
CSE113: Parallel Programming
March 3, 2023

• Topics:
• Finish up barriers
• Memory consistency models:

• Total store order
• Relaxed memory consistency
• Examples

target machine
TSO (x86)

NO different
address

NO No

L S

L

S

Announcements

• Midterm grades are out
• Let us know within 1 week if there are issues

• We are working on HW 2 grades and will strive to get them released
by Monday

• Homework 4 is out!
• Should be able to do most of it (part 1 and some of the others) by end of

lecture

Previous quiz

Previous quiz

Previous quiz

Example

Previous quiz

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 arrives

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 waits

thread 1 arrives

thread 2 arrives

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 waits

thread 1 waits

thread 2 waits

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 waits

thread 1 waits

thread 2 waits

thread 3 arrives

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 waits

thread 1 waits

thread 2 waits

thread 3 arrives

now that they have all arrived

Barriers

• Intuition: threads stop and wait for each other:
• Threads arrive at the barrier
• Threads wait at the barrier
• Threads leave the barrier once all other threads have arrived

Example: say there are 4 threads: barrier();

thread 0 leaves

thread 1 leaves

thread 2 leaves

thread 3 leaves

now that they have all arrived, they can all leave

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier() {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads - 1) {

counter.store(0);
}
else {

while (counter.load() != 0);
}

}

num_threads == 2
counter == 1

in a perfect world,
thread 1 executes now and leaves the barrier

Thread 1 wakes up! Doesn’t think its missed anything

Both threads get stuck here!

arrival_num == 0 arrival_num = 0

Sense Reversing Barrier

• Book Chapter 17

• Alternating ”sense” dynamically

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

sync on sense = true

class SenseBarrier {
private:

atomic_int counter;
int num_threads;
atomic_bool sense;
bool thread_sense[num_threads];

public:
Barrier(int num_threads) {

counter = 0;
this->num_threads = num_threads;
sense = false;
thread_sense = {true, ...};

}

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}
}

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads-1) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 0
sense = false

thread_sense = true thread_sense = true

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads-1) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 2
sense = false

thread_sense = true thread_sense = true
arrival_num = 1 arrival_num = 0

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads-1) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 2
sense = false

thread_sense = true thread_sense = true
arrival_num = 1 arrival_num = 0

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads-1) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 0
sense = true

thread_sense = false thread_sense = true
arrival_num = 1 arrival_num = 0

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads-1) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 0
sense = true

thread_sense = false thread_sense = true
arrival_num = ? arrival_num = 0

Remember the issue! Thread 1 went to sleep around this time
and thread 0 went into the barrier again!

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads-1) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 1
sense = true

thread_sense = false thread_sense = true
arrival_num = 0 arrival_num = 0

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads-1) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 1
sense = true

thread_sense = false thread_sense = true
arrival_num = 0 arrival_num = 0

both are waiting!,
but thread 1 can leave

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads-1) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 1
sense = true

thread_sense = false thread_sense = false
arrival_num = 0 arrival_num = 0

both are waiting!,
but thread 1 can leave

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads-1) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 1
sense = true

thread_sense = false thread_sense = false
arrival_num = 0 arrival_num = ?

Thread 1 finishes the barrier

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads-1) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 1
sense = true

thread_sense = false thread_sense = false
arrival_num = 0 arrival_num = ?

Goes into the second barrier

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads-1) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 2
sense = true

thread_sense = false thread_sense = false
arrival_num = 0 arrival_num = 1

Goes into the second barrier

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads-1) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 2
sense = true

thread_sense = false thread_sense = false
arrival_num = 0 arrival_num = 1

Goes into the second barrier

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads-1) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 0
sense = false

thread_sense = false thread_sense = false
arrival_num = 0 arrival_num = 1

Goes into the second barrier

Thread 0:
B.barrier();
B.barrier();

Thread 1:
B.barrier();
B.barrier();

void barrier(int tid) {
int arrival_num = atomic_fetch_add(&counter, 1);
if (arrival_num == num_threads-1) {

counter.store(0);
sense = thread_sense[tid];

}
else {

while (sense != thread_sense[tid]);
}
thread_sense[tid] = !thread_sense[tid];

}

num_threads == 2
counter == 0
sense = false

thread_sense = false thread_sense = false
arrival_num = 0 arrival_num = 1

thread 0 can leave, thread 1 can leave and the barrier works
as expected!

Moving on to memory consistency!

• One of my favorite topics!

Moving on to memory consistency!

• One of my favorite topics!

• What do other people think?

Look, memory ordering pretty much _is_ the rocket science of
CS, but the C standards committee basically made it a ton
harder by specifying "we have to make the rocket out of duct
tape and bricks, and only use liquid hydrogen as a propellant".

Linus

Memory Consistency

• We have been very strict about using atomic types in this class
• and the methods (.load and .store)
• why?

• Architectures do very strange things with memory loads and stores
• Compilers do too (but we won’t talk too much about them today)

• C++ gives us sequential consistency if we use atomic types and operations
• What do we remember sequential consistency from?

Sequential consistency for atomic memory

• Let’s play our favorite game:

Thread 0:
x.store(1);
y.store(1);

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
int t0 = y.load();
int t1 = x.load();

Is it possible for
t0 == 0 and t1 ==1

Thread 0:
x.store(1);
y.store(1);

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
int t0 = y.load();
int t1 = x.load();

x.store(1);

int t0 = y.load();
y.store(1);

int t1 = x.load();

Is it possible for
t0 == 0 and t1 ==1

Thread 0:
x.store(1);
y.store(1);

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
int t0 = y.load();
int t1 = x.load();

x.store(1);

int t0 = y.load();

y.store(1);

int t1 = x.load();

Is it possible for
t0 == 0 and t1 ==1

Thread 0:
x.store(1);
y.store(1);

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
int t0 = y.load();
int t1 = x.load();

Is it possible for
t0 == 1 and t1 ==0

x.store(1);

int t0 = y.load();
y.store(1);

int t1 = x.load();

How about:

Thread 0:
x.store(1);
y.store(1);

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
int t0 = y.load();
int t1 = x.load();

Is it possible for
t0 == 1 and t1 ==0

x.store(1);

int t0 = y.load();

y.store(1);

int t1 = x.load();

How about:

no where for this one to go!

Thread 0:
x.store(1);
int t0 = y.load();

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
y.store(1);
int t1 = x.load();

Another test
Can t0 == t1 == 0?

Thread 0:
x.store(1);
int t0 = y.load();

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
y.store(1);
int t1 = x.load();

Another test
Can t0 == t1 == 0?

x.store(1);

int t0 = y.load(); int t1 = x.load();

y.store(1);

Thread 0:
x.store(1);
int t0 = y.load();

Global variable:
atomic_int x(0);
atomic_int y(0);

Thread 1:
y.store(1);
int t1 = x.load();

Another test
Can t0 == t1 == 0?

x.store(1);

int t0 = y.load();

int t1 = x.load();

y.store(1);

no place for this one!

C++

• Plain atomic accesses are documented to be sequentially consistent (SC)

• Why wasn’t SC very good for concurrent data structures?
• Compossibility: two objects that are SC might not be SC when used together

• Programs contain only 1 shared memory though; no reason to compose different
main memories.

What about ISAs?

• Remember, it is important for us to understand how our code executes on
the architecture to write high performing programs

• Lets think about x86
• Instructions:
• MOV %t0 [x] - loads the value at x to register t0
• MOV [y] 1 - stores the value 1 to memory location y

Thread 0:
mov [x], 1
mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
mov [y], 1
mov %t1, [x]

Another test
Can t0 == t1 == 0?

Thread 0:
mov [x], 1
mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
mov [y], 1
mov %t1, [x]

Another test
Can t0 == t1 == 0?

mov [x], 1

mov %t0, [y]

mov %t1, [x]

mov [y], 1

Thread 0:
mov [x], 1
mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
mov [y], 1
mov %t1, [x]

Another test
Can t0 == t1 == 0?

mov [x], 1

mov %t0, [y]

mov %t1, [x]
mov [y], 1

no place for this event!

What if we actually run this code?

• We’d like to be able to compile atomic instructions just to regular ISA
loads and stores

Schedule

• Memory consistency models:
• Total store order
• Relaxed memory consistency
• Examples

Thread 0: Thread 1:

mov [x], 1

mov %t0, [y]
mov %t1, [x]

mov [y], 1

Core 0 Core 1

Main Memory
x:0
y:0

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

mov [x], 1 mov [y], 1

execute first instruction
what happens to the stores?

x:0
y:0

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:0

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:0

eventually they flush to main memory

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer

X86 cores contain a store
buffer; holds stores before
going to main memory

x:0
y:1

eventually they flush to main memory

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:0
y:0

mov [x], 1 mov [y], 1

rewind

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:0
y:0

mov [x], 1 mov [y], 1

execute first instruction

Thread 0: Thread 1:

mov %t0, [y]
mov %t1, [x]

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

values get stored in SB

Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Execute next instruction

mov %t0, [y] mov %t1, [x]

Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Values get loaded from memory

mov %t0, [y] mov %t1, [x]

Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

we see t0 == t1 == 0!

mov %t0, [y] mov %t1, [x]

Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer
x:1

Store Buffer
y:1

x:0
y:0

Store buffers are drained eventually

Thread 0: Thread 1:

Core 0 Core 1

Main Memory

Store Buffer Store Buffer

x:1
y:1

Store buffers are drained eventually
but we’ve already done our loads

Our first relaxed memory execution!

• also known as weak memory behaviors

• An execution that is NOT allowed by sequential consistency

• A memory model that allows relaxed memory executions is known as
a relaxed memory model
• X86 has a relaxed memory model due to store buffering
• If you restrict yourself to use only default atomic operations, C++ has does

NOT have a weak memory model

Litmus tests

• Small concurrent programs that check for relaxed memory behaviors

• Vendors have a long history of under documented memory
consistency models

• Academics have empirically explored the memory models
• Many vendors have unofficially endorsed academic models
• X86 behaviors were documented by researchers before Intel!

Litmus tests

Thread 0:
mov [x], 1
mov %t0, [y]

Thread 1:
mov [y], 1
mov %t1, [x]

Can t0 == t1 == 0?

This test is called “store buffering”

Restoring sequential consistency

• It is typical that relaxed memory models provide special instructions
which can be used to disallow weak behaviors.

• These instructions are called Fences

• The X86 fence is called mfence. It flushes the store buffer.

Thread 0: Thread 1:

mov [x], 1

mov %t0, [y] mov %t1, [x]

mov [y], 1

Core 0 Core 1

Main Memory
x:0
y:0

mfence mfence

Store Buffer Store Buffer

Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov [x], 1

mov %t0, [y] mov %t1, [x]

mov [y], 1

Main Memory
x:0
y:0

mfence mfence
Execute first instruction

Store Buffer
x:1

Store Buffer
y:1Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:0
y:0

mfence mfenceValues go into the store buffer

Store Buffer
x:1

Store Buffer
y:1Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:0
y:0

mfence mfence

Execute next instruction

Store Buffer
x:1

Store Buffer
y:1Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:0
y:0

store buffers are flushed

Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

store buffers are flushed

Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

execute next instruction

Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

values are loaded from memory

Store Buffer Store Buffer
Core 0 Core 1

Thread 0: Thread 1:

mov %t0, [y] mov %t1, [x]

Main Memory
x:1
y:1

We don’t get the problematic behavior: t0 == t1 == 0

Next example

Thread 0:

mov [x], 1

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer

single thread
same address

possible outcomes:
t0 = 1
t0 = 0

Which one do you expect?

Thread 0:

mov [x], 1

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer

How does this execute?

Thread 0:

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer

execute first instruction

mov [x], 1

Thread 0:

mov %t0, [x]

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Store the value in the store buffer

Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Next instruction

mov %t0, [x]

Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Where to load??

Store buffer?
Main memory?

mov %t0, [x]

Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

Where to load??

Threads check store buffer before going to main memory

It is close and cheap to check.

mov %t0, [x]

Memory Consistency

• How to specify a relaxed memory model?

• We can do it operationally
• by constructing a high-level machine and reasoning about operations through

the machine.

• or we can talk about instructions that are allowed to ”break” program order.

Thread 0:
mov [x], 1
mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
mov [y], 1
mov %t1, [x]

Another test
Can t0 == t1 == 0?

We will annotate instructions with S for store, and L for loads

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

We will annotate instructions with S for store, and L for loads

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y] L:mov %t1, [x]

S:mov [y], 1

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

Now we make a new rule:

S(tores) followed by a L(oad)
do not have to follow program order

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

respect program order

satisfy constraints

Now we make a new rule:

S(tores) followed by a L(oad)
do not have to follow program order

we can ignore this condition!!

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1 Now we can satisfy the condition!

we can ignore this condition!!

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

respect program order

satisfy constraints

Lets peak under the hood here

we can ignore this condition!!

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

respect program order

satisfy constraints

Lets peak under the hood here

Global timeline is when the
Store operation becomes visible
to other threads

we can ignore this condition!!

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]
S:mov [y], 1

respect program order

satisfy constraints

Lets peak under the hood here

Global timeline is when the
Store operation becomes visible
to other threads

we can ignore this condition!!

put y in SB

Thread 0:
S:mov [x], 1
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1 store buffer gets flushed

Lets peak under the hood here

Global timeline is when the
Store operation becomes visible
to other threads

we can ignore this condition!!

put y in SB

Questions

• Can stores be reordered with stores?

Thread 0:

mov [x], 1

mov [y], 1

Core 0

Main Memory
x:0
y:0

Store Buffer

Thread 0:

mov [y], 1

Core 0

Main Memory
x:0
y:0

Store Buffer

execute the first instruction

mov [x], 1

Thread 0:

mov [y], 1

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

value goes into store buffer

Thread 0:

mov [y], 1

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

execute next instruction

Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1

execute next instruction

mov [y], 1

Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1
y:1

value goes into the store buffer

Thread 0:

Core 0

Main Memory
x:0
y:0

Store Buffer
x:1
y:1

On x86, the store buffer trains in a FIFO way:
thus stores cannot be reordered

Thread 0:

Core 0

Main Memory
x:1
y:0

Store Buffer
y:1

On x86, the store buffer trains in a FIFO way:
thus stores cannot be reordered

Thread 0:

Core 0

Main Memory
x:1
y:1

Store Buffer
On x86, the store buffer trains in a FIFO way:
thus stores cannot be reordered

Questions

• Can stores be reordered with stores?

• How do we make rules about mfence?

Thread 0:
S:mov [x], 1
mfence
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
mfence
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x]

S:mov [y], 1

Rules: S(tores) followed by a L(oad)
do not have to follow program order.

mfence

mfence

Thread 0:
S:mov [x], 1
mfence
L:mov %t0, [y]

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
S:mov [y], 1
mfence
L:mov %t1, [x]

Another test
Can t0 == t1 == 0?

S:mov [x], 1

L:mov %t0, [y]

L:mov %t1, [x] S:mov [y], 1

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

mfence

mfence
So we can’t
reorder
this instruction
at all!

Rules

• Are we done?

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

Thread 0:
S:mov [x], 1
L:mov %t0, [x]

Global variable:
int x[1] = {0};
int y[1] = {0};

Another test
Can t0 == 0?

S:mov [x], 1

L:mov %t0, [x] Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

Thread 0:
S:mov [x], 1
L:mov %t0, [x]

Global variable:
int x[1] = {0};
int y[1] = {0};

Another test
Can t0 == 0?

S:mov [x], 1
L:mov %t0, [x]

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

where to put this store?

Thread 0:
S:mov [x], 1
L:mov %t0, [x]

Global variable:
int x[1] = {0};
int y[1] = {0};

Another test
Can t0 == 0?

S:mov [x], 1

L:mov %t0, [x]

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

S(tores) cannot be reordered past L(oads)
from the same address

where to put this store?

TSO - Total Store Order

Rules:
S(tores) followed by a L(oad)
do not have to follow program order.

S(tores) cannot be reordered past a fence
in program order

S(tores) cannot be reordered past L(oads)
from the same address

Schedule

• Memory consistency models:
• Total store order
• Relaxed memory consistency
• Examples

Other memory models?

• We can specify them in terms of what reorderings are allowed

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

Other memory models?

• We can specify them in terms of what reorderings are allowed

NO NO

NO NO

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

Sequential Consistency

Other memory models?

• We can specify them in terms of what reorderings are allowed

NO Different
address

NO NO

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

TSO - total store order

Other memory models?

• We can specify them in terms of what reorderings are allowed

? ?

? ?

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

Weaker models?

Other memory models?

• We can specify them in terms of what reorderings are allowed

NO Different
address

NO Different
address

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

PSO - partial store order

Allows stores to drain from the store buffer in any order

Other memory models?

• We can specify them in terms of what reorderings are allowed

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order,
can it bypass program order?

L S

L

S

RMO - Relaxed Memory Order

Very relaxed model!

Other memory models?

• FENCE: can always restore order using fences. Accesses cannot be
reordered past fences!

NO NO

NO NO

memory access 0

memory access 1

If memory access 0 appears before
memory access 1 in program order, and
there is a FENCE between the two accesses,
can it bypass program order?

L S

L

S

Any Memory Model

Schedule

• Memory consistency models:
• Total store order
• Relaxed memory consistency
• Examples

Thread 0:
L:mov %t0, [y]
S:mov [x], 1

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:mov %t1, [x]
S:mov [y], 1

First thing: change our syntax to pseudo code

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

First thing: change our syntax to pseudo code
You should be able to find natural mappings
to any ISA

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Question: can t0 == t1 == 1?

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks and try for sequential consistency

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

Not allowed under sequential consistency!

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

What about TSO?

NO Different
address

NO NO

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

What about TSO? NOT ALLOWED!

NO Different
address

NO NO

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

What about PSO?

NO Different
address

NO Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

What about PSO? NO!

NO Different
address

NO Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

What about RMO?

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

What about RMO?

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

What about RMO? YES!

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

How do we disallow the behavior in RMO?

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
fence
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

How do we disallow the behavior in RMO?

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
L:%t0 = load(y)
fence
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

How do we disallow the behavior in RMO?

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
L:%t0 = load(y)
fence
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

Now we cannot break program order past the fence!
Are we done?

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
L:%t0 = load(y)
fence
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
fence
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

Now we cannot break program order past the fence!
Are we done?

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
L:%t0 = load(y)
fence
S:store(x,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t1 = load(x)
fence
S:store(y,1)

Get out our lego bricks

L:%t0 = load(y)

S:store(x,1)

L:%t1 = load(x)

S:store(y,1)

Question: can t0 == t1 == 1?

respect program order

satisfy constraints

Now we cannot break program order past the fence!
Are we done? The behavior is no longer allowed

YES Different
address

different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

One more example

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)
L:%t1 = load(x)

L:%t0 = load(y)

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)
L:%t1 = load(x)

L:%t0 = load(y)

start off thinking
about sequential
consistency

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

start off thinking
about sequential
consistency

respect program order

satisfy constraints

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about TSO?

NO Different
address

NO NO

memory access 0

memory access 1

L S

L

S

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about TSO? NO

NO Different
address

NO NO

memory access 0

memory access 1

L S

L

S

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about PSO?

NO Different
address

NO Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about PSO?

NO Different
address

NO Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
S:store(x,1)
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about PSO? YES

NO Different
address

NO Different
address

memory access 0

memory access 1

L S

L

S

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

Now it is disallowed in PSO

NO Different
address

NO Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

respect program order

satisfy constraints

What about RMO?

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

What about RMO?

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

What about RMO? The loads can be reordered also!

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
fence
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x) L:%t0 = load(y)

What about RMO? add a fence

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

fence

Thread 0:
S:store(x,1)
fence
S:store(y,1)

Global variable:
int x[1] = {0};
int y[1] = {0};

Thread 1:
L:%t0 = load(y)
fence
S:%t1 = load(x)

Question: can t0 == 1 and t1 == 0?

S:store(y,1)

S:store(x,1)

L:%t1 = load(x)

L:%t0 = load(y)

Now the relaxed behavior is disallowed

YES Different
address

Different
address

Different
address

memory access 0

memory access 1

L S

L

S

fence

fence

Memory consistency in the real world

• Historic Chips:
• X86: TSO

• Surprising robust
• mutexes and concurrent data structures generally seem to work
• watch out for store buffering

• IBM Power and ARM
• Very relaxed. Similar to RMO with even more rules
• Mutexes and data structures must be written with care
• ARM recently strengthened theirs

Memory consistency in the real world

• Historic Chips:
• X86: TSO

• Surprising robust
• mutexes and concurrent data structures generally seem to work
• watch out for store buffering

• IBM Power and ARM
• Very relaxed. Similar to RMO with even more rules
• Mutexes and data structures must be written with care
• ARM recently strengthened theirs

Companies have a history
of providing insufficient
documentation about their
rules: academics have then
gone and figured it out!

Getting better these days

Memory consistency in the real world

• Modern Chips:
• RISC-V : two specs: one similar to TSO, one similar to RMO
• Apple M1: toggles between TSO and weaker

• Vulkan does not provide any fences that provide S - L ordering

Memory consistency in the real world

• PSO and RMO were never implemented widely
• I have not met anyone who knows of any RMO taped out chip
• They are part of SPARC ISAs (i.e. RISC-V before it was cool)
• These memory models might have been part of specialized chips

• Interestingly:
• Early Nvidia GPUs appeared to informally implement RMO

• Other chips have very strange memory models:
• Alpha DEC - basically no rules

See you on Wednesday!

• Get HW 3 in!

• Watch out for HW2 grades

• Finishing up memory models on Wednesday

