
CSE113: Parallel Programming
March 17, 2023

• Topics:
• Wrapping up GPUs
• WebGPU
• End of class

Announcements

• HW 5 is out, please get started

Announcements

• Final:
• All day March 22 (8 AM to 8 PM)
• Support given between 4 pm and 7 pm.
• Ask Private Post on Piazza
• Open note, open slides, open book
• Open internet to an extent

• Do not google exact answers
• Do not ask questions on forums
• Do not use ChatGPT or other AI tools

Previous Quiz

No previous quiz (sorry!)

Previous Quiz

Programming a GPU

Nvidia Jetson Nano (whole chip, CPU + GPU)
2 Billion transistors
10 TDP
Est. $99

Intel i7-9700K
2.16 Billion transistors
95 TDP
Est. $316

Tiny GPU in an
embedded system

The CPU in
my professor
workstation

https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html
https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Fight!

Embarrassingly parallel

+ + + + + + + +

= = = = = = = =

array a

array b

array c

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

https://www.techpowerup.com/gpu-specs/docs/nvidia-gtx-980.pdf

32 cores!

We should parallelize our application!

First parallelization attempt

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);
number of threads
thread id

GPU Memory

CPU GPU

System Memory Graphics Memory

CPU Memory:
Fast: Low Latency
Easily saturated: Low Bandwidth
Scales well: up to 1 TB
DDR

GPU Memory:
slow: High Latency
hard to saturate: High Bandwidth
doesn’t scale: 32 GB
GDDR, HBM

Different technologies2-lane straight highway
driven on by sports cars

16-lane highway on a windy
road driven by semi trucks

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

memory access
600 cycles

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2
We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 0
and put warp 1 on

Preemption and concurrency?

GPU

Graphics Memory

warp 0warp 1

warp 2
We can hide latency through
preemption and concurrency!

Preemption and concurrency?

GPU

Graphics Memory

warp 0warp 1

warp 2
We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 1
and put warp 2 on

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1
warp 2

We can hide latency through
preemption and concurrency!

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1
warp 2

We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 2
and put warp 0 on

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2

We can hide latency through
preemption and concurrency!

Hey, my memory has arrived!

preempt warp 2
and put warp 0 on

Go back to our program

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Lets launch with 32 warps

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

Optimizing memory accesses

Optimizing memory accesses

this is the load/store unit. The hardware component responsible for
issuing loads and stores.

Why doesn’t every core have one?

Optimizing memory accesses

this is the load/store unit. The hardware component responsible for
issuing loads and stores.

Why doesn’t every core have one?

This is the instruction cache... Why doesn’t every core have a instruction
buffer to keep track of its program?

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

instruction is fetched from the buffer
and distributed to all the cores.

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Cores can a large register file
they share expensive HW units (load/store and special functions)

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

All cores need to wait until all cores finish the first instruction

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Start the next instruction.

Why would we have a programming model like this?

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Start the next instruction.

Why would we have a programming model like this?
More cores (share program counters)
Can be efficient to share other hardware resources

Warp execution

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Lets look closer at memory

4 cores are accessing memory. what happens if
they access the same value?

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
All read the same value
This is efficient: the load store unit can ask for the
value and then broadcast it to all cores.

1 request to GPU memory

Efficient, but probably not too common.

a[0] a[0] a[0] a[0]

a[0]

broadcast

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

Can easily distribute the values to the
threads

1 request to GPU memory

a[0] a[1] a[2] a[3]

a[0:4]

stream

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

a[x:(x+4)]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

a[y:(y+4)]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

a[z:(z+4)]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

a[w:(w+4)]

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Chunked Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Chunked Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

the first element accessed
by the 4 threads sharing a
load store unit. What
sort of access is this?

Chunked Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

the first element accessed
by the 4 threads sharing a
load store unit. What
sort of access is this?

How can we fix this

Stride Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Stride Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

What sort of pattern is this?

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Lets change this to a stride pattern

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = threadIdx.x; i < size; i+=blockDim.x) {

d_a[i] = d_b[i] + d_c[i];
}

}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Coalesced memory accesses

Lets try it! What do we think?

Coalesced memory accesses

Lets try it! What do we think?

😀

What else can we do?

Multiple streaming multiprocessors
We’ve been talking only about 1 streaming multiprocessor, most GPUs have multiple SMs
big ML GPUs have 32. This little GPU has 1

Multiple streaming multiprocessors
We’ve been talking only about 1 streaming multiprocessor, most GPUs have multiple SMs
big ML GPUs have 32. This little GPU has 1

Multiple streaming multiprocessors
CUDA provides virtual streaming multiprocessors called blocks
Very efficient at launching and joining blocks.
No limit on blocks: launch as many as you need to map 1 thread to 1 data element

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = threadIdx.x; i < size; i+=blockDim.x) {

d_a[i] = d_b[i] + d_c[i];
}

}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Launch with many thread blocks

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
d_a[i] = d_b[i] + d_c[i];

}

calling the function

vector_add<<<1024,1024>>>(d_a, d_b, d_c, size);

Need to recalculate some thread ids.

#define SIZE (1024*1024)

Launch with many thread blocks

Now we have 1 thread for each element

How does this work

Consider thread ids as a flattened array (which is often how they are used to index memory)

How does this work

Consider thread ids as a flattened array (which is often how they are used to index memory)

Say we specify 8 threads per block (this can be up to 1024)

block 0:
block 1:
block 2:

How does this work

Consider thread ids as a flattened array (which is often how they are used to index memory)

Say we specify 8 threads per block (this can be up to 1024)

Thread ids are local to a block

Compute global id? blockIdx.x * blockDim.x + threadIdx.x

block 0:
block 1:
block 2:

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

local thread ids

How does this work

Consider thread ids as a flattened array (which is often how they are used to index memory)

Say we specify 8 threads per block (this can be up to 1024)

Thread ids are local to a block

Compute global id? blockIdx.x * blockDim.x + threadIdx.x

block 0:
block 1:
block 2:

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

local thread ids

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
global thread ids

Final Round

Intel i7-9700K
2.16 Billion transistors
95 TDP
Est. $316

The CPU in
my professor
workstation

https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html
https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Fight!

Nvidia Jetson Nano (whole chip, CPU + GPU)
2 Billion transistors
10 TDP
Est. $99

Tiny GPU in an
embedded system

WebGPU

• The language is wgsl
• It is new, there are not many examples (and the specification changes!)
• Official specification is here: https://www.w3.org/TR/WGSL/

WebGPU

• wgsl is NOT javascript

• Javascript is interpreted: not possible on GPUs

• wgsl is compiled
• into Vulkan on Linux
• into Metal on Apple
• into HLSL on Windows

• No printing (can be difficult to debug)

WebGPU

• variables (optional types):

var <name> = <value>;
var cluster_dist = 3.0;

var <name> : <type> = <value>;
var cluster_dist : f32 = 3.0;

WebGPU

• types:
• i32
• u32
• f32
• vec2<f32>
• array<type>

• structures

• Built-ins (global id)

struct Particle {
pos : vec2<f32>;

};

struct Particles {
particles : array<Particle>;

};

var index_pos : vec2<f32> = particlesA.particles[index].pos;

var index : u32 = GlobalInvocationID.x;

you have one thread for each particle!

WebGPU

• Built in functions:
• arrayLength
• sqrt
• pow
• distance

WebGPU

for (var i : u32 = 0u; i < arrayLength(&particlesA.particles); i = i + 1u) {
...
}

For loops:

WebGPU

• Types can be frustrating

• But compiler errors will help you, and you can do casts.

Last day of class!

• I hope after the final you take some time to reflect

Taking a class is like going on a long hike

Photos by Rocio Lopez

Mutexes

Photos by Rocio Lopez

Mutexes Concurrent Data structures

Photos by Rocio Lopez

Take some time
in the spring break
to enjoy the view!

Photos by Rocio Lopez

Thank you!

• You are now all now experts on parallel programming!

• You’re all going to do great on the final!

• Thank you for being such great students!

• See you around!

