
CSE113: Parallel Programming
March 15, 2023

• Topics:
• GPU programming continued

Announcements

• extra day on Homework 4 (You can turn it in by the end of today)

• HW 5 is out, you should be able to get started

• Last two days of class!

Previous Quiz

Previous Quiz

Previous Quiz

Previous Quiz

Previous Quiz

GPU set up
• Our heterogeneous, parallel, programming model

CPU GPU

System Memory Graphics Memory

PCIE

host device

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

The host (CPU) will write a
C++-like program that allocates
and sets up memory on the
GPU. The host will then
call a GPU program called a
kernel.

host device

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

How do we allocate memory on a CPU?

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

How do we allocate CPU memory on the host?

int *x = (int*) malloc(sizeof(int)*SIZE);

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

x

SIZE

How do we allocate CPU memory on the host?

int *x = (int*) malloc(sizeof(int)*SIZE);

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

We need to allocate GPU memory on the host

x

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

We need to allocate GPU memory on the host

int *d_x;
cudaMalloc(&d_x, SIZE*sizeof(int));

x

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

int *d_x;
cudaMalloc(&d_x, SIZE*sizeof(int));

d_x

SIZE

x

We need to allocate GPU memory on the host

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

int *d_x;
cudaMalloc(&d_x, SIZE*sizeof(int));

d_x

SIZE

d_x is a pointer, in the CPU program,
that points to memory on the GPU.

We can pass the pointer around, but
the CPU cannot access the data
i.e. d_x[0] gives an error!

x

We need to allocate GPU memory on the host

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

d_x

x

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

d_x

x

If we can’t access d_x on the
CPU, how do we initialize the
memory?

GPU has no access to input
devices e.g. disk• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

d_x

x

//initialize x on host
cudaMemcpy(d_x, x, SIZE*sizeof(int),

cudaMemcpyHostToDevice);

If we can’t access d_x on the
CPU, how do we initialize the
memory?

GPU has no access to input
devices e.g. disk• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

d_x

x

//initialize x on host
cudaMemcpy(d_x, x, SIZE*sizeof(int),

cudaMemcpyHostToDevice);

• Our heterogeneous, parallel, programming model

If we can’t access d_x on the
CPU, how do we initialize the
memory?

GPU has no access to input
devices e.g. disk

How does this look in code?

How does this look in code?

Nothing too exciting yet.

The GPU Program

• Write a special function in your C++ code.
• Called a Kernel
• Use the new keyword __global__
• Keywords in

• OpenCL __kernel
• Metal kernel

• Write it how you’d write any other function

The GPU Program

__global__ void vector_add(int * a, int * b, int * c, int size) {
for (int i = 0; i < size; i++) {
a[i] = b[i] + c[i];

}
}

The GPU Program

__global__ void vector_add(int * a, int * b, int * c, int size) {
for (int i = 0; i < size; i++) {
a[i] = b[i] + c[i];

}
}

calling the function

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

The GPU Program

__global__ void vector_add(int * a, int * b, int * c, int size) {
for (int i = 0; i < size; i++) {
a[i] = b[i] + c[i];

}
}

calling the function

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

What in the world?
special new CUDA syntax. We will talk more soon

The GPU Program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = 0; i < size; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

Pass in pointers to memory on the device

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

d_x

x

Remember, GPU needs to access
its own memory

• Our heterogeneous, parallel, programming model

The GPU Program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = 0; i < size; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

Constants can be passed in regularly

The GPU Program

Are we ready to run the program? What are we missing?

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

d_x

x

//initialize x on host
cudaMemcpy(d_x, x, SIZE*sizeof(int),

cudaMemcpyHostToDevice);

• Our heterogeneous, parallel, programming model

GPU set up

CPU GPU

System Memory Graphics Memory

PCIE

Discrete

d_x

x

//initialize x on host
cudaMemcpy(x, d_x, SIZE*sizeof(int),

cudaMemcpyDeviceToHost);

• Our heterogeneous, parallel, programming model

The GPU Program

Finally, we can run the GPU program!

Lets see what all the hype is about

The GPU Program

😥 It didn’t do so well...

First parallelization attempt

• Lets look at some GPU documentation.

• The Maxwell whitepaper shows a diagram of one of the GPU cores

https://www.techpowerup.com/gpu-specs/docs/nvidia-gtx-980.pdf

https://www.techpowerup.com/gpu-specs/docs/nvidia-gtx-980.pdf

woah, 32 cores!

We should parallelize our application!

First parallelization attempt

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = 0; i < size; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,1>>>(d_a, d_b, d_c, size);

First parallelization attempt

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = 0; i < size; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);

number of threads to launch the program with

First parallelization attempt

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);
number of threads

First parallelization attempt

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);
number of threads
thread id

First parallelization attempt

Lets try it! What do we think?

First parallelization attempt

😀 Getting better but we have a long ways to go!

GPU Memory

CPU GPU

System Memory Graphics Memory

GPU Memory

CPU GPU

System Memory Graphics Memory

CPU Memory:
Fast: Low Latency
Easily saturated: Low Bandwidth
Scales well: up to 1 TB
DDR

GPU Memory:
slow: High Latency
hard to saturate: High Bandwidth
doesn’t scale: 32 GB
GDDR, HBM

Different technologies2-lane straight highway
driven on by sports cars

16-lane highway on a windy
road driven by semi trucks

GPU Memory

CPU GPU

System Memory Graphics Memory

bandwidth:
~700 GB/s for GPU
~50 GB/s for CPUs

Cache Latency:
~28 cycles for L1 hit for GPU
~4 cycles for L1 hit on CPUs

memory Latency:
~600 cycles for GPU memory
~200 cycles for CPU memory

Preemption and concurrency?

GPU

Graphics Memory

warp 0

Preemption and concurrency?

GPU

Graphics Memory

warp 0 all threads load from memory.

Preemption and concurrency?

GPU

Graphics Memory

warp 0 all threads load from memory.

600 cycles!

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2 We can hide latency through
preemption and concurrency!

memory access
600 cycles

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2
We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 0
and put warp 1 on

Preemption and concurrency?

GPU

Graphics Memory

warp 0warp 1

warp 2
We can hide latency through
preemption and concurrency!

Preemption and concurrency?

GPU

Graphics Memory

warp 0warp 1

warp 2
We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 1
and put warp 2 on

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1
warp 2

We can hide latency through
preemption and concurrency!

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1
warp 2

We can hide latency through
preemption and concurrency!

memory access
600 cycles

preempt warp 2
and put warp 0 on

Preemption and concurrency?

GPU

Graphics Memory

warp 0

warp 1

warp 2

We can hide latency through
preemption and concurrency!

Hey, my memory has arrived!

preempt warp 2
and put warp 0 on

Preemption and concurrency?
But wait, I thought preemption was expensive?

Preemption and concurrency?
But wait, I thought preemption was expensive?

Registers all stay on chip

Preemption and concurrency?
But wait, I thought preemption was expensive?

dedicated scheduler logic

Preemption and concurrency?
But wait, I thought preemption was expensive?

bound on number of warps: 32

Go back to our program

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);

Lets launch with 32 warps

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

Go back to our program

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Lets launch with 32 warps

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

Concurrent warps

Lets try it! What do we think?

Concurrent warps

Lets try it! What do we think?

😀
Getting better!

Optimizing memory accesses

Optimizing memory accesses

this is the load/store unit. The hardware component responsible for
issuing loads and stores.

Why doesn’t every core have one?

Optimizing memory accesses

this is the load/store unit. The hardware component responsible for
issuing loads and stores.

Why doesn’t every core have one?

This is the instruction cache... Why doesn’t every core have a instruction
buffer to keep track of its program?

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

instruction is fetched from the buffer
and distributed to all the cores.

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Cores can a large register file
they share expensive HW units (load/store and special functions)

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

All cores need to wait until all cores finish the first instruction

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Start the next instruction.

Why would we have a programming model like this?

Warp execution
Groups of 32 threads are called a “warp”

They are executed in lock-step, i.e. they all execute
the same instruction at the same time

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Start the next instruction.

Why would we have a programming model like this?
More cores (share program counters)
Can be efficient to share other hardware resources

Warp execution

Program:
int variable1 = b[0];
int variable2 = c[0];
int variable3 = variable1 + variable2;
a[0] = variable3;

Lets look closer at memory

4 cores are accessing memory. what happens if
they access the same value?

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
All read the same value

a[0] a[0] a[0] a[0]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
All read the same value
This is efficient: the load store unit can ask for the
value and then broadcast it to all cores.

a[0] a[0] a[0] a[0]

a[0]

broadcast

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
All read the same value
This is efficient: the load store unit can ask for the
value and then broadcast it to all cores.

1 request to GPU memory

Efficient, but probably not too common.

a[0] a[0] a[0] a[0]

a[0]

broadcast

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values

a[0] a[1] a[2] a[3]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

a[0] a[1] a[2] a[3]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

a[0] a[1] a[2] a[3]

a[0]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

Can easily distribute the values to the
threads

a[0] a[1] a[2] a[3]

a[0:4]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read contiguous values
Like the CPU cache, the Load/Store Unit
reads in memory in chunks. 16 bytes

Can easily distribute the values to the
threads

1 request to GPU memory

a[0] a[1] a[2] a[3]

a[0:4]

stream

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

a[x:(x+4)]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

a[y:(y+4)]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

a[z:(z+4)]

4 cores are accessing memory. What can happen

T0 T1 T2 T3

Load Store Unit

GPU Memory
Read non-contiguous values

Not good!

Accesses are Serialized.
You need 4 requests to GPU memory

a[x] a[y] a[z] a[w]

a[w:(w+4)]

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,32>>>(d_a, d_b, d_c, size);

Chunked Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Chunked Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

the first element accessed
by the 4 threads sharing a
load store unit. What
sort of access is this?

Chunked Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

the first element accessed
by the 4 threads sharing a
load store unit. What
sort of access is this?

How can we fix this

Stride Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

Stride Pattern

+ + + +

= = = =

array a

array b

array c

+ + +

= = =

Computation
can easily be
divided into
threads

Thread 0 - Blue
Thread 1 - Yellow
Thread 2 - Green
Thread 3 - Orange

What sort of pattern is this?

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int chunk_size = size/blockDim.x;
int start = chunk_size * threadIdx.x;
int end = start + end;
for (int i = start; i < end; i++) {
d_a[i] = d_b[i] + d_c[i];

}
}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Lets change this to a stride pattern

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = threadIdx.x; i < size; i+=blockDim.x) {

d_a[i] = d_b[i] + d_c[i];
}

}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Coalesced memory accesses

Lets try it! What do we think?

Coalesced memory accesses

Lets try it! What do we think?

😀

What else can we do?

Multiple streaming multiprocessors
We’ve been talking only about 1 streaming multiprocessor, most GPUs have multiple SMs
big ML GPUs have 32. My GPU has 4

Multiple streaming multiprocessors
We’ve been talking only about 1 streaming multiprocessor, most GPUs have multiple SMs
big ML GPUs have 32. This little GPU has 1

Multiple streaming multiprocessors
CUDA provides virtual streaming multiprocessors called blocks
Very efficient at launching and joining blocks.
No limit on blocks: launch as many as you need to map 1 thread to 1 data element

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
for (int i = threadIdx.x; i < size; i+=blockDim.x) {

d_a[i] = d_b[i] + d_c[i];
}

}

calling the function

vector_add<<<1,1024>>>(d_a, d_b, d_c, size);

Launch with many thread blocks

Go back to our program

__global__ void vector_add(int * d_a, int * d_b, int * d_c, int size) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
d_a[i] = d_b[i] + d_c[i];

}

calling the function

vector_add<<<1024,1024>>>(d_a, d_b, d_c, size);

Need to recalculate some thread ids.

#define SIZE (1024*1024)

Launch with many thread blocks

Now we have 1 thread for each element

Final Round

Intel i7-9700K
2.16 Billion transistors
95 TDP
Est. $316

The CPU in
my professor
workstation

https://www.techpowerup.com/gpu-specs/geforce-940m.c2648
https://www.alibaba.com/product-detail/Intel-Core-i7-9700K-8-Cores_62512430487.html
https://www.prolast.com/prolast-elevated-boxing-rings-22-x-22/

Fight!

Nvidia Jetson Nano (whole chip, CPU + GPU)
2 Billion transistors
10 TDP
Est. $99

Tiny GPU in an
embedded system

See you on Friday

• Turn in HW 4 if you haven’t already

• Working on GPU programming

