So where are we now?

• CPU Schedulers:
• In practice, tend to provide weakly fair schedulers (usually assumed)

• Pthreads
• OpenMP
• etc.

• Some cases do not: e.g. OpenCL on CPUs
• C++ is starting to provide a hierarchical specification

• concurrent
• parallel
• weakly parallel - at least one thread will execute



Liveness

• So where are we now?

• GPU schedulers:
• Nvidia provides Parallel Forward Progress

• Allows mutexes, concurrent data structures, etc.

• OpenCL, Vulkan, and Metal provide no documentaFon on scheduler 
behaviors.
• In pracEce, many assume parallel forward progress
• This is not portable (esp. to ARM and Apple)
• Working with specificaEon groups to try and provide these



See you on Friday

• keep working on HW 4

• Starting GPUs and Javascript on Friday


